Histogram-based analysis for pedestal run. More...
#include <PedsFullNoiseAlgorithm.h>
Public Member Functions | |
const Histo & | hNoise () const |
const Histo & | hNoise1D () const |
const Histo & | hPeds () const |
PedsFullNoiseAlgorithm (const edm::ParameterSet &pset, PedsFullNoiseAnalysis *const ) | |
virtual | ~PedsFullNoiseAlgorithm () |
Private Member Functions | |
void | analyse () |
void | extract (const std::vector< TH1 * > &) |
PedsFullNoiseAlgorithm () | |
Private Attributes | |
float | deadStripMax_ |
Histo | hNoise1D_ |
Histo | hNoise_ |
Histo | hPeds_ |
float | ksProbCut_ |
std::string | noiseDef_ |
float | noisyStripMin_ |
Histogram-based analysis for pedestal run.
Definition at line 16 of file PedsFullNoiseAlgorithm.h.
PedsFullNoiseAlgorithm::PedsFullNoiseAlgorithm | ( | const edm::ParameterSet & | pset, |
PedsFullNoiseAnalysis * const | anal | ||
) |
Definition at line 18 of file PedsFullNoiseAlgorithm.cc.
: CommissioningAlgorithm(anal), hPeds_(0,""), hNoise_(0,""), hNoise1D_(0,""), deadStripMax_(pset.getParameter<double>("DeadStripMax")), noisyStripMin_(pset.getParameter<double>("NoisyStripMin")), noiseDef_(pset.getParameter<std::string>("NoiseDefinition")), ksProbCut_(pset.getParameter<double>("KsProbCut")) { //LogDebug(mlCommissioning_) // << "[PedsFullNoiseAlgorithm::" << __func__ << "]" // << " Set maximum noise deviation for dead strip determination to: " << deadStripMax_; // LogDebug(mlCommissioning_) // << "[PedsFullNoiseAlgorithm::" << __func__ << "]" // << " Set minimal noise deviation for noise strip determination to: " << noisyStripMin_; }
virtual PedsFullNoiseAlgorithm::~PedsFullNoiseAlgorithm | ( | ) | [inline, virtual] |
Definition at line 22 of file PedsFullNoiseAlgorithm.h.
{;}
PedsFullNoiseAlgorithm::PedsFullNoiseAlgorithm | ( | ) | [inline, private] |
Definition at line 32 of file PedsFullNoiseAlgorithm.h.
{;}
void PedsFullNoiseAlgorithm::analyse | ( | ) | [private, virtual] |
Performs histogram anaysis.
Implements CommissioningAlgorithm.
Definition at line 97 of file PedsFullNoiseAlgorithm.cc.
References a, CommissioningAnalysis::addErrorCode(), CommissioningAlgorithm::anal(), b, createTree::dd, PedsFullNoiseAnalysis::dead_, deadStripMax_, f, CommissioningAnalysis::fecKey(), hNoise_, hPeds_, i, sistrip::invalid_, PedsFullNoiseAnalysis::ksProb_, ksProbCut_, LogTrace, sistrip::maximum_, sistrip::mlCommissioning_, sistrip::mlDqmClient_, PedsFullNoiseAnalysis::noise_, PedsFullNoiseAnalysis::noiseBin84_, noiseDef_, PedsFullNoiseAnalysis::noiseGaus_, PedsFullNoiseAnalysis::noiseMax_, PedsFullNoiseAnalysis::noiseMean_, PedsFullNoiseAnalysis::noiseMin_, PedsFullNoiseAnalysis::noiseRMS_, PedsFullNoiseAnalysis::noiseSignif_, PedsFullNoiseAnalysis::noiseSpread_, PedsFullNoiseAnalysis::noisy_, noisyStripMin_, sistrip::nullPtr_, sistrip::numberOfBins_, PedsFullNoiseAnalysis::peds_, PedsFullNoiseAnalysis::pedsMax_, PedsFullNoiseAnalysis::pedsMean_, PedsFullNoiseAnalysis::pedsMin_, PedsFullNoiseAnalysis::pedsSpread_, PedsFullNoiseAnalysis::raw_, PedsFullNoiseAnalysis::rawMax_, PedsFullNoiseAnalysis::rawMean_, PedsFullNoiseAnalysis::rawMin_, PedsFullNoiseAnalysis::rawSpread_, mathSSE::sqrt(), tmp, w(), and x.
