CMS 3D CMS Logo

Public Member Functions | Private Member Functions | Private Attributes

TangentCircle Class Reference

#include <TangentCircle.h>

List of all members.

Public Member Functions

int charge (float magz)
double curvatureError ()
GlobalVector directionAtVertex ()
 Return the direction at the vertex.
GlobalPoint innerPoint () const
bool isValid () const
GlobalPoint outerPoint () const
double rho () const
 TangentCircle (const TangentCircle &primCircle, const GlobalPoint &outerPoint, const GlobalPoint &innerPoint)
 Calculate the parameters of a circle which pass by 2 points (innerPoint and outerPoint) and which is tangent to primCircle.
 TangentCircle ()
 TangentCircle (const GlobalVector &direction, const GlobalPoint &innerPoint, const GlobalPoint &outerPoint)
 TangentCircle (const GlobalPoint &outerPoint, const GlobalPoint &innerPoint, const GlobalPoint &vertexPoint)
 Copy of FastCircle.
double vertexError () const
GlobalPoint vertexPoint () const
double x0 () const
double y0 () const

Private Member Functions

int chargeLocally (float magz, GlobalVector v) const
GlobalVector direction (const GlobalPoint &point) const
GlobalPoint getPosition (const TangentCircle &circle, const GlobalPoint &initalPosition, double theta, int direction) const
double isTangent (const TangentCircle &primCircle, const TangentCircle &secCircle) const

Private Attributes

int theCharge
GlobalVector theDirectionAtVertex
GlobalPoint theInnerPoint
GlobalPoint theOuterPoint
double theRho
double theVertexError
GlobalPoint theVertexPoint
double theX0
double theY0
bool valid

Detailed Description

Definition at line 7 of file TangentCircle.h.


Constructor & Destructor Documentation

TangentCircle::TangentCircle ( ) [inline]

Definition at line 14 of file TangentCircle.h.

TangentCircle::TangentCircle ( const GlobalVector direction,
const GlobalPoint innerPoint,
const GlobalPoint outerPoint 
)

Calculate the circle from 2 points on the circle (the vertex=innerPoint and the outerPoint) and the tangent direction at the inner point

Definition at line 7 of file TangentCircle.cc.

References funct::cos(), cuy::denominator, direction(), PV3DBase< T, PVType, FrameType >::mag(), mag(), PV3DBase< T, PVType, FrameType >::perp2(), PI, funct::sin(), theCharge, theDirectionAtVertex, theInnerPoint, theOuterPoint, theRho, theVertexError, theX0, theY0, valid, PV3DBase< T, PVType, FrameType >::x(), and PV3DBase< T, PVType, FrameType >::y().

                                                                                                              : 
       theInnerPoint(inner), theOuterPoint(outer), theVertexPoint(inner) {

   if(theInnerPoint.perp2() > theOuterPoint.perp2()) { valid = false; }
   else valid=true;

   double x1 = inner.x();
   double y1 = inner.y();
   double x2 = outer.x();
   double y2 = outer.y();
   double alpha1 = (direction.y() != 0) ? atan(-direction.x()/direction.y()) : PI/2 ;
   double denominator = 2*((x1-x2)*cos(alpha1)+(y1-y2)*sin(alpha1));
   theRho = (denominator != 0) ? ((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2))/denominator : 1E12;

   // TODO : variable not yet calculated look in nucl.C
   theX0 = 1E10;
   theY0 = 1E10;

   theDirectionAtVertex = direction;
   theDirectionAtVertex/=theDirectionAtVertex.mag();

   //theCharge = (theRho>0) ? -1 : 1;

   theCharge = 0;
   theRho = fabs(theRho);

   theVertexError = (theInnerPoint-theOuterPoint).mag();
}
TangentCircle::TangentCircle ( const GlobalPoint outerPoint,
const GlobalPoint innerPoint,
const GlobalPoint vertexPoint 
)

Copy of FastCircle.

Definition at line 36 of file TangentCircle.cc.

References FastCircle::isValid(), PV3DBase< T, PVType, FrameType >::perp2(), FastCircle::rho(), theCharge, theDirectionAtVertex, theInnerPoint, theOuterPoint, theRho, theVertexError, theX0, theY0, valid, FastCircle::x0(), and FastCircle::y0().

