CMS 3D CMS Logo

Public Member Functions | Private Member Functions | Private Attributes

OptoScanAlgorithm Class Reference

#include <OptoScanAlgorithm.h>

Inheritance diagram for OptoScanAlgorithm:
CommissioningAlgorithm

List of all members.

Public Member Functions

Histo histo (const uint16_t &gain, const uint16_t &digital_level) const
 OptoScanAlgorithm (const edm::ParameterSet &pset, OptoScanAnalysis *const )
virtual ~OptoScanAlgorithm ()

Private Member Functions

void analyse ()
void extract (const std::vector< TH1 * > &)
 OptoScanAlgorithm ()

Private Attributes

std::vector< std::vector< Histo > > histos_
float targetGain_

Detailed Description

Definition at line 18 of file OptoScanAlgorithm.h.


Constructor & Destructor Documentation

OptoScanAlgorithm::OptoScanAlgorithm ( const edm::ParameterSet pset,
OptoScanAnalysis * const  anal 
)

Definition at line 17 of file OptoScanAlgorithm.cc.

References sistrip::mlCommissioning_, and targetGain_.

  : CommissioningAlgorithm(anal),
    histos_( 4, std::vector<Histo>( 3, Histo(0,"") ) ),
    targetGain_(pset.getParameter<double>("TargetGain"))
{
  edm::LogInfo(mlCommissioning_)
    << "[PedestalsAlgorithm::" << __func__ << "]"
    << " Set target gain to: " << targetGain_;
}
virtual OptoScanAlgorithm::~OptoScanAlgorithm ( ) [inline, virtual]

Definition at line 24 of file OptoScanAlgorithm.h.

{;}
OptoScanAlgorithm::OptoScanAlgorithm ( ) [inline, private]

Definition at line 32 of file OptoScanAlgorithm.h.

{;}

Member Function Documentation

void OptoScanAlgorithm::analyse ( ) [private, virtual]

Performs histogram anaysis.

Implements CommissioningAlgorithm.

Definition at line 98 of file OptoScanAlgorithm.cc.

References sistrip::LinearFit::Params::a_, sistrip::LinearFit::add(), CommissioningAnalysis::addErrorCode(), CommissioningAlgorithm::anal(), sistrip::LinearFit::Params::b_, OptoScanAnalysis::baseSlope_, OptoScanAnalysis::bias_, OptoScanAnalysis::defaultBiasSetting_, OptoScanAnalysis::defaultGainSetting_, OptoScanAnalysis::fedAdcGain_, sistrip::LinearFit::fit(), OptoScanAnalysis::gain_, histos_, sistrip::invalid_, sistrip::invalidZeroLightLevel_, OptoScanAnalysis::liftOff_, OptoScanAnalysis::linkNoise_, max(), sistrip::maximum_, OptoScanAnalysis::measGain_, min, sistrip::mlCommissioning_, pileupCalc::nbins, sistrip::nullPtr_, sistrip::numberOfBins_, targetGain_, OptoScanAnalysis::threshold_, OptoScanAnalysis::tickHeight_, tmp, sistrip::unexpectedBinNumber_, sistrip::valid_, create_public_lumi_plots::width, and OptoScanAnalysis::zeroLight_.

                                { 
  
  if ( !anal() ) {
    edm::LogWarning(mlCommissioning_)
      << "[OptoScanAlgorithm::" << __func__ << "]"
      << " NULL pointer to base Analysis object!";
    return; 
  }
  
  CommissioningAnalysis* tmp = const_cast<CommissioningAnalysis*>( anal() );
  OptoScanAnalysis* anal = dynamic_cast<OptoScanAnalysis*>( tmp );
  if ( !anal ) {
    edm::LogWarning(mlCommissioning_)
      << "[OptoScanAlgorithm::" << __func__ << "]"
      << " NULL pointer to derived Analysis object!";
    return; 
  }
  
  // Iterate through four gain settings
  for ( uint16_t igain = 0; igain < 4; igain++ ) {
    