{ if ( !anal() ) { edm::LogWarning(mlCommissioning_) << "[PedsFullNoiseAlgorithm::" << __func__ << "]" << " NULL pointer to base Analysis object!"; return; } CommissioningAnalysis* tmp = const_cast<CommissioningAnalysis*>( anal() ); PedsFullNoiseAnalysis* ana = dynamic_cast<PedsFullNoiseAnalysis*>( tmp ); if ( !ana ) { edm::LogWarning(mlCommissioning_) << "[PedsFullNoiseAlgorithm::" << __func__ << "]" << " NULL pointer to derived Analysis object!"; return; } if ( !hPeds_.first ) { ana->addErrorCode(sistrip::nullPtr_); return; } if ( !hNoise_.first ) { ana->addErrorCode(sistrip::nullPtr_); return; } TProfile * peds_histo = dynamic_cast<TProfile *>(hPeds_.first); TH2S * noise_histo = dynamic_cast<TH2S *>(hNoise_.first); if ( !peds_histo ) { ana->addErrorCode(sistrip::nullPtr_); return; } if ( !noise_histo ) { ana->addErrorCode(sistrip::nullPtr_); return; } if ( peds_histo->GetNbinsX() != 256 ) { ana->addErrorCode(sistrip::numberOfBins_); return; } if ( noise_histo->GetNbinsY() != 256 ) { // X range is configurable ana->addErrorCode(sistrip::numberOfBins_); return; } // Iterate through APVs for ( uint16_t iapv = 0; iapv < 2; iapv++ ) { // Used to calc mean and rms for peds and noise float p_sum = 0., p_sum2 = 0., p_max = -1.*sistrip::invalid_, p_min = sistrip::invalid_; float n_sum = 0., n_sum2 = 0., n_max = -1.*sistrip::invalid_, n_min = sistrip::invalid_; float r_sum = 0., r_sum2 = 0., r_max = -1.*sistrip::invalid_, r_min = sistrip::invalid_; // Iterate through strips of APV for ( uint16_t istr = 0; istr < 128; istr++ ) { ana->ksProb_[iapv].push_back(0); ana->noiseGaus_[iapv].push_back(0); ana->noiseBin84_[iapv].push_back(0); ana->noiseRMS_[iapv].push_back(0); ana->noiseSignif_[iapv].push_back(0); // pedestals and raw noise if ( peds_histo ) { if ( peds_histo->GetBinEntries(iapv*128 + istr + 1) ) { ana->peds_[iapv][istr] = peds_histo->GetBinContent(iapv*128 + istr + 1); p_sum += ana->peds_[iapv][istr]; p_sum2 += (ana->peds_[iapv][istr] * ana->peds_[iapv][istr]); if ( ana->peds_[iapv][istr] > p_max ) { p_max = ana->peds_[iapv][istr];} if ( ana->peds_[iapv][istr] < p_min ) { p_min = ana->peds_[iapv][istr];} ana->raw_[iapv][istr] = peds_histo->GetBinError(iapv*128 + istr + 1); r_sum += ana->raw_[iapv][istr]; r_sum2 += (ana->raw_[iapv][istr] * ana->raw_[iapv][istr]); if ( ana->raw_[iapv][istr] > r_max ) { r_max = ana->raw_[iapv][istr]; } if ( ana->raw_[iapv][istr] < r_min ) { r_min = ana->raw_[iapv][istr]; } } } // Noise from Full Distribution if ( noise_histo ) { // Fit the ADC Distribution from TH2S by projecting it out and fitting. TH1S * noisehist = new TH1S("noisehist","",noise_histo->GetNbinsX(), -noise_histo->GetNbinsX()/2,noise_histo->GetNbinsX()/2); for(int i=0;i<=noise_histo->GetNbinsX()+1;i++){ noisehist->SetBinContent(i,noise_histo->GetBinContent(i,iapv*128 + istr + 1)); } // If the histogram is valid. if(noisehist->Integral() > 0){ ana->noiseRMS_[iapv][istr] = noisehist->GetRMS(); noisehist->Fit("gaus","Q"); ana->noiseGaus_[iapv][istr] = noisehist->GetFunction("gaus")->GetParameter(2); // new Bin84 method std::vector<float> integralFrac; integralFrac.push_back(1.