CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
List of all members | Public Member Functions | Private Attributes
CMSEmStandardPhysicsXS Class Reference

#include <CMSEmStandardPhysicsXS.h>

Inheritance diagram for CMSEmStandardPhysicsXS:

Public Member Functions

 CMSEmStandardPhysicsXS (G4int ver)
 
virtual void ConstructParticle ()
 
virtual void ConstructProcess ()
 
virtual ~CMSEmStandardPhysicsXS ()
 

Private Attributes

G4int verbose
 

Detailed Description

Definition at line 7 of file CMSEmStandardPhysicsXS.h.

Constructor & Destructor Documentation

CMSEmStandardPhysicsXS::CMSEmStandardPhysicsXS ( G4int  ver)

Definition at line 74 of file CMSEmStandardPhysicsXS.cc.

74  :
75  G4VPhysicsConstructor("CMSEmStandardXS_opt1"), verbose(ver) {
76  G4LossTableManager::Instance();
77  SetPhysicsType(bElectromagnetic);
78 }
CMSEmStandardPhysicsXS::~CMSEmStandardPhysicsXS ( )
virtual

Definition at line 80 of file CMSEmStandardPhysicsXS.cc.

80 {}

Member Function Documentation

void CMSEmStandardPhysicsXS::ConstructParticle ( )
virtual

Definition at line 82 of file CMSEmStandardPhysicsXS.cc.

References Gamma.

82  {
83  // gamma
85 
86  // leptons
87  G4Electron::Electron();
88  G4Positron::Positron();
89  G4MuonPlus::MuonPlus();
90  G4MuonMinus::MuonMinus();
91  G4TauMinus::TauMinusDefinition();
92  G4TauPlus::TauPlusDefinition();
93 
94  // mesons
95  G4PionPlus::PionPlusDefinition();
96  G4PionMinus::PionMinusDefinition();
97  G4KaonPlus::KaonPlusDefinition();
98  G4KaonMinus::KaonMinusDefinition();
99  G4DMesonMinus::DMesonMinusDefinition();
100  G4DMesonPlus::DMesonPlusDefinition();
101  G4BMesonMinus::BMesonMinusDefinition();
102  G4BMesonPlus::BMesonPlusDefinition();
103 
104  // barions
105  G4Proton::Proton();
106  G4AntiProton::AntiProton();
107  G4SigmaMinus::SigmaMinusDefinition();
108  G4AntiSigmaMinus::AntiSigmaMinusDefinition();
109  G4SigmaPlus::SigmaPlusDefinition();
110  G4AntiSigmaPlus::AntiSigmaPlusDefinition();
111  G4XiMinus::XiMinusDefinition();
112  G4AntiXiMinus::AntiXiMinusDefinition();
113  G4OmegaMinus::OmegaMinusDefinition();
114  G4AntiOmegaMinus::AntiOmegaMinusDefinition();
115  G4LambdacPlus::LambdacPlusDefinition();
116  G4AntiLambdacPlus::AntiLambdacPlusDefinition();
117  G4XicPlus::XicPlusDefinition();
118  G4AntiXicPlus::AntiXicPlusDefinition();
119 
120  // ions
121  G4Deuteron::Deuteron();
122  G4Triton::Triton();
123  G4He3::He3();
124  G4Alpha::Alpha();
125  G4GenericIon::GenericIonDefinition();
126 }
dbl * Gamma
Definition: mlp_gen.cc:38
void CMSEmStandardPhysicsXS::ConstructProcess ( )
virtual

Definition at line 128 of file CMSEmStandardPhysicsXS.cc.

References kp, MeV, AnalysisDataFormats_SUSYBSMObjects::msc, pi, createTree::pp, and contentValuesCheck::ss.

