00001 #ifndef GeometryVector_newBasic3DVector_h
00002 #define GeometryVector_newBasic3DVector_h
00003
00004 #include "DataFormats/GeometryVector/interface/Basic2DVector.h"
00005 #include "DataFormats/GeometryVector/interface/Theta.h"
00006 #include "DataFormats/GeometryVector/interface/Phi.h"
00007 #include "DataFormats/GeometryVector/interface/PreciseFloatType.h"
00008 #include "DataFormats/GeometryVector/interface/CoordinateSets.h"
00009 #include "DataFormats/Math/interface/SSEVec.h"
00010 #include <iosfwd>
00011 #include <cmath>
00012
00013 namespace detailsBasic3DVector {
00014 inline float __attribute__((always_inline)) __attribute__ ((pure))
00015 eta(float x, float y, float z) { float t(z/std::sqrt(x*x+y*y)); return ::asinhf(t);}
00016 inline double __attribute__((always_inline)) __attribute__ ((pure))
00017 eta(double x, double y, double z) { double t(z/std::sqrt(x*x+y*y)); return ::asinh(t);}
00018 inline long double __attribute__((always_inline)) __attribute__ ((pure))
00019 eta(long double x, long double y, long double z) { long double t(z/std::sqrt(x*x+y*y)); return ::asinhl(t);}
00020 }
00021
00022
00023 template < typename T>
00024 class Basic3DVector {
00025 public:
00026
00027 typedef T ScalarType;
00028 typedef mathSSE::Vec4<T> VectorType;
00029 typedef mathSSE::Vec4<T> MathVector;
00030 typedef Geom::Cylindrical2Cartesian<T> Cylindrical;
00031 typedef Geom::Spherical2Cartesian<T> Spherical;
00032 typedef Spherical Polar;
00033
00038 Basic3DVector() {}
00039
00041 Basic3DVector( const Basic3DVector & p) :
00042 v(p.v) {}
00043
00045 template <class U>
00046 Basic3DVector( const Basic3DVector<U> & p) :
00047 v(p.v) {}
00048
00049
00051 Basic3DVector( const Basic2DVector<T> & p) :
00052 v(p.x(),p.y(),0) {}
00053
00054
00063 template <class OtherPoint>
00064 explicit Basic3DVector( const OtherPoint& p) :
00065 v(p.x(),p.y(),p.z()) {}
00066
00067
00068
00069 template<class U>
00070 Basic3DVector(mathSSE::Vec4<U> const& iv) : v(iv){}
00071
00073 Basic3DVector( const T& x, const T& y, const T& z, const T&w=0) :
00074 v(x,y,z,w){}
00075
00080 template <typename U>
00081 Basic3DVector( const Geom::Theta<U>& theta,
00082 const Geom::Phi<U>& phi, const T& r) {
00083 Polar p( theta.value(), phi.value(), r);
00084 v.o.theX = p.x(); v.o.theY = p.y(); v.o.theZ = p.z();
00085 }
00086
00087 MathVector const & mathVector() const { return v;}
00088 MathVector & mathVector() { return v;}
00089
00090 T operator[](int i) const { return v[i];}
00091 T & operator[](int i) { return v[i];}
00092
00094 T x() const { return v.o.theX;}
00095
00097 T y() const { return v.o.theY;}
00098
00100 T z() const { return v.o.theZ;}
00101
00102 T w() const { return v.o.theW;}
00103
00104 Basic2DVector<T> xy() const { return v.xy();}
00105
00106
00107 bool operator==(const Basic3DVector& rh) const {
00108 return v==rh.v;
00109 }
00110
00112 T mag2() const { return ::dot(v,v);}
00113
00115 T mag() const { return std::sqrt( mag2());}
00116
00118 T perp2() const { return ::dotxy(v,v);}
00119
00121 T perp() const { return std::sqrt( perp2());}
00122
00124 T transverse() const { return perp();}
00125
00130 T barePhi() const {return std::atan2(y(),x());}
00131 Geom::Phi<T> phi() const {return Geom::Phi<T>(barePhi());}
00132
00137 T bareTheta() const {return std::atan2(perp(),z());}
00138 Geom::Theta<T> theta() const {return Geom::Theta<T>(std::atan2(perp(),z()));}
00139
00144
00145 T eta() const { return detailsBasic3DVector::eta(x(),y(),z());}
00146
00150 Basic3DVector unit() const {
00151 T my_mag = mag2();
00152 return (0!=my_mag) ? (*this)*(T(1)/std::sqrt(my_mag)) : *this;
00153 }
00154
00157 template <class U>
00158 Basic3DVector& operator+= ( const Basic3DVector<U>& p) {
00159 v = v + p.v;
00160 return *this;
00161 }
00162
00165 template <class U>
00166 Basic3DVector& operator-= ( const Basic3DVector<U>& p) {