*noisehist->GetBinContent(0)/noisehist->Integral(0,noisehist->GetNbinsX())); // Calculate the integral of distro as a function of bins. for(int i = 1; i < noisehist->GetNbinsX();i++){ integralFrac.push_back(float(noisehist->GetBinContent(i))/ noisehist->Integral(0,noisehist->GetNbinsX())+integralFrac[i-1]); //Take the two bins next to 84% and solve for x in 0.84 = mx+b if (integralFrac[i] >= 0.84135 && integralFrac[i-1] < 0.84135) { // my quadratic noise calculation double w = noisehist->GetBinWidth(i); double a = noisehist->GetBinContent(i-1); double b = noisehist->GetBinContent(i); double f = w*(0.84135 -integralFrac[i-1])/(integralFrac[i]-integralFrac[i-1]); double x = 0; if (a==b) { x = f; } else { double aa = (b-a)/(2*w); double bb = (b+a)/2; double cc = -b*f; double dd = bb*bb-4*aa*cc; //if (dd<0) dd=0; x = (-bb+sqrt(dd))/(2*aa); } ana->noiseBin84_[iapv][istr] = noisehist->GetBinLowEdge(i) + x; } } // Compare shape of ADC to a histogram made of Gaus Fit for KSProb, Chi2Prob, Etc... TH1D * FitHisto = new TH1D("FitHisto","FitHisto",noisehist->GetNbinsX(), -noisehist->GetNbinsX()/2,noisehist->GetNbinsX()/2); FitHisto->Add(noisehist->GetFunction("gaus")); FitHisto->Sumw2(); noisehist->Sumw2(); if(FitHisto->Integral() > 0){ // This is stored as a float but will be plotted as an int at the summary histos. // This forces the histo to draw 10000 bins instead of 1. ana->ksProb_[iapv][istr] = noisehist->KolmogorovTest(FitHisto)*10000; } delete FitHisto; } delete noisehist; } // Assigning the actual noise values used for Upload!!!!!!!!!!!!!!!!!!!! if (noiseDef_ == "Bin84") { if (ana->noiseBin84_[iapv][istr] > 0) { ana->noise_[iapv][istr] = ana->noiseBin84_[iapv][istr]; } else { ana->noise_[iapv][istr] = ana->noiseRMS_[iapv][istr]; } } else if (noiseDef_ == "RMS") { ana->noise_[iapv][istr] = ana->noiseRMS_[iapv][istr]; } else edm::LogWarning(mlCommissioning_)<< "[PedsFullNoiseAlgorithm::" << __func__ << "]"<< " Unknown noise definition!!!"; // Setting Sum of RMS and RMS^2 for Dead/Noisy Strip calculations n_sum += ana->noise_[iapv][istr]; n_sum2 += (ana->noise_[iapv][istr] * ana->noise_[iapv][istr]); if ( ana->noise_[iapv][istr] > n_max ) { n_max = ana->noise_[iapv][istr]; } if ( ana->noise_[iapv][istr] < n_min ) { n_min = ana->noise_[iapv][istr]; } } // strip loop // Calc mean and rms for peds if ( !ana->peds_[iapv].empty() ) { p_sum /= static_cast<float>( ana->peds_[iapv].size() ); p_sum2 /= static_cast<float>( ana->peds_[iapv].size() ); ana->pedsMean_[iapv] = p_sum; ana->pedsSpread_[iapv] = sqrt( fabs(p_sum2 - p_sum*p_sum) ); } // Calc mean and rms for noise using noiseRMS. if ( !ana->noise_[iapv].empty() ) { n_sum /= static_cast<float>( ana->noise_[iapv].size() ); n_sum2 /= static_cast<float>( ana->noise_[iapv].size() ); ana->noiseMean_[iapv] = n_sum; ana->noiseSpread_[iapv] = sqrt( fabs(n_sum2 - n_sum*n_sum) ); } // Calc mean and rms for raw noise if ( !ana->raw_[iapv].empty() ) { r_sum /= static_cast<float>( ana->raw_[iapv].size() ); r_sum2 /= static_cast<float>( ana->raw_[iapv].size() ); ana->rawMean_[iapv] = r_sum; ana->rawSpread_[iapv] = sqrt( fabs(r_sum2 - r_sum*r_sum) ); } // Set max and min values for peds, noise and raw noise if ( p_max > -1.