                                                                                                                         : 
     theInnerPoint(innerPoint), theOuterPoint(outerPoint), theVertexPoint(vertexPoint) {
     FastCircle circle(outerPoint, innerPoint, vertexPoint);
     theX0 = circle.x0();
     theY0 = circle.y0();
     theRho = circle.rho();
     theVertexError = 0;
     theCharge = 0;
     theDirectionAtVertex = GlobalVector(1000, 1000, 1000);
     if(theInnerPoint.perp2() > theOuterPoint.perp2() || !circle.isValid()) { valid = false; }
     else valid=true;
}
TangentCircle::TangentCircle ( const TangentCircle primCircle,
const GlobalPoint outerPoint,
const GlobalPoint innerPoint 
)

Calculate the parameters of a circle which pass by 2 points (innerPoint and outerPoint) and which is tangent to primCircle.

Definition at line 49 of file TangentCircle.cc.

References dir, getPosition(), i, innerPoint(), isTangent(), LogDebug, mag(), outerPoint(), PV3DBase< T, PVType, FrameType >::perp2(), rho(), alignCSCRings::s, theCharge, theDirectionAtVertex, theInnerPoint, theOuterPoint, theRho, theta(), theVertexError, theVertexPoint, theX0, theY0, valid, vertexPoint(), PV3DBase< T, PVType, FrameType >::x(), x0(), PV3DBase< T, PVType, FrameType >::y(), and y0().

                                                                                                                          {

   if(theInnerPoint.perp2() > theOuterPoint.perp2()) { valid = false; }
   else valid = true;

   int NITER = 10; 

   // Initial vertex used = outerPoint of the primary circle (should be the first estimation of the nuclear interaction position)
   GlobalPoint InitialVertex( primCircle.outerPoint().x() , primCircle.outerPoint().y(), 0);
   GlobalPoint SecInnerPoint( innerPoint.x(), innerPoint.y(), 0);
   GlobalPoint SecOuterPoint( outerPoint.x(), outerPoint.y(), 0);

   // distance between the initial vertex and the inner point of the secondary circle
   double s = (SecInnerPoint - InitialVertex).mag();
   double deltaTheta = s/primCircle.rho();

   double minTangentCondition = 1E12;
   TangentCircle theCorrectSecCircle;
   GlobalPoint vertex = InitialVertex;
   int dir = 1;
   double theta = deltaTheta/(NITER-1);

   for(int i=0; i<NITER; i++) { 
   
     // get the circle which pass through outerPoint, innerPoint and the vertex
     TangentCircle secCircle( SecOuterPoint, SecInnerPoint, vertex );

     // get a value relative to the tangentness of the 2 circles
     double minCond = isTangent(primCircle, secCircle);

     // double dirDiff = (primCircle.direction(vertex) - secCircle.direction(vertex)).mag();
     // if( dirDiff > 1) dirDiff = 2-dirDiff;

     if(minCond < minTangentCondition) { 
                minTangentCondition = minCond;
                theCorrectSecCircle = secCircle;
                vertex = getPosition( primCircle, secCircle.vertexPoint(), theta, dir );
                if( i==0 && ((vertex-SecInnerPoint).mag() > (InitialVertex-SecInnerPoint).mag()) ) {
                       dir=-1;
                       vertex = getPosition( primCircle, InitialVertex, theta, dir );
                       LogDebug("NuclearSeedGenerator") << "Change direction to look for vertex" << "\n";
                 }
     }
     else break;
   
   }
   theInnerPoint = theCorrectSecCircle.innerPoint();
   theOuterPoint = theCorrectSecCircle.outerPoint();
   theVertexPoint = theCorrectSecCircle.vertexPoint();
   theX0 = theCorrectSecCircle.x0();
   theY0 = theCorrectSecCircle.y0();
   theRho = theCorrectSecCircle.rho();  
   theCharge = 0;
   theDirectionAtVertex = GlobalVector(1000, 1000, 1000);

   theVertexError = s/NITER;
}

Member Function Documentation

int TangentCircle::charge ( float  magz)

Definition at line 180 of file TangentCircle.cc.

