67 (1,std::pair<int,float>(0,0.));
82 mySimEvent(aSimEvent),
84 theMuonEcalEffects(0), theMuonHcalEffects (0), bFixedLength_(
false)
104 TH1::SetDefaultSumw2(
true);
110 dbe->
book1D(
"TransverseShape",
"Transverse Shape; #rho / Moliere radius; 1/E dE/d#rho",70, 0., 7.);
111 dbe->
book1D(
"LongitudinalShape",
"Longitudinal Shape; z / X0; 1/E dE/dz",40, 0.01, 40.01);
112 dbe->
book1D(
"LongitudinalShapeLayers",
"Longitudinal Shape in number of layers; z / Layers; 1/E dE/dz", 26, 0.01, 26.01);
113 dbe->
book2D(
"ShapeRhoZ",
"2D Shape; #rho / Moliere radius; z / X0", 70, 0., 7., 26, 0.01, 26.01);
114 dbe->
book1D(
"NumberOfParticles",
"Number Of Particles entering the Shower; #Particles; #Events", 6, -0.5, 5.5);
115 dbe->
book1D(
"ParticlesEnergy",
"Log Particles Energy; log10(E / GeV); #Particles", 30, 0, 3);
120 dbe->
book1D(
"TransverseShapeECAL",
"ECAL Transverse Shape; #rho / #lambda_{int}; 1/E dE/d#rho",70, 0., 7.);
121 dbe->
book1D(
"LongitudinalShapeECAL",
"ECAL Longitudinal Shape; z / #lambda_{int}; 1/E dE/dz",20, 0., 2.);
122 dbe->
book1D(
"TransverseShapeHCAL",
"HCAL Transverse Shape; #rho / #lambda_{int}; 1/E dE/d#rho",70, 0., 7.);
123 dbe->
book1D(
"LongitudinalShapeHCAL",
"HCAL Longitudinal Shape; z / #lambda_{int}; 1/E dE/dz",120, 0., 12.);
124 dbe->
book1D(
"ParticlesEnergy",
"Log Particles Energy; log10(E / GeV); #Particles", 30, 0, 3);
211 std::cout <<
" The preshower simulation has been turned on; but no preshower geometry is available " << std::endl;
212 std::cout <<
" Disabling the preshower simulation " << std::endl;
228 LogInfo(
"FastCalorimetry") <<
" ===> pid = " << pid << std::endl;
235 if ( pid == 11 || pid == 22 ) {
250 else if ( pid < 1000000 ) {
266 std::vector<const RawParticle*> thePart;
270 LogInfo(
"FastCalorimetry") <<
" EMShowerSimulation " <<myTrack << std::endl;
280 if ( myTrack.
type() == 22 &&
myPart.e()<0.055)
return;
284 int onEcal = myTrack.
onEcal();
285 int onHcal = myTrack.
onHcal();
298 XYZPoint layer1entrance,layer2entrance;
333 if ( myTrack.
type() == 22 ) {
339 double eMass = 0.000510998902;
341 double xm=eMass/
myPart.e();
347 weight = 1. - 4./3.*xe*(1.-xe);
348 }
while ( weight < random->flatShoot() );
351 if (
myPart.e()*xe < 0.055 ||
myPart.e()*(1.-xe) < 0.055 ) {
361 thePart.push_back(&
myElec);
362 thePart.push_back(&
myPosi);
373 if(thePart.size()==0)
375 if(myPreshower==
NULL)
return;
381 double maxEnergy=-1.;
382 for(
unsigned ip=0;ip < thePart.size();++ip)
383 if(thePart[ip]->
e() > maxEnergy) maxEnergy = thePart[ip]->
e();
387 if(maxEnergy>100) size=11;
396 if (maxShower > 20.) maxShower = 2.;
398 double depth((X0depth + maxShower) *
407 if(pivot.subdetId() == 0) {
408 edm::LogWarning(
"CalorimetryManager") <<
"Pivot for egamma e = " << myTrack.
hcalEntrance().e() <<
" is not found at depth " << depth <<
" and meanShower coordinates = " << meanShower << std::endl;
409 if(myPreshower)
delete myPreshower;
442 if( (onLayer1 || onLayer2) &&
myPart.e()<=250.)