    // Select histos appropriate for gain setting
    TH1* base_his = histos_[igain][0].first; 
    TH1* peak_his = histos_[igain][1].first;
    TH1* noise_his = histos_[igain][2].first;

    if ( !base_his ) {
      anal->addErrorCode(sistrip::nullPtr_);
      return;
    }
    
    if ( !peak_his ) {
      anal->addErrorCode(sistrip::nullPtr_);
      return;
    }

    if ( !noise_his ) {
      anal->addErrorCode(sistrip::nullPtr_);
      return;
    }
    
    TProfile* base_histo = dynamic_cast<TProfile*>(base_his);
    if ( !base_histo ) {
      anal->addErrorCode(sistrip::nullPtr_);
      return;
    }
    
    TProfile* peak_histo = dynamic_cast<TProfile*>(peak_his);
    if ( !peak_histo ) {
      anal->addErrorCode(sistrip::nullPtr_);
      return;
    }
    
    TProfile* noise_histo = dynamic_cast<TProfile*>(noise_his);
    if ( !noise_histo ) {
      anal->addErrorCode(sistrip::nullPtr_);
      return;
    }

    // Check histogram binning
    uint16_t nbins = static_cast<uint16_t>( peak_histo->GetNbinsX() );
    if ( static_cast<uint16_t>( base_histo->GetNbinsX() ) != nbins ) {
      anal->addErrorCode(sistrip::numberOfBins_);
      if ( static_cast<uint16_t>( base_histo->GetNbinsX() ) < nbins ) {
        nbins = static_cast<uint16_t>( base_histo->GetNbinsX() );
      }
    }

    // Some containers
    std::vector<float> peak_contents(0);
    std::vector<float> peak_errors(0);
    std::vector<float> peak_entries(0);
    std::vector<float> base_contents(0);
    std::vector<float> base_errors(0);
    std::vector<float> base_entries(0);
    std::vector<float> noise_contents(0);
    std::vector<float> noise_errors(0);
    std::vector<float> noise_entries(0);
    float peak_max = -1.*sistrip::invalid_;
    float peak_min =  1.*sistrip::invalid_;
    float base_max = -1.*sistrip::invalid_;
    float base_min =  1.*sistrip::invalid_;
    float noise_max = -1.*sistrip::invalid_;
    float noise_min =  1.*sistrip::invalid_;

    // Transfer histogram contents/errors/stats to containers
    for ( uint16_t ibin = 0; ibin < nbins; ibin++ ) {

      // Peak histogram
      peak_contents.push_back( peak_histo->GetBinContent(ibin+1) );
      peak_errors.push_back( peak_histo->GetBinError(ibin+1) );
      peak_entries.push_back( peak_histo->GetBinEntries(ibin+1) );
      if ( peak_entries[ibin] ) { 
        if ( peak_contents[ibin] > peak_max ) { peak_max = peak_contents[ibin]; }
        if ( peak_contents[ibin] < peak_min && ibin ) { peak_min = peak_contents[ibin]; }
      }

      // Base histogram
      base_contents.push_back( base_histo->GetBinContent(ibin+1) );
      base_errors.push_back( base_histo->GetBinError(ibin+1) );
      base_entries.push_back( base_histo->GetBinEntries(ibin+1) );
      if ( base_entries[ibin] ) { 
        if ( base_contents[ibin] > base_max ) { base_max = base_contents[ibin]; }
        if ( base_contents[ibin] < base_min && ibin ) { base_min = base_contents[ibin]; }
      }

      // Noise histogram
      noise_contents.push_back( noise_histo->GetBinContent(ibin+1) );
      noise_errors.push_back( noise_histo->GetBinError(ibin+1) );
      noise_entries.push_back( noise_histo->GetBinEntries(ibin+1) );
      if ( noise_entries[ibin] ) { 
        if ( noise_contents[ibin] > noise_max ) { noise_max = noise_contents[ibin]; }
        if ( noise_contents[ibin] < noise_min && ibin ) { noise_min = noise_contents[ibin]; }
      }