*sistrip::maximum_ ) { ana->pedsMax_[iapv] = p_max; } if ( p_min < 1.*sistrip::maximum_ ) { ana->pedsMin_[iapv] = p_min; } if ( n_max > -1.*sistrip::maximum_ ) { ana->noiseMax_[iapv] = n_max; } if ( n_min < 1.*sistrip::maximum_ ) { ana->noiseMin_[iapv] = n_min; } if ( r_max > -1.*sistrip::maximum_ ) { ana->rawMax_[iapv] = r_max; } if ( r_min < 1.*sistrip::maximum_ ) { ana->rawMin_[iapv] = r_min; } // Set dead and noisy strips for ( uint16_t istr = 0; istr < 128; istr++ ) { // strip loop // Set the significance of the noise of each strip also compared to apv avg. ana->noiseSignif_[iapv][istr] = (ana->noise_[iapv][istr]-ana->noiseMean_[iapv])/ana->noiseSpread_[iapv]; if ( ana->noiseMin_[iapv] > sistrip::maximum_ || ana->noiseMax_[iapv] > sistrip::maximum_ ) { continue; } // Strip Masking for Dead Strips if(ana->noiseSignif_[iapv][istr] < -deadStripMax_){ ana->dead_[iapv].push_back(istr); SiStripFecKey fec_key(ana->fecKey()); LogTrace(mlDqmClient_)<<"DeadSignif "<<ana->noiseSignif_[iapv][istr] <<" "<<fec_key.fecCrate() <<" "<<fec_key.fecSlot() <<" "<<fec_key.fecRing() <<" "<<fec_key.ccuAddr() <<" "<<fec_key.ccuChan() <<" "<<fec_key.lldChan() <<" "<<iapv*128+istr<<std::endl; } // Strip Masking for Dead Strips // Laurent's Method for Flagging bad strips in TIB else if((ana->noiseMax_[iapv]/ana->noiseMean_[iapv] > 3 || ana->noiseSpread_[iapv] > 3) && ana->noiseSignif_[iapv][istr] > 1){ ana->noisy_[iapv].push_back(istr); SiStripFecKey fec_key(ana->fecKey()); LogTrace(mlDqmClient_)<<"NoisyLM "<<ana->noiseMax_[iapv]/ana->noiseMean_[iapv] <<" "<<fec_key.fecCrate() <<" "<<fec_key.fecSlot() <<" "<<fec_key.fecRing() <<" "<<fec_key.ccuAddr() <<" "<<fec_key.ccuChan() <<" "<<fec_key.lldChan() <<" "<<iapv*128+istr<<std::endl; } // if NoisyLM //Strip Masking for Non Gassian Strips which are also noisy. else if(ana->ksProb_[iapv][istr] < ksProbCut_){ ana->noisy_[iapv].push_back(istr); SiStripFecKey fec_key(ana->fecKey()); LogTrace(mlDqmClient_)<<"NoisyKS "<<ana->ksProb_[iapv][istr] <<" "<<fec_key.fecCrate() <<" "<<fec_key.fecSlot() <<" "<<fec_key.fecRing() <<" "<<fec_key.ccuAddr() <<" "<<fec_key.ccuChan() <<" "<<fec_key.lldChan() <<" "<<iapv*128+istr<<std::endl; } //Strip Masking for Non Gassian Strips which are also noisy. else if(ana->noiseSignif_[iapv][istr] > noisyStripMin_){ ana->noisy_[iapv].push_back(istr); SiStripFecKey fec_key(ana->fecKey()); LogTrace(mlDqmClient_)<<"NoisySignif "<<ana->noiseSignif_[iapv][istr] <<" "<<fec_key.fecCrate() <<" "<<fec_key.fecSlot() <<" "<<fec_key.fecRing() <<" "<<fec_key.ccuAddr() <<" "<<fec_key.ccuChan() <<" "<<fec_key.lldChan() <<" "<<iapv*128+istr<<std::endl; } // if Signif }// strip loop to set dead or noisy strips } // apv loop //std::cout << std::endl; }
void PedsFullNoiseAlgorithm::extract | ( | const std::vector< TH1 * > & | histos | ) | [private, virtual] |
Extracts and organises histograms.