128  {
129 
130  if(verbose > 0) {
131  G4cout << "### " << GetPhysicsName() << " Construct Processes " << G4endl;
132  }
133 
134  // This EM builder takes default models of Geant4 10 EMV.
135  // Multiple scattering by Urban for all particles
136  // except e+e- below 100 MeV for which the Urban93 model is used
137 
138  G4PhysicsListHelper* ph = G4PhysicsListHelper::GetPhysicsListHelper();
139 
140  // muon & hadron bremsstrahlung and pair production
141  G4MuBremsstrahlung* mub = new G4MuBremsstrahlung();
142  G4MuPairProduction* mup = new G4MuPairProduction();
143  G4hBremsstrahlung* pib = new G4hBremsstrahlung();
144  G4hPairProduction* pip = new G4hPairProduction();
145  G4hBremsstrahlung* kb = new G4hBremsstrahlung();
146  G4hPairProduction* kp = new G4hPairProduction();
147  G4hBremsstrahlung* pb = new G4hBremsstrahlung();
148  G4hPairProduction* pp = new G4hPairProduction();
149 
150  // muon & hadron multiple scattering
151  G4MuMultipleScattering* mumsc = new G4MuMultipleScattering();
152  mumsc->AddEmModel(0, new G4WentzelVIModel());
153  G4MuMultipleScattering* pimsc = new G4MuMultipleScattering();
154  pimsc->AddEmModel(0, new G4WentzelVIModel());
155  G4MuMultipleScattering* kmsc = new G4MuMultipleScattering();
156  kmsc->AddEmModel(0, new G4WentzelVIModel());
157  G4MuMultipleScattering* pmsc = new G4MuMultipleScattering();
158  pmsc->AddEmModel(0, new G4WentzelVIModel());
159  G4hMultipleScattering* hmsc = new G4hMultipleScattering("ionmsc");
160 
161  // high energy limit for e+- scattering models and bremsstrahlung
162  G4double highEnergyLimit = 100*MeV;
163 
164  aParticleIterator->reset();
165  while( (*aParticleIterator)() ){
166  G4ParticleDefinition* particle = aParticleIterator->value();
167  G4String particleName = particle->GetParticleName();
168 
169  if (particleName == "gamma") {
170 
171  G4PhotoElectricEffect* photo = new G4PhotoElectricEffect();
172  photo->SetEmModel(new G4LivermorePhotoElectricModel(),1);
173  ph->RegisterProcess(photo, particle);
174  G4ComptonScattering* compt = new G4ComptonScattering();
175  compt->SetEmModel(new G4KleinNishinaModel(), 1);
176  ph->RegisterProcess(compt, particle);
177  ph->RegisterProcess(new G4GammaConversion(), particle);
178 
179  } else if (particleName == "e-") {
180 
181  G4eIonisation* eioni = new G4eIonisation();
182  eioni->SetStepFunction(0.8, 1.0*mm);
183 
184  G4eMultipleScattering* msc = new G4eMultipleScattering;
185  msc->SetStepLimitType(fMinimal);
186  UrbanMscModel93* msc1 = new UrbanMscModel93();
187  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
188  msc1->SetHighEnergyLimit(highEnergyLimit);
189  msc2->SetLowEnergyLimit(highEnergyLimit);
190  msc->AddEmModel(0, msc1);
191  msc->AddEmModel(0, msc2);
192 
193  G4eCoulombScatteringModel* ssm = new G4eCoulombScatteringModel();
194  G4CoulombScattering* ss = new G4CoulombScattering();
195  ss->SetEmModel(ssm, 1);
196  ss->SetMinKinEnergy(highEnergyLimit);
197  ssm->SetLowEnergyLimit(highEnergyLimit);
198  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
199 
200  ph->RegisterProcess(msc, particle);
201  ph->RegisterProcess(eioni, particle);
202  ph->RegisterProcess(new G4eBremsstrahlung(), particle);
203  ph->RegisterProcess(ss, particle);
204 
205  } else if (particleName == "e+") {
206 
207  G4eIonisation* eioni = new G4eIonisation();
208  eioni->SetStepFunction(0.8, 1.0*mm);
209 
210  G4eMultipleScattering* msc = new G4eMultipleScattering;
211  msc->SetStepLimitType(fMinimal);
212  UrbanMscModel93* msc1 = new UrbanMscModel93();
213  G4WentzelVIModel* msc2 = new G4WentzelVIModel();
214  msc1->SetHighEnergyLimit(highEnergyLimit);
215  msc2->SetLowEnergyLimit(highEnergyLimit);
216  msc->AddEmModel(0, msc1);
217  msc->AddEmModel(0, msc2);
218 
219  G4eCoulombScatteringModel* ssm = new G4eCoulombScatteringModel();
220  G4CoulombScattering* ss = new G4CoulombScattering();
221  ss->SetEmModel(ssm, 1);