    }
    
    // Find "zero light" level and error
    //@@ record bias setting used for zero light level
    //@@ zero light error changes wrt gain setting ???
    float zero_light_level = sistrip::invalid_;
    float zero_light_error = sistrip::invalid_;
    for ( uint16_t ibin = 0; ibin < nbins; ibin++ ) {
      if ( base_entries[ibin] ) { 
        zero_light_level = base_contents[ibin];
        zero_light_error = base_errors[ibin];
        break;
      }
    }

    float zero_light_thres = sistrip::invalid_;
    if ( zero_light_level <= sistrip::maximum_ && 
         zero_light_error <= sistrip::maximum_ ) { 
      zero_light_thres = zero_light_level + 5. * zero_light_error;
    } else {
      std::stringstream ss;
      ss << sistrip::invalidZeroLightLevel_ << "ForGain" << igain;
      anal->addErrorCode( ss.str() );
      continue;
    }
    
    // Find range of base histogram
    float base_range = base_max - base_min;

    // Find overlapping max/min region that constrains range of linear fit
    float max = peak_max < base_max ? peak_max : base_max;
    float min = peak_min > base_min ? peak_min : base_min;
    float range = max - min;

    // Container identifying whether samples from 'base' histo are above "zero light" 
    std::vector<bool> above_zero_light;
    above_zero_light.resize(3,true);
    
    // Linear fits to top of peak and base curves and one to bottom of base curve
    sistrip::LinearFit peak_high;
    sistrip::LinearFit base_high;
    sistrip::LinearFit base_low;

    // Iterate through histogram bins
    uint16_t peak_bin = 0;
    uint16_t base_bin = 0;
    uint16_t low_bin = 0;
    for ( uint16_t ibin = 0; ibin < nbins; ibin++ ) {
      
      // Record whether consecutive samples from 'base' histo are above the "zero light" level
      if ( base_entries[ibin] ) {
        above_zero_light.erase( above_zero_light.begin() );
        if ( base_contents[ibin] > zero_light_thres ) { above_zero_light.push_back( true ); }
        else { above_zero_light.push_back( false ); }
        if ( above_zero_light.size() != 3 ) { above_zero_light.resize(3,false); } 
      }
      
      // Linear fit to peak histogram
      if ( peak_entries[ibin] &&
           peak_contents[ibin] > ( min + 0.2*range ) &&
           peak_contents[ibin] < ( min + 0.8*range ) ) {
        if ( !peak_bin ) { peak_bin = ibin; }
        if ( ( ibin - peak_bin ) < 10 ) { 
          peak_high.add( ibin, peak_contents[ibin] ); //@@ should weight using bin error or bin contents (sqrt(N)/N)
        }
      }
      // Linear fit to base histogram
      if ( base_entries[ibin] &&
           base_contents[ibin] > ( min + 0.2*range ) &&
           base_contents[ibin] < ( min + 0.8*range ) ) {
        if ( !base_bin ) { base_bin = ibin; }
        if ( ( ibin - base_bin ) < 10 ) { 
          base_high.add( ibin, base_contents[ibin] ); //@@ should weight using bin error or bin contents (sqrt(N)/N)
        }
      }
      // Low linear fit to base histogram
      if ( base_entries[ibin] &&
           //@@ above_zero_light[0] && above_zero_light[1] && above_zero_light[2] && 
           base_contents[ibin] > ( base_min + 0.2*base_range ) &&
           base_contents[ibin] < ( base_min + 0.6*base_range ) ) { 
        if ( !low_bin ) { low_bin = ibin; }
        if ( ( ibin - low_bin ) < 10 ) { 
          base_low.add( ibin, base_contents[ibin] ); //@@ should weight using bin error or bin contents (sqrt(N)/N)
        }
      }
      
