CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
List of all members | Public Member Functions | Private Attributes
SiG4UniversalFluctuation Class Reference

#include <SiG4UniversalFluctuation.h>

Public Member Functions

double SampleFluctuations (const double momentum, const double mass, double &tmax, const double length, const double meanLoss)
 
 SiG4UniversalFluctuation (CLHEP::HepRandomEngine &)
 
 ~SiG4UniversalFluctuation ()
 

Private Attributes

double alim
 
double chargeSquare
 
double e0
 
double e1Fluct
 
double e1LogFluct
 
double e2Fluct
 
double e2LogFluct
 
double electronDensity
 
double f1Fluct
 
double f2Fluct
 
CLHEP::RandFlat * flatDistribution
 
CLHEP::RandGaussQ * gaussQDistribution
 
double ipotFluct
 
double ipotLogFluct
 
double minLoss
 
double minNumberInteractionsBohr
 
double nmaxCont1
 
double nmaxCont2
 
double particleMass
 
CLHEP::RandPoissonQ * poissonQDistribution
 
double problim
 
double rateFluct
 
CLHEP::HepRandomEngine & rndEngine
 
double sumalim
 
double theBohrBeta2
 

Detailed Description

Definition at line 66 of file SiG4UniversalFluctuation.h.

Constructor & Destructor Documentation

SiG4UniversalFluctuation::SiG4UniversalFluctuation ( CLHEP::HepRandomEngine &  eng)

Definition at line 75 of file SiG4UniversalFluctuation.cc.

References chargeSquare, e0, e1Fluct, e1LogFluct, e2Fluct, e2LogFluct, electronDensity, f1Fluct, f2Fluct, flatDistribution, gaussQDistribution, ipotFluct, ipotLogFluct, create_public_lumi_plots::log, poissonQDistribution, problim, rateFluct, rndEngine, and sumalim.

76  :rndEngine(eng),
81  theBohrBeta2(50.0*keV/proton_mass_c2),
82  minLoss(10.*eV),
83  problim(5.e-3),
84  alim(10.),
85  nmaxCont1(4.),
86  nmaxCont2(16.)
87 {
88  sumalim = -log(problim);
89  //lastMaterial = 0;
90 
91  // Add these definitions d.k.
92  chargeSquare = 1.; //Assume all particles have charge 1
93  // Taken from Geant4 printout, HARDWIRED for Silicon.
94  ipotFluct = 0.0001736; //material->GetIonisation()->GetMeanExcitationEnergy();
95  electronDensity = 6.797E+20; // material->GetElectronDensity();
96  f1Fluct = 0.8571; // material->GetIonisation()->GetF1fluct();
97  f2Fluct = 0.1429; //material->GetIonisation()->GetF2fluct();
98  e1Fluct = 0.000116;// material->GetIonisation()->GetEnergy1fluct();
99  e2Fluct = 0.00196; //material->GetIonisation()->GetEnergy2fluct();
100  e1LogFluct = -9.063; //material->GetIonisation()->GetLogEnergy1fluct();
101  e2LogFluct = -6.235; //material->GetIonisation()->GetLogEnergy2fluct();
102  rateFluct = 0.4; //material->GetIonisation()->GetRateionexcfluct();
103  ipotLogFluct = -8.659; //material->GetIonisation()->GetLogMeanExcEnergy();
104  e0 = 1.E-5; //material->GetIonisation()->GetEnergy0fluct();
105 
106  gaussQDistribution = new CLHEP::RandGaussQ(rndEngine);
107  poissonQDistribution = new CLHEP::RandPoissonQ(rndEngine);
108  flatDistribution = new CLHEP::RandFlat(rndEngine);
109 
110  //cout << " init new fluct +++++++++++++++++++++++++++++++++++++++++"<<endl;
111 }
CLHEP::RandPoissonQ * poissonQDistribution
CLHEP::RandGaussQ * gaussQDistribution
CLHEP::HepRandomEngine & rndEngine
SiG4UniversalFluctuation::~SiG4UniversalFluctuation ( )

Definition at line 118 of file SiG4UniversalFluctuation.cc.

