CMS 3D CMS Logo

/afs/cern.ch/work/a/aaltunda/public/www/CMSSW_6_2_5/src/Geometry/TrackerGeometryBuilder/src/PlaneBuilderForGluedDet.cc

Go to the documentation of this file.
00001 #include "Geometry/TrackerGeometryBuilder/interface/PlaneBuilderForGluedDet.h"
00002 #include "DataFormats/GeometrySurface/interface/Surface.h"
00003 #include "DataFormats/GeometrySurface/interface/BoundingBox.h"
00004 #include "DataFormats/GeometrySurface/interface/MediumProperties.h"
00005 #include "DataFormats/GeometrySurface/interface/OpenBounds.h"
00006 
00007 #include <algorithm>
00008 
00009 // Warning, remember to assign this pointer to a ReferenceCountingPointer!
00010 PlaneBuilderForGluedDet::ResultType
00011 PlaneBuilderForGluedDet::plane( const std::vector<const GeomDetUnit*>& dets ) const
00012 {
00013   // find mean position
00014   typedef Surface::PositionType::BasicVectorType Vector;
00015   Vector posSum( 0, 0, 0 );
00016   for( std::vector<const GeomDetUnit*>::const_iterator i = dets.begin(), end = dets.end(); i != end; ++i )
00017   {
00018     posSum += (**i).surface().position().basicVector();
00019   }
00020   Surface::PositionType meanPos( posSum / float( dets.size()));
00021   
00022   Surface::RotationType rotation =  dets.front()->surface().rotation();
00023   //  Surface::RotationType rotation = computeRotation( dets, meanPos);
00024   Plane tmpPlane = Plane( meanPos, rotation);
00025 
00026   // Take the medium properties from the first DetUnit 
00027   const MediumProperties &  mp = dets.front()->surface().mediumProperties();
00028   MediumProperties newmp( mp.radLen() * 2.0, mp.xi() * 2.0 );
00029 
00030   std::pair<RectangularPlaneBounds*, GlobalVector> bo = computeRectBounds( dets, tmpPlane);
00031   return new Plane( meanPos+bo.second, rotation, newmp, bo.first);
00032 }
00033 
00034 
00035 std::pair<RectangularPlaneBounds*, GlobalVector>
00036 PlaneBuilderForGluedDet::computeRectBounds( const std::vector<const GeomDetUnit*>& dets, const Plane& plane ) const
00037 {
00038   // go over all corners and compute maximum deviations from mean pos.
00039   std::vector<GlobalPoint> corners;
00040   for( std::vector<const GeomDetUnit*>::const_iterator idet = dets.begin(), dend = dets.end();
00041        idet != dend; ++idet )
00042   {
00043     const Plane& bplane = dynamic_cast<const Plane&>(( *idet )->surface());
00044     std::vector<GlobalPoint> dc = BoundingBox().corners( bplane );
00045     corners.insert( corners.end(), dc.begin(), dc.end());
00046   }
00047   
00048   float xmin(0), xmax(0), ymin(0), ymax(0), zmin(0), zmax(0);
00049   for( std::vector<GlobalPoint>::const_iterator i = corners.begin(), cend = corners.end();
00050        i != cend; ++i )
00051   {
00052     LocalPoint p = plane.toLocal( *i );
00053     if( p.x() < xmin ) xmin = p.x();
00054     if( p.x() > xmax ) xmax = p.x();
00055     if( p.y() < ymin ) ymin = p.y();
00056     if( p.y() > ymax ) ymax = p.y();
00057     if( p.z() < zmin ) zmin = p.z();
00058     if( p.z() > zmax ) zmax = p.z();
00059   }
00060 
00061   LocalVector localOffset(( xmin + xmax ) / 2., ( ymin + ymax ) / 2., ( zmin + zmax ) / 2. );
00062   GlobalVector offset( plane.toGlobal( localOffset ));
00063 
00064   std::pair<RectangularPlaneBounds*, GlobalVector> result(new RectangularPlaneBounds(( xmax - xmin ) / 2, ( ymax - ymin ) / 2, ( zmax - zmin ) / 2 ), offset );
00065 
00066   return result;
00067 }
00068 
00069 Surface::RotationType
00070 PlaneBuilderForGluedDet::computeRotation( const std::vector<GeomDetUnit*>& dets, const Surface::PositionType& meanPos) const
00071 {
00072   // choose first mono out-pointing rotation
00073   // the rotations of GluedDets coincide with the mono part
00074   // Simply take the x,y of the first Det if z points out,
00075   // or -x, y if it doesn't
00076   const BoundPlane& plane = dynamic_cast<const BoundPlane&>( dets.front()->surface());
00077   //GlobalVector n = plane.normalVector();
00078 
00079   GlobalVector xAxis;
00080   GlobalVector yAxis;
00081   GlobalVector planeYAxis = plane.toGlobal( LocalVector( 0, 1, 0 ));
00082   if( planeYAxis.z() < 0 )
00083     yAxis = -planeYAxis;
00084   else
00085     yAxis =  planeYAxis;
00086 
00087   GlobalVector planeXAxis = plane.toGlobal( LocalVector( 1, 0, 0 ));
00088   GlobalVector n = planeXAxis.cross( planeYAxis );
00089 
00090   if( n.x() * meanPos.x() + n.y() * meanPos.y() > 0 )
00091   {
00092     xAxis = planeXAxis;
00093   }
00094   else
00095   {
00096     xAxis = -planeXAxis;
00097   }
00098 
00099   return Surface::RotationType( xAxis, yAxis );
00100 }