476 theShower.
setHcal(&myHcalHitMaker);
502 LogInfo(
"FastCalorimetry") <<
" reconstructHCAL " << myTrack << std::endl;
519 double pathEta = trackPosition.eta();
520 double pathPhi = trackPosition.phi();
531 LogInfo(
"FastCalorimetry") <<
"CalorimetryManager::reconstructHCAL - MUON !!!" << std::endl;
533 else if( pid == 22 || pid == 11) {
537 LogInfo(
"FastCalorimetry") <<
"CalorimetryManager::reconstructHCAL - e/gamma !!!" << std::endl;
544 LogInfo(
"FastCalorimetry") <<
"CalorimetryManager::reconstructHCAL - on-calo "
545 <<
" eta = " << pathEta
546 <<
" phi = " << pathPhi
547 <<
" Egen = " << EGen
548 <<
" Emeas = " << emeas << std::endl;
554 std::map<CaloHitID,float> hitMap;
555 hitMap[current_id] = emeas;
568 <<
"CalorimetryManager::HDShowerSimulation - track param."
570 <<
" eta = " << moment.eta() << std::endl
571 <<
" phi = " << moment.phi() << std::endl
572 <<
" et = " << moment.Et() << std::endl
576 LogInfo(
"FastCalorimetry") <<
" HDShowerSimulation " << myTrack << std::endl;
588 }
else if ( myTrack.
onVFcal()) {
595 LogInfo(
"FastCalorimetry") <<
" The particle is not in the acceptance " << std::endl;
601 int onHCAL = hit + 1;
602 int onECAL = myTrack.
onEcal();
604 double pathEta = trackPosition.eta();
605 double pathPhi = trackPosition.phi();
608 double eint = moment.e();
644 <<
"CalorimetryManager::HDShowerSimulation - on-calo 1 "
646 <<
" onEcal = " << myTrack.
onEcal() << std::endl
647 <<
" onHcal = " << myTrack.
onHcal() << std::endl
648 <<
" onVFcal = " << myTrack.
onVFcal() << std::endl
649 <<
" position = " << caloentrance << std::endl;
656 true, myTrack.
onEcal()==1);
725 int particleType = myTrack.
type();
731 int showerType = 99 + myTrack.
onEcal();
732 double globalTime = 150.0;
734 Gflash3Vector gfpos(trackPosition.X(),trackPosition.Y(),trackPosition.Z());
743 std::vector<GflashHit>::const_iterator spotIter = gflashHitList.begin();
744 std::vector<GflashHit>::const_iterator spotIterEnd = gflashHitList.end();
748 for( ; spotIter != spotIterEnd; spotIter++){
751 + (30*100/eGen)*(spotIter->getTime() - globalTime);
758 Gflash3Vector positionAtCurrentDepth = trajectoryPoint.getPosition();
760 Gflash3Vector lateralDisplacement = positionAtCurrentDepth - spotIter->getPosition()/CLHEP::cm;
761 double rShower = lateralDisplacement.r();
762 double azimuthalAngle = lateralDisplacement.phi();
767 bool statusPad = myGrid.getPads(currentDepth,
true);
768 if(!statusPad)
continue;
769 myGrid.setSpotEnergy(1.2*spotIter->getEnergy()/CLHEP::GeV);
773 bool setHDdepth = myHcalHitMaker.
setDepth(currentDepth,
true);
774 if(!setHDdepth)
continue;
775 myHcalHitMaker.
setSpotEnergy(1.4*spotIter->getEnergy()/CLHEP::GeV);
797 double correction = emeas / eGen;
804 <<
"CalorimetryManager::HDShowerSimulation - on-calo 2" << std::endl
805 <<
" eta = " << pathEta << std::endl
806 <<
" phi = " << pathPhi << std::endl
807 <<
" Egen = " << eGen << std::endl
808 <<
" Emeas = " << emeas << std::endl
809 <<
" corr = " << correction << std::endl
810 <<
" mip = " << mip << std::endl;
812 if(myTrack.
onEcal() > 0) {
831 std::map<CaloHitID,float> hitMap;
832 hitMap[current_id] = emeas;
835 LogInfo(
"FastCalorimetry") <<
" HCAL simple cell "
836 << cell.
rawId() <<
" added E = "
837 << emeas << std::endl;
844 LogInfo(
"FastCalorimetry") << std::endl <<
" FASTEnergyReconstructor::HDShowerSimulation finished "
864 LogInfo(
"FastCalorimetry") <<
"CalorimetryManager::MuonMipSimulation - track param."