    }
    
    // Extract width between two curves at midpoint within range
    float mid = min + 0.5*range;
    sistrip::LinearFit::Params peak_params;
    sistrip::LinearFit::Params base_params;
    peak_high.fit( peak_params );
    base_high.fit( base_params );

    float peak_pos = sistrip::invalid_;
    float base_pos = sistrip::invalid_;
    float width    = sistrip::invalid_;
    if ( peak_params.b_ > 0. ) {
      peak_pos = ( mid - peak_params.a_ ) / peak_params.b_;
    }
    if ( base_params.b_ > 0. ) {
      base_pos = ( mid - base_params.a_ ) / base_params.b_;
    }
    if ( base_pos < sistrip::valid_ &&
         peak_pos < sistrip::valid_ ) {
      width = base_pos - peak_pos;
    }

    // Extrapolate to zero light to find "lift off"
    sistrip::LinearFit::Params low_params;
    base_low.fit( low_params );
    float lift_off = sistrip::invalid_;
    if ( low_params.b_ > 0. ) {
      lift_off = ( zero_light_level - low_params.a_ ) / low_params.b_;
    }
    
    // ---------- Set all parameters ----------
    
    // Slope of baseline
    if ( low_params.b_ > 0. ) {
      anal->baseSlope_[igain] = low_params.b_;
    } 
    
    // Check "lift off" value and set bias setting accordingly
    if ( lift_off <= sistrip::maximum_ ) {
      anal->bias_[igain] = static_cast<uint16_t>( lift_off ) + 2;
    } else { anal->bias_[igain] = OptoScanAnalysis::defaultBiasSetting_; } 
    
    // Calculate "lift off" (in mA)
    if ( lift_off <= sistrip::maximum_ ) {
      anal->liftOff_[igain] = 0.45 * lift_off;
    }
    
    // Calculate laser threshold (in mA)
    if ( width < sistrip::invalid_ ) {
      anal->threshold_[igain] = 0.45 * ( lift_off - width/2. );
    }

    // Set "zero light" level
    anal->zeroLight_[igain] = zero_light_level;
    
    // Set link noise
    uint16_t bin_number = sistrip::invalid_;
    if ( anal->threshold_[igain] < sistrip::valid_ ) {
      // Old calculation, used in commissioning in 2008
      //   always leads to zero link noise
      //   bin_number = static_cast<uint16_t>( anal->threshold_[igain] / 0.45 ); 
      // New calculation asked by Karl et al, for commissioning in 2009
      bin_number = (uint16_t) (lift_off + width / 3.);
    }
    if ( bin_number < sistrip::valid_ ) {
      if ( bin_number < noise_contents.size() ) { 
        anal->linkNoise_[igain] = noise_contents[bin_number]; 
      } else { anal->addErrorCode(sistrip::unexpectedBinNumber_); }
    }
      
    // Calculate tick mark height
    if ( low_params.b_ <= sistrip::maximum_ &&
         width <= sistrip::maximum_ ) {
      anal->tickHeight_[igain] = width * low_params.b_;
    }
      
    // Set measured gain 
    if ( anal->tickHeight_[igain] < sistrip::invalid_-1. ) {
      anal->measGain_[igain] = anal->tickHeight_[igain] * OptoScanAnalysis::fedAdcGain_ / 0.800;
    } else { anal->measGain_[igain] = sistrip::invalid_; }
      
  } // gain loop

  // Iterate through four gain settings and identify optimum gain setting
  const float target_gain = targetGain_; //0.863; // changed from 0.8 to avoid choice of low tickheights (Xtof, SL, 15/6/2009)

  float diff_in_gain = sistrip::invalid_;
  for ( uint16_t igain = 0; igain < 4; igain++ ) {
    
    // Check for sensible gain value
    if ( anal->measGain_[igain] > sistrip::maximum_ ) { continue; }
    
    // Find optimum gain setting
    if ( fabs( anal->measGain_[igain] - target_gain ) < diff_in_gain ) {
      anal->gain_ = igain;
      diff_in_gain = fabs( anal->measGain_[igain] - target_gain );
    }
    
  } 
  
  // Check optimum gain setting
  if ( anal->gain_ > sistrip::maximum_ ) { anal->gain_ = OptoScanAnalysis::defaultGainSetting_; }
  
}
void OptoScanAlgorithm::extract ( const std::vector< TH1 * > &  histos) [private, virtual]

Extracts and organises histograms.

