CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
Classes | Typedefs | Functions
MuScleFitUtils.h File Reference
#include <CLHEP/Vector/LorentzVector.h>
#include "DataFormats/MuonReco/interface/Muon.h"
#include "DataFormats/MuonReco/interface/MuonFwd.h"
#include "SimDataFormats/GeneratorProducts/interface/HepMCProduct.h"
#include "DataFormats/HepMCCandidate/interface/GenParticleFwd.h"
#include "SimDataFormats/Track/interface/SimTrackContainer.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "TGraphErrors.h"
#include "TH2F.h"
#include "TMinuit.h"
#include "MuonAnalysis/MomentumScaleCalibration/interface/CrossSectionHandler.h"
#include "MuonAnalysis/MomentumScaleCalibration/interface/BackgroundHandler.h"
#include "MuonAnalysis/MomentumScaleCalibration/interface/ResolutionFunction.h"
#include "MuonAnalysis/MomentumScaleCalibration/interface/MuonPair.h"
#include "MuonAnalysis/MomentumScaleCalibration/interface/GenMuonPair.h"
#include <vector>

Go to the source code of this file.

Classes

class  biasFunctionBase< T >
 
struct  MuScleFitUtils::byPt
 
struct  MuScleFitUtils::massResolComponentsStruct
 
class  MuScleFitUtils
 
class  resolutionFunctionBase< T >
 
class  scaleFunctionBase< T >
 

Typedefs

typedef
reco::Particle::LorentzVector 
lorentzVector
 

Functions

void likelihood (int &npar, double *grad, double &fval, double *xval, int flag)
 

Typedef Documentation

Definition at line 44 of file MuScleFitUtils.h.

Function Documentation

void likelihood ( int &  npar,
double *  grad,
double &  fval,
double *  xval,
int  flag 
)

Definition at line 1701 of file MuScleFitUtils.cc.

References MuScleFitUtils::applyScale(), MuScleFitUtils::computeWeight(), gather_cfg::cout, MuScleFitUtils::debug, MuScleFitUtils::doScaleFit, reco::tau::disc::Eta(), MuScleFitUtils::iev_, MuScleFitUtils::invDimuonMass(), MuScleFitUtils::likelihoodInLoop_, fff_deleter::log, MuScleFitUtils::loopCounter, MuScleFitUtils::massProb(), MuScleFitUtils::massResolution(), MuScleFitUtils::minuitLoop_, MuScleFitUtils::normalizationChanged_, MuScleFitUtils::normalizeLikelihoodByEventNumber_, MuScleFitUtils::oldNormalization_, mix_2012_Summer_inTimeOnly_cff::prob, MuScleFitUtils::ReducedSavedPair, MuScleFitUtils::rminPtr_, MuScleFitUtils::SavedPair, and histoStyle::weight.

Referenced by pat::ElectronSelector::filter(), MuScleFitUtils::minimizeLikelihood(), and PFNuclearProducer::produce().