00167 v = v - p.v;
00168 return *this;
00169 }
00170
00172 Basic3DVector operator-() const { return Basic3DVector(-v);}
00173
00175 Basic3DVector& operator*= ( T t) {
00176 v = t*v;
00177 return *this;
00178 }
00179
00181 Basic3DVector& operator/= ( T t) {
00182
00183 v = v/t;
00184 return *this;
00185 }
00186
00188 T dot( const Basic3DVector& rh) const {
00189 return ::dot(v,rh.v);
00190 }
00191
00197 template <class U>
00198 typename PreciseFloatType<T,U>::Type dot( const Basic3DVector<U>& lh) const {
00199 return Basic3DVector<typename PreciseFloatType<T,U>::Type>(*this)
00200 .dot(Basic3DVector<typename PreciseFloatType<T,U>::Type>(lh));
00201 }
00202
00204 Basic3DVector cross( const Basic3DVector& lh) const {
00205 return ::cross(v,lh.v);
00206 }
00207
00208
00214 template <class U>
00215 Basic3DVector<typename PreciseFloatType<T,U>::Type>
00216 cross( const Basic3DVector<U>& lh) const {
00217 return Basic3DVector<typename PreciseFloatType<T,U>::Type>(*this)
00218 .cross(Basic3DVector<typename PreciseFloatType<T,U>::Type>(lh));
00219 }
00220
00221 public:
00222 mathSSE::Vec4<T> v;
00223 } __attribute__ ((aligned (16)));
00224
00225
00226 namespace geometryDetails {
00227 std::ostream & print3D(std::ostream& s, double x, double y, double z);
00228 }
00229
00231 template <class T>
00232 inline std::ostream & operator<<( std::ostream& s, const Basic3DVector<T>& v) {
00233 return geometryDetails::print3D(s, v.x(),v.y(), v.z());
00234 }
00235
00236
00238 template <class T>
00239 inline Basic3DVector<T>
00240 operator+( const Basic3DVector<T>& a, const Basic3DVector<T>& b) {
00241 return a.v+b.v;
00242 }
00243 template <class T>
00244 inline Basic3DVector<T>
00245 operator-( const Basic3DVector<T>& a, const Basic3DVector<T>& b) {
00246 return a.v-b.v;
00247 }
00248
00249 template <class T, class U>
00250 inline Basic3DVector<typename PreciseFloatType<T,U>::Type>
00251 operator+( const Basic3DVector<T>& a, const Basic3DVector<U>& b) {
00252 typedef Basic3DVector<typename PreciseFloatType<T,U>::Type> RT;
00253 return RT(a).v+RT(b).v;
00254 }
00255
00256 template <class T, class U>
00257 inline Basic3DVector<typename PreciseFloatType<T,U>::Type>
00258 operator-( const Basic3DVector<T>& a, const Basic3DVector<U>& b) {
00259 typedef Basic3DVector<typename PreciseFloatType<T,U>::Type> RT;
00260 return RT(a).v-RT(b).v;
00261 }
00262
00264 template <class T>
00265 inline T operator*( const Basic3DVector<T>& v1, const Basic3DVector<T>& v2) {
00266 return v1.dot(v2);
00267 }
00268
00270 template <class T, class U>
00271 inline typename PreciseFloatType<T,U>::Type operator*( const Basic3DVector<T>& v1,
00272 const Basic3DVector<U>& v2) {
00273 return v1.dot(v2);
00274 }
00275
00279 template <class T>
00280 inline Basic3DVector<T> operator*( const Basic3DVector<T>& v, T t) {
00281 return v.v*t;
00282 }
00283
00285 template <class T>
00286 inline Basic3DVector<T> operator*(T t, const Basic3DVector<T>& v) {
00287 return v.v*t;
00288 }
00289
00290
00291
00292 template <class T, typename S>
00293 inline Basic3DVector<T> operator*(S t, const Basic3DVector<T>& v) {
00294 return static_cast<T>(t)*v;
00295 }
00296
00297 template <class T, typename S>
00298 inline Basic3DVector<T> operator*(const Basic3DVector<T>& v, S t) {
00299 return static_cast<T>(t)*v;
00300 }
00301
00302
00306 template <class T>
00307 inline Basic3DVector<T> operator/(const Basic3DVector<T>& v, T t) {
00308 return v.v/t;
00309 }
00310
00311 template <class T, typename S>
00312 inline Basic3DVector<T> operator/( const Basic3DVector<T>& v, S s) {
00313
00314 T t = s;
00315 return v/t;
00316 }
00317
00318
00319 typedef Basic3DVector<float> Basic3DVectorF;
00320 typedef Basic3DVector<double> Basic3DVectorD;
00321
00322
00323
00324 #include "Basic3DVectorLD.h"
00325
00326 #endif // GeometryVector_Basic3DVector_h
00327
00328