Implements CommissioningAlgorithm.

Definition at line 29 of file OptoScanAlgorithm.cc.

References CommissioningAnalysis::addErrorCode(), CommissioningAlgorithm::anal(), sistrip::extrainfo::baselineRms_, sistrip::extrainfo::digital_, CommissioningAlgorithm::extractFedKey(), CommissioningAnalysis::fedKey(), sistrip::extrainfo::gain_, histos_, sistrip::invalid_, sistrip::mlCommissioning_, sistrip::numberOfHistos_, sistrip::OPTO_SCAN, indexGen::title, sistrip::unexpectedExtraInfo_, and sistrip::unexpectedTask_.

                                                               { 

  if ( !anal() ) {
    edm::LogWarning(mlCommissioning_)
      << "[OptoScanAlgorithm::" << __func__ << "]"
      << " NULL pointer to Analysis object!";
    return; 
  }

  // Check number of histograms
  if ( histos.size() != 12 ) {
    anal()->addErrorCode(sistrip::numberOfHistos_);
  }
  
  // Extract FED key from histo title
  if ( !histos.empty() ) anal()->fedKey( extractFedKey( histos.front() ) );

  // Extract histograms
  std::vector<TH1*>::const_iterator ihis = histos.begin();
  for ( ; ihis != histos.end(); ihis++ ) {
    
    // Check for NULL pointer
    if ( !(*ihis) ) { continue; }

    // Check name
    SiStripHistoTitle title( (*ihis)->GetName() );
    if ( title.runType() != sistrip::OPTO_SCAN ) {
      anal()->addErrorCode(sistrip::unexpectedTask_);
      continue;
    }

    // Extract gain setting and digital high/low info
    uint16_t gain = sistrip::invalid_; 
    if ( title.extraInfo().find(sistrip::extrainfo::gain_) != std::string::npos ) {
      std::stringstream ss;
      ss << title.extraInfo().substr( title.extraInfo().find(sistrip::extrainfo::gain_) + (sizeof(sistrip::extrainfo::gain_) - 1), 1 );
      ss >> std::dec >> gain;
    }
    uint16_t digital = sistrip::invalid_; 
    if ( title.extraInfo().find(sistrip::extrainfo::digital_) != std::string::npos ) {
      std::stringstream ss;
      ss << title.extraInfo().substr( title.extraInfo().find(sistrip::extrainfo::digital_) + (sizeof(sistrip::extrainfo::digital_) - 1), 1 );
      ss >> std::dec >> digital;
    }
    bool baseline_rms = false;
    if ( title.extraInfo().find(sistrip::extrainfo::baselineRms_) != std::string::npos ) {
      baseline_rms = true;
    }
    
    if ( gain <= 3 ) { 
      if ( digital <= 1 ) {
        histos_[gain][digital].first = *ihis; 
        histos_[gain][digital].second = (*ihis)->GetName();
      } else if ( baseline_rms ) {
        histos_[gain][2].first = *ihis; 
        histos_[gain][2].second = (*ihis)->GetName();
      } else {
        anal()->addErrorCode(sistrip::unexpectedExtraInfo_);
      }
    } else {
      anal()->addErrorCode(sistrip::unexpectedExtraInfo_);
    }
    
  }

}
CommissioningAlgorithm::Histo OptoScanAlgorithm::histo ( const uint16_t &  gain,
const uint16_t &  digital_level 
) const

Histogram pointer and title.

Definition at line 407 of file OptoScanAlgorithm.cc.

References histos_.

                                                                                              {
  if ( gain <= 3 && digital_level <= 1 ) { return histos_[gain][digital_level]; }
  else { return Histo(0,""); }
}

Member Data Documentation

std::vector< std::vector<Histo> > OptoScanAlgorithm::histos_ [private]

Pointers and titles for histograms.

Definition at line 43 of file OptoScanAlgorithm.h.

Referenced by analyse(), extract(), and histo().

Analysis parameters

Definition at line 46 of file OptoScanAlgorithm.h.

Referenced by analyse(), and OptoScanAlgorithm().