1701  {
1702 
1703  if (MuScleFitUtils::debug>19) std::cout << "[MuScleFitUtils-likelihood]: In likelihood function" << std::endl;
1704 
1705  const lorentzVector * recMu1;
1706  const lorentzVector * recMu2;
1707  lorentzVector corrMu1;
1708  lorentzVector corrMu2;
1709 
1710  // if (MuScleFitUtils::debug>19) {
1711  // int parnumber = (int)(MuScleFitUtils::parResol.size()+MuScleFitUtils::parScale.size()+
1712  // MuScleFitUtils::parCrossSection.size()+MuScleFitUtils::parBgr.size());
1713  // std::cout << "[MuScleFitUtils-likelihood]: Looping on tree with ";
1714  // for (int ipar=0; ipar<parnumber; ipar++) {
1715  // std::cout << "Parameter #" << ipar << " with value " << xval[ipar] << " ";
1716  // }
1717  // std::cout << std::endl;
1718  // }
1719 
1720  // Loop on the tree
1721  // ----------------
1722  double flike = 0;
1723  int evtsinlik = 0;
1724  int evtsoutlik = 0;
1725  // std::cout << "SavedPair.size() = " << MuScleFitUtils::SavedPair.size() << std::endl;
1726  if( MuScleFitUtils::debug>0 ) {
1727  std::cout << "SavedPair.size() = " << MuScleFitUtils::SavedPair.size() << std::endl;
1728  std::cout << "ReducedSavedPair.size() = " << MuScleFitUtils::ReducedSavedPair.size() << std::endl;
1729  }
1730  // for( unsigned int nev=0; nev<MuScleFitUtils::SavedPair.size(); ++nev ) {
1731  for( unsigned int nev=0; nev<MuScleFitUtils::ReducedSavedPair.size(); ++nev ) {
1732 
1733  // recMu1 = &(MuScleFitUtils::SavedPair[nev].first);
1734  // recMu2 = &(MuScleFitUtils::SavedPair[nev].second);
1735  recMu1 = &(MuScleFitUtils::ReducedSavedPair[nev].first);
1736  recMu2 = &(MuScleFitUtils::ReducedSavedPair[nev].second);
1737 
1738  // Compute original mass
1739  // ---------------------
1740  double mass = MuScleFitUtils::invDimuonMass( *recMu1, *recMu2 );
1741 
1742  // Compute weight and reference mass (from original mass)
1743  // ------------------------------------------------------
1745  if( weight!=0. ) {
1746  // Compute corrected mass (from previous biases) only if we are currently fitting the scale
1747  // ----------------------------------------------------------------------------------------
1749 // std::cout << "Original pt1 = " << corrMu1.Pt() << std::endl;
1750 // std::cout << "Original pt2 = " << corrMu2.Pt() << std::endl;
1751  corrMu1 = MuScleFitUtils::applyScale(*recMu1, xval, -1);
1752  corrMu2 = MuScleFitUtils::applyScale(*recMu2, xval, 1);
1753 
1754 // if( (corrMu1.Pt() != corrMu1.Pt()) || (corrMu2.Pt() != corrMu2.Pt()) ) {
1755 // std::cout << "Rescaled pt1 = " << corrMu1.Pt() << std::endl;
1756 // std::cout << "Rescaled pt2 = " << corrMu2.Pt() << std::endl;
1757 // }
1758 // std::cout << "Rescaled pt1 = " << corrMu1.Pt() << std::endl;
1759 // std::cout << "Rescaled pt2 = " << corrMu2.Pt() << std::endl;
1760  }
1761  else {
1762  corrMu1 = *recMu1;
1763  corrMu2 = *recMu2;
1764 
1765 // if( (corrMu1.Pt() != corrMu1.Pt()) || (corrMu2.Pt() != corrMu2.Pt()) ) {
1766 // std::cout << "Not rescaled pt1 = " << corrMu1.Pt() << std::endl;
1767 // std::cout << "Not rescaled pt2 = " << corrMu2.Pt() << std::endl;
1768 // }
1769  }
1770  double corrMass = MuScleFitUtils::invDimuonMass(corrMu1, corrMu2);
1771  double Y = (corrMu1+corrMu2).Rapidity();
1772  double resEta = (corrMu1+corrMu2).Eta();
1773  if( MuScleFitUtils::debug>19 ) {
1774  std::cout << "[MuScleFitUtils-likelihood]: Original/Corrected resonance mass = " << mass
1775  << " / " << corrMass << std::endl;
1776  }
1777 
1778  // Compute mass resolution