866 <<
" eta = " << moment.eta() << std::endl
867 <<
" phi = " << moment.phi() << std::endl
868 <<
" et = " << moment.Et() << std::endl;
878 }
else if ( myTrack.
onVFcal()) {
885 LogInfo(
"FastCalorimetry") <<
" The particle is not in the acceptance " << std::endl;
893 int onECAL = myTrack.
onEcal();
926 true, myTrack.
onEcal()==1);
945 const std::vector<CaloSegment>& segments=myGrid.getSegments();
946 unsigned nsegments=segments.size();
957 for(
unsigned iseg=0;iseg<nsegments&&ifirstHcal<0;++iseg)
961 float segmentSizeinX0=segments[iseg].X0length();
969 theMuon.
setID(-(
int)charge*13);
970 if ( energyLossECAL ) {
971 energyLossECAL->
updateState(theMuon, segmentSizeinX0);
972 energy = energyLossECAL->
deltaMom().E();
973 moment -= energyLossECAL->
deltaMom();
980 myGrid.getPads(segments[iseg].sX0Entrance()+segmentSizeinX0*0.5);
981 myGrid.setSpotEnergy(energy);
982 myGrid.addHit(0.,0.);
1006 float mipenergy=0.0;
1014 if(ifirstHcal>0 && energyLossHCAL){
1015 for(
unsigned iseg=ifirstHcal;iseg<nsegments;++iseg)
1017 float segmentSizeinX0=segments[iseg].X0length();
1020 if (segmentSizeinX0>0.001) {
1024 theMuon.
setID(-(
int)charge*13);
1025 energyLossHCAL->
updateState(theMuon, segmentSizeinX0);
1026 mipenergy = energyLossHCAL->
deltaMom().E();
1027 moment -= energyLossHCAL->
deltaMom();
1029 myHcalHitMaker.
addHit(segments[iseg].entrance());
1045 if(energyLossHCAL && ilastHcal>=0) {
1049 }
else if(energyLossECAL && ilastEcal>=0) {
1059 std::map<CaloHitID,float>::const_iterator mapitr;
1060 std::map<CaloHitID,float>::const_iterator endmapitr;
1061 if(myTrack.
onEcal() > 0) {
1070 LogInfo(
"FastCalorimetry") << std::endl <<
" FASTEnergyReconstructor::MipShowerSimulation finished "
1101 aTerm = 1.+radiusPreshowerCorrections_[1]*radiusPreshowerCorrections_[0];
1102 bTerm = radiusPreshowerCorrections_[0];
1106 if(gridSize_ <1) gridSize_= 7;
1107 if(pulledPadSurvivalProbability_ <0. || pulledPadSurvivalProbability_>1 ) pulledPadSurvivalProbability_= 1.;
1108 if(crackPadSurvivalProbability_ <0. || crackPadSurvivalProbability_>1 ) crackPadSurvivalProbability_= 0.9;
1110 LogInfo(
"FastCalorimetry") <<
" Fast ECAL simulation parameters " << std::endl;
1111 LogInfo(
"FastCalorimetry") <<
" =============================== " << std::endl;
1112 if(simulatePreshower_)
1113 LogInfo(
"FastCalorimetry") <<
" The preshower is present " << std::endl;
1115 LogInfo(
"FastCalorimetry") <<
" The preshower is NOT present " << std::endl;
1116 LogInfo(
"FastCalorimetry") <<
" Grid Size : " << gridSize_ << std::endl;
1117 if(spotFraction_>0.)
1118 LogInfo(
"FastCalorimetry") <<
" Spot Fraction : " << spotFraction_ << std::endl;
1121 LogInfo(
"FastCalorimetry") <<
" Core of the shower " << std::endl;
1122 for(
unsigned ir=0; ir < theCoreIntervals_.size()/2;++ir)
1124 LogInfo(
"FastCalorimetry") <<
" r < " << theCoreIntervals_[ir*2] <<
" R_M : " << theCoreIntervals_[ir*2+1] <<
" ";
1126 LogInfo(
"FastCalorimetry") << std::endl;
1128 LogInfo(
"FastCalorimetry") <<
" Tail of the shower " << std::endl;
1129 for(
unsigned ir=0; ir < theTailIntervals_.size()/2;++ir)
1131 LogInfo(
"FastCalorimetry") <<
" r < " << theTailIntervals_[ir*2] <<
" R_M : " << theTailIntervals_[ir*2+1] <<
" ";
1135 LogInfo(
"FastCalorimetry") <<
"Radius correction factors: EB & EE " << radiusFactorEB_ <<
" : "<< radiusFactorEE_ << std::endl;
1137 LogInfo(
"FastCalorimetry") << std::endl;
1139 LogInfo(
"FastCalorimetry") <<
"Improper number of parameters for the preshower ; using 95keV" << std::endl;
1145 LogInfo(
"FastCalorimetry") <<
" FrontLeakageProbability : " << pulledPadSurvivalProbability_ << std::endl;
1146 LogInfo(
"FastCalorimetry") <<
" GapLossProbability : " << crackPadSurvivalProbability_ << std::endl;
1152 rsp = CalorimeterParam.
getParameter<std::vector<double> >(
"RespCorrP");
1153 LogInfo(
"FastCalorimetry") <<
" RespCorrP (rsp) size " << rsp.size() << std::endl;
1155 if( rsp.size()%3 !=0 ) {
1157 <<
" RespCorrP size is wrong -> no corrections applied !!!"
