CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
Macros | Functions
ColinsSoperVariables.h File Reference
#include "TLorentzVector.h"
#include "TVector3.h"

Go to the source code of this file.

Macros

#define CM_ENERGY   7000.0
 

Functions

void calCSVariables (TLorentzVector mu, TLorentzVector mubar, double *res, bool swap)
 

Macro Definition Documentation

#define CM_ENERGY   7000.0

Definition at line 1 of file ColinsSoperVariables.h.

Referenced by calCSVariables().

Function Documentation

void calCSVariables ( TLorentzVector  mu,
TLorentzVector  mubar,
double *  res,
bool  swap 
)

Definition at line 8 of file ColinsSoperVariables.h.

References CM_ENERGY, funct::pow(), dttmaxenums::R, and mathSSE::sqrt().

Referenced by ColinsSoperVariablesComputer::produce().

9  {
10 
11  // convention. beam direction is on the positive Z direction.
12  // beam contains quark flux.
13  TLorentzVector Pbeam (0, 0, CM_ENERGY/2.0, CM_ENERGY/2.0);
14  TLorentzVector Ptarget(0, 0, -CM_ENERGY/2.0, CM_ENERGY/2.0);
15 
16 
17  TLorentzVector Q(mu+mubar);
18  /************************************************************************
19  *
20  * 1) cos(theta) = 2 Q^-1 (Q^2+Qt^2)^-1 (mu^+ mubar^- - mu^- mubar^+)
21  *
22  *
23  ************************************************************************/
24  double muplus = 1.0/sqrt(2.0) * (mu.E() + mu.Z());
25  double muminus = 1.0/sqrt(2.0) * (mu.E() - mu.Z());
26 
27  double mubarplus = 1.0/sqrt(2.0) * (mubar.E() + mubar.Z());
28  double mubarminus = 1.0/sqrt(2.0) * (mubar.E() - mubar.Z());
29 
30  double costheta = 2.0 / Q.Mag() / sqrt(pow(Q.Mag(), 2) + pow(Q.Pt(), 2)) *
31  (muplus * mubarminus - muminus * mubarplus);
32  if (swap) costheta = -costheta;
33 
34 
35 
36  /************************************************************************
37  *
38  * 2) sin2(theta) = Q^-2 Dt^2 - Q^-2 (Q^2 + Qt^2)^-1 * (Dt dot Qt)^2
39  *
40  ************************************************************************/
41  TLorentzVector D(mu-mubar);
42  double dt_qt = D.X()*Q.X() + D.Y()*Q.Y();
43  double sin2theta = pow(D.Pt()/Q.Mag(), 2)
44  - 1.0/pow(Q.Mag(), 2)/(pow(Q.Mag(), 2) + pow(Q.Pt(), 2))*pow(dt_qt, 2);
45 
46 
47 
48  /************************************************************************
49  *
50  * 3) tanphi = (Q^2 + Qt^2)^1/2 / Q (Dt dot R unit) /(Dt dot Qt unit)
51  *
52  ************************************************************************/
53  // unit vector on R direction
54  TVector3 R = Pbeam.Vect().Cross(Q.Vect());
55  TVector3 Runit = R.Unit();
56 
57 
58  // unit vector on Qt
59  TVector3 Qt = Q.Vect(); Qt.SetZ(0);
60  TVector3 Qtunit = Qt.Unit();
61 
62 
63  TVector3 Dt = D.Vect(); Dt.SetZ(0);
64  double tanphi = sqrt(pow(Q.Mag(), 2) + pow(Q.Pt(), 2)) / Q.Mag() *
65  Dt.Dot(Runit) / Dt.Dot(Qtunit);
66  if (swap) tanphi = -tanphi;
67 
68  res[0] = costheta;
69  res[1] = sin2theta;
70  res[2] = tanphi;
71 }
void swap(ora::Record &rh, ora::Record &lh)
Definition: Record.h:70
#define CM_ENERGY
T sqrt(T t)
Definition: SSEVec.h:48
const int mu
Definition: Constants.h:22
const int mubar
Definition: Constants.h:23
DecomposeProduct< arg, typename Div::arg > D
Definition: Factorize.h:150
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:40