References flatDistribution, gaussQDistribution, and poissonQDistribution.

119 {
120  delete gaussQDistribution;
121  delete poissonQDistribution;
122  delete flatDistribution;
123 
124 }
CLHEP::RandPoissonQ * poissonQDistribution
CLHEP::RandGaussQ * gaussQDistribution

Member Function Documentation

double SiG4UniversalFluctuation::SampleFluctuations ( const double  momentum,
const double  mass,
double &  tmax,
const double  length,
const double  meanLoss 
)

Definition at line 127 of file SiG4UniversalFluctuation.cc.

References alim, funct::C, chargeSquare, e0, e1Fluct, e1LogFluct, e2Fluct, e2LogFluct, electronDensity, f1Fluct, f2Fluct, flatDistribution, gaussQDistribution, i, ipotFluct, ipotLogFluct, gen::k, max(), minLoss, minNumberInteractionsBohr, nmaxCont1, nmaxCont2, p1, p2, p3, particleMass, poissonQDistribution, RPCpg::rate(), rateFluct, mathSSE::sqrt(), sumalim, w(), w2, and x.

132 {
133 // Calculate actual loss from the mean loss.
134 // The model used to get the fluctuations is essentially the same
135 // as in Glandz in Geant3 (Cern program library W5013, phys332).
136 // L. Urban et al. NIM A362, p.416 (1995) and Geant4 Physics Reference Manual
137 
138  // shortcut for very very small loss (out of validity of the model)
139  //
140  if (meanLoss < minLoss) return meanLoss;
141 
142  //if(!particle) InitialiseMe(dp->GetDefinition());
143  //G4double tau = dp->GetKineticEnergy()/particleMass;
144  //G4double gam = tau + 1.0;
145  //G4double gam2 = gam*gam;
146  //G4double beta2 = tau*(tau + 2.0)/gam2;
147 
148  particleMass = mass; // dp->GetMass();
149  double gam2 = (momentum*momentum)/(particleMass*particleMass) + 1.0;
150  double beta2 = 1.0 - 1.0/gam2;
151  double gam = sqrt(gam2);
152 
153  double loss(0.), siga(0.);
154 
155  // Gaussian regime
156  // for heavy particles only and conditions
157  // for Gauusian fluct. has been changed
158  //
159  if ((particleMass > electron_mass_c2) &&
160  (meanLoss >= minNumberInteractionsBohr*tmax))
161  {
162  double massrate = electron_mass_c2/particleMass ;
163  double tmaxkine = 2.*electron_mass_c2*beta2*gam2/
164  (1.+massrate*(2.*gam+massrate)) ;
165  if (tmaxkine <= 2.*tmax)
166  {
167  //electronDensity = material->GetElectronDensity();
168  siga = (1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * length
170  siga = sqrt(siga);
171  double twomeanLoss = meanLoss + meanLoss;
172  if (twomeanLoss < siga) {
173  double x;
174  do {
175  loss = twomeanLoss*flatDistribution->fire();
176  x = (loss - meanLoss)/siga;
177  } while (1.0 - 0.5*x*x < flatDistribution->fire());
178  } else {
179  do {
180  loss = gaussQDistribution->fire(meanLoss,siga);
181  } while (loss < 0. || loss > twomeanLoss);
182  }
183  return loss;
184  }
185  }
186 
187  // Glandz regime : initialisation
188  //
189 // if (material != lastMaterial) {
190 // f1Fluct = material->GetIonisation()->GetF1fluct();
191 // f2Fluct = material->GetIonisation()->GetF2fluct();
192 // e1Fluct = material->GetIonisation()->GetEnergy1fluct();
193 // e2Fluct = material->GetIonisation()->GetEnergy2fluct();
194 // e1LogFluct = material->GetIonisation()->GetLogEnergy1fluct();
195 // e2LogFluct = material->GetIonisation()->GetLogEnergy2fluct();
196 // rateFluct = material->GetIonisation()->GetRateionexcfluct();
197 // ipotFluct = material->GetIonisation()->GetMeanExcitationEnergy();
198 // ipotLogFluct = material->GetIonisation()->GetLogMeanExcEnergy();
199 // lastMaterial = material;
200 // }
201 
202  double a1 = 0. , a2 = 0., a3 = 0. ;
203  double p1,p2,p3;
204  double rate = rateFluct ;
205 
206  double w1 = tmax/ipotFluct;
