#include <AnalyticalImpactPointExtrapolator.h>
Public Member Functions | |
AnalyticalImpactPointExtrapolator (const MagneticField *field) | |
constructor with default geometrical propagator | |
AnalyticalImpactPointExtrapolator (const Propagator &, const MagneticField *) | |
constructor with alternative propagator | |
TrajectoryStateOnSurface | extrapolate (const FreeTrajectoryState &fts, const GlobalPoint &vtx) const |
extrapolation from FreeTrajectoryState | |
TrajectoryStateOnSurface | extrapolate (const TrajectoryStateOnSurface tsos, const GlobalPoint &vtx) const |
as above, but from TrajectoryStateOnSurface | |
Private Member Functions | |
TrajectoryStateOnSurface | extrapolateFullState (const TrajectoryStateOnSurface tsos, const GlobalPoint &vertex) const |
extrapolation of (multi) TSOS | |
TrajectoryStateOnSurface | extrapolateSingleState (const FreeTrajectoryState &fts, const GlobalPoint &vertex) const |
extrapolation of (single) FTS | |
bool | propagateWithHelix (const IterativeHelixExtrapolatorToLine &extrapolator, const GlobalPoint &vertex, GlobalPoint &x, GlobalVector &p, double &s) const |
the actual propagation to a new point & momentum vector | |
Private Attributes | |
const MagneticField * | theField |
DeepCopyPointerByClone < Propagator > | thePropagator |
Extrapolate to impact point with respect to vtx, i.e. to the point of closest approach to vtx in 3D. It is slightly faster than the ImpactPointExtrapolator. The helix model is explicitely used in the determination of the target surface. This target surface is centered on vtx; the axes of the local coordinate system (x_loc, y_loc, z_loc) are z_loc // trajectory direction at impact point; x_loc normal to trajectory and along impact vector (impact point - vtx); y_loc forms a right-handed system with the other axes.
Definition at line 26 of file AnalyticalImpactPointExtrapolator.h.
AnalyticalImpactPointExtrapolator::AnalyticalImpactPointExtrapolator | ( | const MagneticField * | field | ) |
constructor with default geometrical propagator
Definition at line 12 of file AnalyticalImpactPointExtrapolator.cc.
: thePropagator(new AnalyticalPropagator(theField, anyDirection)), theField(field) {}
AnalyticalImpactPointExtrapolator::AnalyticalImpactPointExtrapolator | ( | const Propagator & | propagator, |
const MagneticField * | field | ||
) |
constructor with alternative propagator
Definition at line 17 of file AnalyticalImpactPointExtrapolator.cc.
References anyDirection, and thePropagator.
: thePropagator(propagator.clone()), theField(field) { thePropagator->setPropagationDirection(anyDirection); }
TrajectoryStateOnSurface AnalyticalImpactPointExtrapolator::extrapolate | ( | const FreeTrajectoryState & | fts, |
const GlobalPoint & | vtx | ||
) | const |
extrapolation from FreeTrajectoryState
Definition at line 26 of file AnalyticalImpactPointExtrapolator.cc.
References extrapolateSingleState().
{ // static TimingReport::Item& timer = detailedDetTimer("AnalyticalImpactPointExtrapolator"); // TimeMe t(timer,false); return extrapolateSingleState(fts, vtx); }
TrajectoryStateOnSurface AnalyticalImpactPointExtrapolator::extrapolate | ( | const TrajectoryStateOnSurface | tsos, |
const GlobalPoint & | vtx | ||
) | const |
as above, but from TrajectoryStateOnSurface
Definition at line 36 of file AnalyticalImpactPointExtrapolator.cc.
References extrapolateFullState(), and TrajectoryStateOnSurface::isValid().
{ if ( tsos.isValid() ) return extrapolateFullState(tsos,vtx); else return tsos; }
TrajectoryStateOnSurface AnalyticalImpactPointExtrapolator::extrapolateFullState | ( | const TrajectoryStateOnSurface | tsos, |
const GlobalPoint & | vertex | ||
) | const [private] |
extrapolation of (multi) TSOS
Definition at line 44 of file AnalyticalImpactPointExtrapolator.cc.
References TrajectoryStateOnSurface::components(), extrapolateSingleState(), TrajectoryStateOnSurface::freeTrajectoryState(), TrajectoryStateOnSurface::isValid(), TrajectoryStateOnSurface::surface(), and thePropagator.
Referenced by extrapolate().