1779  // -----------------------
1780  double massResol = MuScleFitUtils::massResolution(corrMu1, corrMu2, xval);
1781  if (MuScleFitUtils::debug>19)
1782  std::cout << "[MuScleFitUtils-likelihood]: Resolution is " << massResol << std::endl;
1783 
1784  // Compute probability of this mass value including background modeling
1785  // --------------------------------------------------------------------
1786  if (MuScleFitUtils::debug>1) std::cout << "calling massProb inside likelihood function" << std::endl;
1787 
1788  // double prob = MuScleFitUtils::massProb( corrMass, resEta, Y, massResol, xval );
1789  double prob = MuScleFitUtils::massProb( corrMass, resEta, Y, massResol, xval, false, corrMu1.eta(), corrMu2.eta() );
1790  if (MuScleFitUtils::debug>1) std::cout << "likelihood:massProb = " << prob << std::endl;
1791 
1792  // Compute likelihood
1793  // ------------------
1794  if( prob>0 ) {
1795  // flike += log(prob*10000)*weight; // NNBB! x10000 to see if we can recover the problem of boundary
1796  flike += log(prob)*weight;
1797  evtsinlik += 1; // NNBB test: see if likelihood per event is smarter (boundary problem)
1798  } else {
1799  if( MuScleFitUtils::debug > 0 ) {
1800  std::cout << "WARNING: corrMass = " << corrMass << " outside window, this will cause a discontinuity in the likelihood. Consider increasing the safety bands which are now set to 90% of the normalization window to avoid this problem" << std::endl;
1801  std::cout << "Original mass was = " << mass << std::endl;
1802  std::cout << "WARNING: massResol = " << massResol << " outside window" << std::endl;
1803  }
1804  evtsoutlik += 1;
1805  }
1806  if (MuScleFitUtils::debug>19)
1807  std::cout << "[MuScleFitUtils-likelihood]: Mass probability = " << prob << std::endl;
1808  } // weight!=0
1809 
1810  } // End of loop on tree events
1811 
1812 // // Protection for low statistic. If the likelihood manages to throw out all the signal
1813 // // events and stays with ~ 10 events in the resonance window it could have a better likelihood
1814 // // because of ~ uniformly distributed events (a random combination could be good and spoil the fit).
1815 // // We require that the number of events included in the fit does not change more than 5% in each minuit loop.
1816 // bool lowStatPenalty = false;
1817 // if( MuScleFitUtils::minuitLoop_ > 0 ) {
1818 // double newEventsOutInRatio = double(evtsinlik);
1819 // // double newEventsOutInRatio = double(evtsoutlik)/double(evtsinlik);
1820 // double ratio = newEventsOutInRatio/MuScleFitUtils::oldEventsOutInRatio_;
1821 // MuScleFitUtils::oldEventsOutInRatio_ = newEventsOutInRatio;
1822 // if( ratio < 0.8 || ratio > 1.2 ) {
1823 // std::cout << "Warning: too much change from oldEventsInLikelihood to newEventsInLikelihood, ratio is = " << ratio << std::endl;
1824 // std::cout << "oldEventsInLikelihood = " << MuScleFitUtils::oldEventsOutInRatio_ << ", newEventsInLikelihood = " << newEventsOutInRatio << std::endl;
1825 // lowStatPenalty = true;
1826 // }
1827 // }
1828 
1829  // It is a product of probabilities, we compare the sqrt_N of them. Thus N becomes a denominator of the logarithm.
1830  if( evtsinlik != 0 ) {
1831 
1833  // && !(MuScleFitUtils::duringMinos_) ) {
1834  if( MuScleFitUtils::rminPtr_ == 0 ) {
1835  std::cout << "ERROR: rminPtr_ = " << MuScleFitUtils::rminPtr_ << ", code will crash" << std::endl;
1836  }
1837  double normalizationArg[] = {1/double(evtsinlik)};