207  double w2 = vdt::fast_log(2.*electron_mass_c2*beta2*gam2)-beta2;
208 
209  if(w2 > ipotLogFluct)
210  {
211  double C = meanLoss*(1.-rateFluct)/(w2-ipotLogFluct);
212  a1 = C*f1Fluct*(w2-e1LogFluct)/e1Fluct;
213  a2 = C*f2Fluct*(w2-e2LogFluct)/e2Fluct;
214  if(a2 < 0.)
215  {
216  a1 = 0. ;
217  a2 = 0. ;
218  rate = 1. ;
219  }
220  }
221  else
222  {
223  rate = 1. ;
224  }
225 
226  // added
227  if(tmax > ipotFluct) {
228  a3 = rate*meanLoss*(tmax-ipotFluct)/(ipotFluct*tmax*vdt::fast_log(w1));
229  }
230  double suma = a1+a2+a3;
231 
232  // Glandz regime
233  //
234  if (suma > sumalim)
235  {
236  p1 = 0., p2 = 0 ;
237  if((a1+a2) > 0.)
238  {
239  // excitation type 1
240  if (a1>alim) {
241  siga=sqrt(a1) ;
242  p1 = max(0.,gaussQDistribution->fire(a1,siga)+0.5);
243  } else {
244  p1 = double(poissonQDistribution->fire(a1));
245  }
246 
247  // excitation type 2
248  if (a2>alim) {
249  siga=sqrt(a2) ;
250  p2 = max(0.,gaussQDistribution->fire(a2,siga)+0.5);
251  } else {
252  p2 = double(poissonQDistribution->fire(a2));
253  }
254 
255  loss = p1*e1Fluct+p2*e2Fluct;
256 
257  // smearing to avoid unphysical peaks
258  if (p2 > 0.)
259  loss += (1.-2.*flatDistribution->fire())*e2Fluct;
260  else if (loss>0.)
261  loss += (1.-2.*flatDistribution->fire())*e1Fluct;
262  if (loss < 0.) loss = 0.0;
263  }
264 
265  // ionisation
266  if (a3 > 0.) {
267  if (a3>alim) {
268  siga=sqrt(a3) ;
269  p3 = max(0.,gaussQDistribution->fire(a3,siga)+0.5);
270  } else {
271  p3 = double(poissonQDistribution->fire(a3));
272  }
273  double lossc = 0.;
274  if (p3 > 0) {
275  double na = 0.;
276  double alfa = 1.;
277  if (p3 > nmaxCont2) {
278  double rfac = p3/(nmaxCont2+p3);
279  double namean = p3*rfac;
280  double sa = nmaxCont1*rfac;
281  na = gaussQDistribution->fire(namean,sa);
282  if (na > 0.) {
283  alfa = w1*(nmaxCont2+p3)/(w1*nmaxCont2+p3);
284  double alfa1 = alfa*vdt::fast_log(alfa)/(alfa-1.);
285  double ea = na*ipotFluct*alfa1;
286  double sea = ipotFluct*sqrt(na*(alfa-alfa1*alfa1));
287  lossc += gaussQDistribution->fire(ea,sea);
288  }
289  }
290 
291  if (p3 > na) {
292  w2 = alfa*ipotFluct;
293  double w = (tmax-w2)/tmax;
294  int nb = int(p3-na);
295  for (int k=0; k<nb; k++) lossc += w2/(1.-w*flatDistribution->fire());
296  }
297  }
298  loss += lossc;
299  }
300  return loss;
301  }
302 
303  // suma < sumalim; very small energy loss;
304  //
305  //double e0 = material->GetIonisation()->GetEnergy0fluct();
306 
307  a3 = meanLoss*(tmax-e0)/(tmax*e0*vdt::fast_log(tmax/e0));
308  if (a3 > alim)
309  {
310  siga=sqrt(a3);
311  p3 = max(0.,gaussQDistribution->fire(a3,siga)+0.5);
312  } else {
313  p3 = double(poissonQDistribution->fire(a3));
314  }
315  if (p3 > 0.) {
316  double w = (tmax-e0)/tmax;
317  double corrfac = 1.;
318  if (p3 > nmaxCont2) {
319  corrfac = p3/nmaxCont2;
320  p3 = nmaxCont2;
321  }
322  int ip3 = (int)p3;
323  for (int i=0; i<ip3; i++) loss += 1./(1.-w*flatDistribution->fire());
324  loss *= e0*corrfac;
325  // smearing for losses near to e0
326  if(p3 <= 2.)
327  loss += e0*(1.-2.*flatDistribution->fire()) ;
328  }
329 
330  return loss;
331 }
int i
Definition: DBlmapReader.cc:9
common ppss p3p6s2 common epss epspn46 common const1 w2
Definition: inclppp.h:1
const T & max(const T &a, const T &b)
T sqrt(T t)
Definition: SSEVec.h:48
double p2[4]
Definition: TauolaWrapper.h:90
int k[5][pyjets_maxn]
CLHEP::RandPoissonQ * poissonQDistribution
static const double tmax[3]
CLHEP::RandGaussQ * gaussQDistribution
double rate(double x)
Definition: Constants.cc:3
double p1[4]
Definition: TauolaWrapper.h:89
T w() const
Definition: DDAxes.h:10
double p3[4]
Definition: TauolaWrapper.h:91