{ // // first determine IP plane using propagation with (single) FTS // could be optimised (will propagate errors even if duplicated below) // TrajectoryStateOnSurface singleState = extrapolateSingleState(*tsos.freeTrajectoryState(),vertex); if ( !singleState.isValid() || tsos.components().size()==1 ) return singleState; // // propagate multiTsos to plane found above // return thePropagator->propagate(tsos,singleState.surface()); }
TrajectoryStateOnSurface AnalyticalImpactPointExtrapolator::extrapolateSingleState | ( | const FreeTrajectoryState & | fts, |
const GlobalPoint & | vertex | ||
) | const [private] |
extrapolation of (single) FTS
Definition at line 61 of file AnalyticalImpactPointExtrapolator.cc.
References anyDirection, FreeTrajectoryState::charge(), FreeTrajectoryState::curvilinearError(), alignCSCRings::e, FreeTrajectoryState::hasError(), CurvilinearTrajectoryError::matrix(), FreeTrajectoryState::momentum(), AlCaHLTBitMon_ParallelJobs::p, FreeTrajectoryState::parameters(), PlaneBuilder::plane(), FreeTrajectoryState::position(), GlobalTrajectoryParameters::position(), propagateWithHelix(), rho, makeMuonMisalignmentScenario::rot, alignCSCRings::s, theField, FreeTrajectoryState::transverseCurvature(), and x.
Referenced by extrapolate(), and extrapolateFullState().
{ // // initialisation of position, momentum and transverse curvature // GlobalPoint x(fts.position()); GlobalVector p(fts.momentum()); double rho = fts.transverseCurvature(); // // Straight line approximation? |rho|<1.e-10 equivalent to ~ 1um // difference in transversal position at 10m. // double s(0); if( fabs(rho)<1.e-10 ) { GlobalVector dx(p.dot(vertex-x)/p.mag2()*p); x += dx; float sign = p.dot(dx); s = sign>0 ? dx.mag() : -dx.mag(); } // // Helix case // else { HelixLineExtrapolation::PositionType helixPos(x); HelixLineExtrapolation::DirectionType helixDir(p); IterativeHelixExtrapolatorToLine extrapolator(helixPos,helixDir,rho,anyDirection); if ( !propagateWithHelix(extrapolator,vertex,x,p,s) ) return TrajectoryStateOnSurface(); } // // Define target surface: origin on line, x_local from line // to helix at closest approach, z_local along the helix // and y_local to complete right-handed system // GlobalVector zLocal(p.unit()); GlobalVector yLocal(zLocal.cross(x-vertex).unit()); GlobalVector xLocal(yLocal.cross(zLocal)); Surface::RotationType rot(xLocal,yLocal,zLocal); PlaneBuilder::ReturnType surface = PlaneBuilder().plane(vertex,rot); // // Compute propagated state // GlobalTrajectoryParameters gtp(x,p,fts.charge(), theField); if (fts.hasError()) { // // compute jacobian // AnalyticalCurvilinearJacobian analyticalJacobian(fts.parameters(), gtp.position(), gtp.momentum(), s); CurvilinearTrajectoryError cte( ROOT::Math::Similarity( analyticalJacobian.jacobian(), fts.curvilinearError().matrix()) ); return TrajectoryStateOnSurface(gtp,cte,*surface); } else { // // return state without errors // return TrajectoryStateOnSurface(gtp,*surface); } }
bool AnalyticalImpactPointExtrapolator::propagateWithHelix | ( | const IterativeHelixExtrapolatorToLine & | extrapolator, |
const GlobalPoint & | vertex, | ||
GlobalPoint & | x, | ||
GlobalVector & | p, | ||
double & | s | ||
) | const [private] |
the actual propagation to a new point & momentum vector
Definition at line 122 of file AnalyticalImpactPointExtrapolator.cc.
References PV3DBase< T, PVType, FrameType >::mag(), and Basic3DVector< T >::mag().
Referenced by extrapolateSingleState().
{ // // save absolute value of momentum // double pmag(p.mag()); // // get path length to solution // std::pair<bool,double> propResult = extrapolator.pathLength(vertex); if ( !propResult.first ) return false; s = propResult.second; // // get point and (normalised) direction from path length // HelixLineExtrapolation::PositionType xGen = extrapolator.position(s); HelixLineExtrapolation::DirectionType pGen = extrapolator.direction(s); // // Fix normalisation and convert back to GlobalPoint / GlobalVector // x = GlobalPoint(xGen); pGen *= pmag/pGen.mag(); p = GlobalVector(pGen); // return true; }
const MagneticField* AnalyticalImpactPointExtrapolator::theField [private] |
Definition at line 57 of file AnalyticalImpactPointExtrapolator.h.
Referenced by extrapolateSingleState().
Definition at line 56 of file AnalyticalImpactPointExtrapolator.h.
Referenced by AnalyticalImpactPointExtrapolator(), and extrapolateFullState().