1838  // Reset the normalizationArg only if it changed
1839  if( MuScleFitUtils::oldNormalization_ != normalizationArg[0] ) {
1840  int ierror = 0;
1841 // if( MuScleFitUtils::likelihoodInLoop_ != 0 ) {
1842 // // This condition is set only when minimizing. Later calls of hesse and minos will not change the value
1843 // // This is done to avoid minos being confused by changing the UP parameter during its computation.
1844 // MuScleFitUtils::rminPtr_->mnexcm("SET ERR", normalizationArg, 1, ierror);
1845 // }
1846  MuScleFitUtils::rminPtr_->mnexcm("SET ERR", normalizationArg, 1, ierror);
1847  std::cout << "oldNormalization = " << MuScleFitUtils::oldNormalization_ << " new = " << normalizationArg[0] << std::endl;
1848  MuScleFitUtils::oldNormalization_ = normalizationArg[0];
1850  }
1851  fval = -2.*flike/double(evtsinlik);
1852  // fval = -2.*flike;
1853  // if( lowStatPenalty ) {
1854  // fval *= 100;
1855  // }
1856  }
1857  else {
1858  fval = -2.*flike;
1859  }
1860  }
1861  else {
1862  std::cout << "Problem: Events in likelihood = " << evtsinlik << std::endl;
1863  fval = 999999999.;
1864  }
1865  // fval = -2.*flike;
1866  if (MuScleFitUtils::debug>19)
1867  std::cout << "[MuScleFitUtils-likelihood]: End tree loop with likelihood value = " << fval << std::endl;
1868 
1869 // #ifdef DEBUG
1870 
1871 // if( MuScleFitUtils::minuitLoop_ < 10000 ) {
1875  }
1876  // }
1877  // else std::cout << "minuitLoop over 10000. Not filling histogram" << std::endl;
1878 
1879  std::cout<<"MINUIT loop number "<<MuScleFitUtils::minuitLoop_<<", likelihood = "<<fval<<std::endl;
1880 
1881  if( MuScleFitUtils::debug > 0 ) {
1882  // if( MuScleFitUtils::duringMinos_ ) {
1883  // int parnumber = (int)(MuScleFitUtils::parResol.size()+MuScleFitUtils::parScale.size()+
1884  // MuScleFitUtils::parCrossSection.size()+MuScleFitUtils::parBgr.size());
1885  // std::cout << "[MuScleFitUtils-likelihood]: Looping on tree with ";
1886  // for (int ipar=0; ipar<parnumber; ipar++) {
1887  // std::cout << "Parameter #" << ipar << " with value " << xval[ipar] << " ";
1888  // }
1889  // std::cout << std::endl;
1890  // std::cout << "[MuScleFitUtils-likelihood]: likelihood value = " << fval << std::endl;
1891  // }
1892  std::cout << "Events in likelihood = " << evtsinlik << std::endl;
1893  std::cout << "Events out likelihood = " << evtsoutlik << std::endl;
1894  }
1895 
1896 // #endif
1897 }
static std::vector< int > doScaleFit
static unsigned int loopCounter
static int debug
static unsigned int normalizationChanged_
static double massProb(const double &mass, const double &rapidity, const int ires, const double &massResol)
reco::Particle::LorentzVector lorentzVector
Definition: GenMuonPair.h:9
static std::vector< std::pair< lorentzVector, lorentzVector > > ReducedSavedPair
static double massResolution(const lorentzVector &mu1, const lorentzVector &mu2)
static int minuitLoop_
static double computeWeight(const double &mass, const int iev, const bool doUseBkgrWindow=false)
static std::vector< std::pair< lorentzVector, lorentzVector > > SavedPair
static double invDimuonMass(const lorentzVector &mu1, const lorentzVector &mu2)
static lorentzVector applyScale(const lorentzVector &muon, const std::vector< double > &parval, const int charge)
static TMinuit * rminPtr_
static TH1D * likelihoodInLoop_
static double oldNormalization_
static int iev_
static bool normalizeLikelihoodByEventNumber_
tuple cout
Definition: gather_cfg.py:121
int weight
Definition: histoStyle.py:50