222  ss->SetMinKinEnergy(highEnergyLimit);
223  ssm->SetLowEnergyLimit(highEnergyLimit);
224  ssm->SetActivationLowEnergyLimit(highEnergyLimit);
225 
226  ph->RegisterProcess(msc, particle);
227  ph->RegisterProcess(eioni, particle);
228  ph->RegisterProcess(new G4eBremsstrahlung(), particle);
229  ph->RegisterProcess(new G4eplusAnnihilation(), particle);
230  ph->RegisterProcess(ss, particle);
231 
232  } else if (particleName == "mu+" ||
233  particleName == "mu-" ) {
234 
235  ph->RegisterProcess(mumsc, particle);
236  ph->RegisterProcess(new G4MuIonisation(), particle);
237  ph->RegisterProcess(mub, particle);
238  ph->RegisterProcess(mup, particle);
239  ph->RegisterProcess(new G4CoulombScattering(), particle);
240 
241  } else if (particleName == "alpha" ||
242  particleName == "He3" ) {
243 
244  //ph->RegisterProcess(hmsc, particle);
245  ph->RegisterProcess(new G4hMultipleScattering(), particle);
246  ph->RegisterProcess(new G4ionIonisation(), particle);
247 
248  } else if (particleName == "GenericIon") {
249 
250  ph->RegisterProcess(hmsc, particle);
251  ph->RegisterProcess(new G4ionIonisation(), particle);
252 
253  } else if (particleName == "pi+" ||
254  particleName == "pi-" ) {
255 
256  //G4hMultipleScattering* pimsc = new G4hMultipleScattering();
257  ph->RegisterProcess(pimsc, particle);
258  ph->RegisterProcess(new G4hIonisation(), particle);
259  ph->RegisterProcess(pib, particle);
260  ph->RegisterProcess(pip, particle);
261  ph->RegisterProcess(new G4CoulombScattering(), particle);
262 
263  } else if (particleName == "kaon+" ||
264  particleName == "kaon-" ) {
265 
266  //G4hMultipleScattering* kmsc = new G4hMultipleScattering();
267  ph->RegisterProcess(kmsc, particle);
268  ph->RegisterProcess(new G4hIonisation(), particle);
269  ph->RegisterProcess(kb, particle);
270  ph->RegisterProcess(kp, particle);
271  ph->RegisterProcess(new G4CoulombScattering(), particle);
272 
273  // } else if (particleName == "proton" ) {
274  } else if (particleName == "proton" ||
275  particleName == "anti_proton") {
276 
277  //G4hMultipleScattering* pmsc = new G4hMultipleScattering();
278  ph->RegisterProcess(pmsc, particle);
279  ph->RegisterProcess(new G4hIonisation(), particle);
280  ph->RegisterProcess(pb, particle);
281  ph->RegisterProcess(pp, particle);
282  ph->RegisterProcess(new G4CoulombScattering(), particle);
283 
284  } else if (particleName == "B+" ||
285  particleName == "B-" ||
286  particleName == "D+" ||
287  particleName == "D-" ||
288  particleName == "Ds+" ||
289  particleName == "Ds-" ||
290  particleName == "anti_He3" ||
291  particleName == "anti_alpha" ||
292  particleName == "anti_deuteron" ||
293  particleName == "anti_lambda_c+" ||
294  particleName == "anti_omega-" ||
295  particleName == "anti_sigma_c+" ||
296  particleName == "anti_sigma_c++" ||
297  particleName == "anti_sigma+" ||
298  particleName == "anti_sigma-" ||
299  particleName == "anti_triton" ||
300  particleName == "anti_xi_c+" ||
301  particleName == "anti_xi-" ||
302  particleName == "deuteron" ||
303  particleName == "lambda_c+" ||
304  particleName == "omega-" ||
305  particleName == "sigma_c+" ||
306  particleName == "sigma_c++" ||
307  particleName == "sigma+" ||
308  particleName == "sigma-" ||
309  particleName == "tau+" ||
310  particleName == "tau-" ||
311  particleName == "triton" ||
312  particleName == "xi_c+" ||
313  particleName == "xi-" ) {
314 
315  ph->RegisterProcess(hmsc, particle);
316  ph->RegisterProcess(new G4hIonisation(), particle);
317  }
318  }
319  G4EmProcessOptions opt;
320  opt.SetVerbose(verbose);
321  opt.SetPolarAngleLimit(CLHEP::pi);
322  opt.SetApplyCuts(true);
323 }
tuple pp
Definition: createTree.py:15
int kp
susybsm::MuonSegmentCollection msc
Definition: classes.h:32
const Double_t pi
const double MeV

Member Data Documentation

G4int CMSEmStandardPhysicsXS::verbose
private

Definition at line 17 of file CMSEmStandardPhysicsXS.h.