Implements CommissioningAlgorithm.
Definition at line 39 of file PedsFullNoiseAlgorithm.cc.
References CommissioningAnalysis::addErrorCode(), CommissioningAlgorithm::anal(), sistrip::extrainfo::commonMode_, CommissioningAlgorithm::extractFedKey(), CommissioningAnalysis::fedKey(), hNoise1D_, hNoise_, hPeds_, sistrip::mlCommissioning_, sistrip::extrainfo::noise2D_, sistrip::extrainfo::noiseProfile_, sistrip::numberOfHistos_, sistrip::extrainfo::pedestals_, sistrip::extrainfo::roughPedestals_, indexGen::title, and sistrip::unexpectedExtraInfo_.
{ if ( !anal() ) { edm::LogWarning(mlCommissioning_) << "[PedsFullNoiseAlgorithm::" << __func__ << "]" << " NULL pointer to Analysis object!"; return; } // Check number of histograms if ( histos.size() != 3 ) { anal()->addErrorCode(sistrip::numberOfHistos_); } // Extract FED key from histo title if ( !histos.empty() ) { anal()->fedKey( extractFedKey( histos.front() ) ); } // Extract 1D histograms std::vector<TH1*>::const_iterator ihis = histos.begin(); for ( ; ihis != histos.end(); ihis++ ) { // Check for NULL pointer if ( !(*ihis) ) { continue; } // TO BE UPDATED!!! // Check run type SiStripHistoTitle title( (*ihis)->GetName() ); /* if ( title.runType() != sistrip::PEDS_FULL_NOISE ) { anal()->addErrorCode(sistrip::unexpectedTask_); continue; } */ // Extract peds histos if ( title.extraInfo().find(sistrip::extrainfo::roughPedestals_) != std::string::npos ) { //@@ something here for rough peds? } else if ( title.extraInfo().find(sistrip::extrainfo::pedestals_) != std::string::npos ) { hPeds_.first = *ihis; hPeds_.second = (*ihis)->GetName(); } else if ( title.extraInfo().find(sistrip::extrainfo::commonMode_) != std::string::npos ) { //@@ something here for CM plots? } else if ( title.extraInfo().find(sistrip::extrainfo::noiseProfile_) != std::string::npos ) { //@@ something here for noise profile plot? hNoise1D_.first = *ihis; hNoise1D_.second = (*ihis)->GetName(); } else if ( title.extraInfo().find(sistrip::extrainfo::noise2D_) != std::string::npos ) { hNoise_.first = *ihis; hNoise_.second = (*ihis)->GetName(); } else { anal()->addErrorCode(sistrip::unexpectedExtraInfo_); } } }
const PedsFullNoiseAlgorithm::Histo & PedsFullNoiseAlgorithm::hNoise | ( | ) | const [inline] |
const Histo& PedsFullNoiseAlgorithm::hNoise1D | ( | ) | const [inline] |
const PedsFullNoiseAlgorithm::Histo & PedsFullNoiseAlgorithm::hPeds | ( | ) | const [inline] |
float PedsFullNoiseAlgorithm::deadStripMax_ [private] |
Analysis parameters
Definition at line 50 of file PedsFullNoiseAlgorithm.h.
Referenced by analyse().
Histo PedsFullNoiseAlgorithm::hNoise1D_ [private] |
Definition at line 47 of file PedsFullNoiseAlgorithm.h.
Referenced by extract().
Histo PedsFullNoiseAlgorithm::hNoise_ [private] |
Residuals and noise
Definition at line 46 of file PedsFullNoiseAlgorithm.h.
Histo PedsFullNoiseAlgorithm::hPeds_ [private] |
float PedsFullNoiseAlgorithm::ksProbCut_ [private] |
Definition at line 53 of file PedsFullNoiseAlgorithm.h.
Referenced by analyse().
std::string PedsFullNoiseAlgorithm::noiseDef_ [private] |
Definition at line 52 of file PedsFullNoiseAlgorithm.h.
Referenced by analyse().
float PedsFullNoiseAlgorithm::noisyStripMin_ [private] |
Definition at line 51 of file PedsFullNoiseAlgorithm.h.
Referenced by analyse().