References chargeLocally(), directionAtVertex(), F(), LogDebug, theCharge, theVertexPoint, theX0, theY0, findQualityFiles::v, PV3DBase< T, PVType, FrameType >::x(), and PV3DBase< T, PVType, FrameType >::y().

Referenced by TangentHelix::charge().

                                    {

   if(theCharge != 0) return theCharge;

   if(theX0 > 1E9 || theY0 > 1E9) theCharge = chargeLocally(magz, directionAtVertex());
   else {
       GlobalPoint  center(theX0, theY0, 0);
       GlobalVector u = center - theVertexPoint;
       GlobalVector v = directionAtVertex();

       // F = force vector
       GlobalVector F( v.y() * magz, -v.x() * magz, 0);
       if( u.x() * F.x() + u.y() * F.y() > 0) theCharge=-1;
       else theCharge=1;

       if(theCharge != chargeLocally(magz, v)) {
          LogDebug("NuclearSeedGenerator") << "Inconsistency in calculation of the charge" << "\n";
     }

   }
   return theCharge;
}
int TangentCircle::chargeLocally ( float  magz,
GlobalVector  v 
) const [private]

Definition at line 203 of file TangentCircle.cc.

References theOuterPoint, theVertexPoint, PV3DBase< T, PVType, FrameType >::x(), and PV3DBase< T, PVType, FrameType >::y().

Referenced by charge().

                                                                 {
    GlobalVector  u = theOuterPoint - theVertexPoint;
    double tz = v.x() * u.y() - v.y() * u.x() ;

    if(tz * magz > 0) return 1; else return -1;
}
double TangentCircle::curvatureError ( )
GlobalVector TangentCircle::direction ( const GlobalPoint point) const [private]

Definition at line 118 of file TangentCircle.cc.

References diffTreeTool::diff, dir, LogDebug, mag(), theInnerPoint, theOuterPoint, theX0, theY0, PV3DBase< T, PVType, FrameType >::x(), and PV3DBase< T, PVType, FrameType >::y().

Referenced by directionAtVertex(), and TangentCircle().

                                                                    {

     if(theY0 > 1E9 || theX0 > 1E9) {
        LogDebug("NuclearSeedGenerator") << "Center of TangentCircle not calculated but used !!!" << "\n";
     }

     // calculate the direction perpendicular to the vector v = point - center_of_circle
     GlobalVector dir(point.y() - theY0, theX0 - point.x(), 0);

     dir/=dir.mag();

     // Check the sign :
     GlobalVector fastDir = theOuterPoint - theInnerPoint;
     double diff = (dir - fastDir).mag();
     double sum = (dir + fastDir).mag();

     if( sum < diff ) dir = (-1)*dir;

     return dir;
}
GlobalVector TangentCircle::directionAtVertex ( )
GlobalPoint TangentCircle::getPosition ( const TangentCircle circle,
const GlobalPoint initalPosition,
double  theta,
int  direction 
) const [private]

Definition at line 145 of file TangentCircle.cc.

References alpha, beta, funct::cos(), prof2calltree::l, PI, rho(), funct::sin(), PV3DBase< T, PVType, FrameType >::x(), x0(), PV3DBase< T, PVType, FrameType >::y(), and y0().

Referenced by TangentCircle().

                                                                                                                                  {
             
            int sign[3];
            double x2 = initalPosition.x();
            double y2 = initalPosition.y();

            if( (x2>circle.x0()) && dir >0) { sign[0] = 1;  sign[1] = -1; sign[2] = -1; }
            if( (x2>circle.x0()) && dir <0) { sign[0] = 1;  sign[1] = 1; sign[2] = 1; }
            if( (x2<circle.x0()) && dir >0) { sign[0] = -1;  sign[1] = 1; sign[2] = -1; }
            if( (x2<circle.x0()) && dir <0) { sign[0] = -1;  sign[1] = -1; sign[2] = 1; }

            double l = 2*circle.rho()*sin(theta/2);
            double alpha = atan((y2-circle.y0())/(x2-circle.x0()));
            double beta = PI/2-theta/2;
            double gamma = PI + sign[2]* alpha - beta;

            double xnew = x2 + sign[0]*l*cos(gamma);
            double ynew = y2 + sign[1]*l*sin(gamma);

            return GlobalPoint( xnew, ynew, 0 );
}
GlobalPoint TangentCircle::innerPoint ( ) const [inline]

Definition at line 40 of file TangentCircle.h.