Member Data Documentation

double SiG4UniversalFluctuation::alim
private

Definition at line 131 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations().

double SiG4UniversalFluctuation::chargeSquare
private

Definition at line 109 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::e0
private

Definition at line 124 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::e1Fluct
private

Definition at line 118 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::e1LogFluct
private

Definition at line 121 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::e2Fluct
private

Definition at line 119 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::e2LogFluct
private

Definition at line 122 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::electronDensity
private

Definition at line 113 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::f1Fluct
private

Definition at line 116 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::f2Fluct
private

Definition at line 117 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

CLHEP::RandFlat* SiG4UniversalFluctuation::flatDistribution
private
CLHEP::RandGaussQ* SiG4UniversalFluctuation::gaussQDistribution
private
double SiG4UniversalFluctuation::ipotFluct
private

Definition at line 112 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::ipotLogFluct
private

Definition at line 123 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::minLoss
private

Definition at line 128 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations().

double SiG4UniversalFluctuation::minNumberInteractionsBohr
private

Definition at line 126 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations().

double SiG4UniversalFluctuation::nmaxCont1
private

Definition at line 132 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations().

double SiG4UniversalFluctuation::nmaxCont2
private

Definition at line 133 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations().

double SiG4UniversalFluctuation::particleMass
private

Definition at line 108 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations().

CLHEP::RandPoissonQ* SiG4UniversalFluctuation::poissonQDistribution
private
double SiG4UniversalFluctuation::problim
private

Definition at line 129 of file SiG4UniversalFluctuation.h.

Referenced by SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::rateFluct
private

Definition at line 120 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

CLHEP::HepRandomEngine& SiG4UniversalFluctuation::rndEngine
private

Definition at line 97 of file SiG4UniversalFluctuation.h.

Referenced by SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::sumalim
private

Definition at line 130 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::theBohrBeta2
private

Definition at line 127 of file SiG4UniversalFluctuation.h.