References theInnerPoint.

Referenced by TangentCircle().

{ return theInnerPoint; }
double TangentCircle::isTangent ( const TangentCircle primCircle,
const TangentCircle secCircle 
) const [private]

Definition at line 107 of file TangentCircle.cc.

References min, rho(), x0(), and y0().

Referenced by TangentCircle().

                                                                                                     {
   // return a value that should be equal to 0 if primCircle and secCircle are tangent

   double distanceBetweenCircle = (primCircle.x0() - secCircle.x0())*(primCircle.x0() - secCircle.x0())
           + (primCircle.y0() - secCircle.y0())*(primCircle.y0() - secCircle.y0());
   double RadiusSum = (primCircle.rho() + secCircle.rho())*(primCircle.rho() + secCircle.rho());
   double RadiusDifference = (primCircle.rho() - secCircle.rho())*(primCircle.rho() - secCircle.rho());

   return std::min( fabs(RadiusSum-distanceBetweenCircle), fabs(RadiusDifference-distanceBetweenCircle) ); 
}
bool TangentCircle::isValid ( void  ) const [inline]

Definition at line 50 of file TangentCircle.h.

References isValid().

Referenced by isValid().

{ return isValid(); } 
GlobalPoint TangentCircle::outerPoint ( ) const [inline]

Definition at line 38 of file TangentCircle.h.

References theOuterPoint.

Referenced by TangentCircle().

{ return theOuterPoint; }
double TangentCircle::rho ( ) const [inline]

Definition at line 36 of file TangentCircle.h.

References theRho.

Referenced by curvatureError(), getPosition(), isTangent(), TangentHelix::rho(), and TangentCircle().

{return theRho;}
double TangentCircle::vertexError ( ) const [inline]

Definition at line 44 of file TangentCircle.h.

References theVertexError.

Referenced by TangentHelix::vertexError().

{ return theVertexError; }
GlobalPoint TangentCircle::vertexPoint ( ) const [inline]

Definition at line 42 of file TangentCircle.h.

References theVertexPoint.

Referenced by TangentCircle(), and TangentHelix::TangentHelix().

{ return theVertexPoint; }
double TangentCircle::x0 ( ) const [inline]

Definition at line 32 of file TangentCircle.h.

References theX0.

Referenced by getPosition(), isTangent(), and TangentCircle().

{return theX0;}
double TangentCircle::y0 ( ) const [inline]

Definition at line 34 of file TangentCircle.h.

References theY0.

Referenced by getPosition(), isTangent(), and TangentCircle().

{return theY0;}

Member Data Documentation

int TangentCircle::theCharge [private]

Definition at line 66 of file TangentCircle.h.

Referenced by charge(), and TangentCircle().

Definition at line 57 of file TangentCircle.h.

Referenced by directionAtVertex(), and TangentCircle().

Definition at line 53 of file TangentCircle.h.

Referenced by curvatureError(), direction(), innerPoint(), and TangentCircle().

Definition at line 54 of file TangentCircle.h.

Referenced by chargeLocally(), curvatureError(), direction(), outerPoint(), and TangentCircle().

double TangentCircle::theRho [private]

Signed radius of the circle (=q*R)

Definition at line 61 of file TangentCircle.h.

Referenced by rho(), and TangentCircle().

the error on the vertex position along the direction of the circle at this point

Definition at line 63 of file TangentCircle.h.

Referenced by curvatureError(), TangentCircle(), and vertexError().

double TangentCircle::theX0 [private]

x center of the circle

Definition at line 59 of file TangentCircle.h.

Referenced by charge(), direction(), TangentCircle(), and x0().

double TangentCircle::theY0 [private]

y center of the circle

Definition at line 60 of file TangentCircle.h.

Referenced by charge(), direction(), TangentCircle(), and y0().

bool TangentCircle::valid [private]

Definition at line 65 of file TangentCircle.h.

Referenced by TangentCircle().