1165 for(
unsigned i = 0;
i < rsp.size();
i += 3) {
1166 LogInfo(
"FastCalorimetry") <<
"i = " <<
i/3 <<
" p = " << rsp [
i]
1167 <<
" k_e(p) = " << rsp[
i+1]
1168 <<
" k_e(p) = " << rsp[
i+2] << std::endl;
1171 k_e.push_back (rsp[i+1]);
1172 k_h.push_back (rsp[i+2]);
1210 for (
int i = 0;
i < sizeP;
i++) {
1225 double y1 =
k_e[ip-1];
1226 double y2 =
k_e[ip];
1232 ecorr = (y1 + (y2 - y1) * (p - x1)/(x2 - x1));
1236 hcorr = (y1 + (y2 - y1) * (p - x1)/(x2 - x1));
1243 LogInfo(
"FastCalorimetry") <<
" p, ecorr, hcorr = " << p <<
" "
1250 std::map<CaloHitID,float>::const_iterator mapitr;
1251 std::map<CaloHitID,float>::const_iterator endmapitr=hitMap.end();
1254 endmapitr=hitMap.end();
1255 for(mapitr=hitMap.begin();mapitr!=endmapitr;++mapitr) {
1257 float energy = mapitr->second;
1261 CaloHitID current_id(mapitr->first.unitID(),mapitr->first.timeSlice(),trackID);
1263 EBMapping_.push_back(std::pair<CaloHitID,float>(current_id,energy));
1266 else if(onEcal==2) {
1268 endmapitr=hitMap.end();
1269 for(mapitr=hitMap.begin();mapitr!=endmapitr;++mapitr) {
1271 float energy = mapitr->second;
1275 CaloHitID current_id(mapitr->first.unitID(),mapitr->first.timeSlice(),trackID);
1277 EEMapping_.push_back(std::pair<CaloHitID,float>(current_id,energy));
1285 std::map<CaloHitID,float>::const_iterator mapitr;
1286 std::map<CaloHitID,float>::const_iterator endmapitr=hitMap.end();
1288 for(mapitr=hitMap.begin(); mapitr!=endmapitr; ++mapitr) {
1290 float energy = mapitr->second;
1293 float time = mapitr->first.timeSlice();
1318 HMapping_.push_back(std::pair<CaloHitID,float>(current_id,energy));
1324 std::map<CaloHitID,float>::const_iterator mapitr;
1325 std::map<CaloHitID,float>::const_iterator endmapitr=hitMap.end();
1327 for(mapitr=hitMap.begin();mapitr!=endmapitr;++mapitr) {
1329 float energy = mapitr->second;
1333 CaloHitID current_id(mapitr->first.unitID(),mapitr->first.timeSlice(),trackID);
1335 ESMapping_.push_back(std::pair<CaloHitID,float>(current_id,energy));
1376 unsigned size=muons.size();
1379 int id=muons[
i].trackId();
1380 if(
abs(muons[
i].
type())!=13)
continue;
1386 muons[
i].setTkPosition(itcheck->trackerSurfacePosition());
1387 muons[
i].setTkMomentum(itcheck->trackerSurfaceMomentum());
void setSpotEnergy(double e)
Set the spot energy.
double getHCALEnergyResponse(double e, int hit)
T getParameter(std::string const &) const
EventNumber_t event() const
T getUntrackedParameter(std::string const &, T const &) const
std::vector< double > rsp
std::vector< double > k_h
bool noEndVertex() const
no end vertex
RawParticle myElec
A few pointers to save time.
std::vector< std::pair< CaloHitID, float > > ESMapping_
float charge() const
charge
std::vector< PCaloHit > PCaloHitContainer
const ECALProperties * ecalProperties(int onEcal) const
ECAL properties.
const RawParticle & vfcalEntrance() const
The particle at VFCAL entrance.
void updateHCAL(const std::map< CaloHitID, float > &hitMap, int trackID=0, float corr=1.0)
GflashPiKShowerProfile * thePiKProfile
MonitorElement * book1D(const char *name, const char *title, int nchX, double lowX, double highX)
Book 1D histogram.
double pulledPadSurvivalProbability_
std::vector< double > timeShiftHO_
void updatePreshower(const std::map< CaloHitID, float > &hitMap, int trackID=0, float corr=1.0)
double radLenIncm() const
Radiation length in cm.
GflashTrajectory * getHelix()
MaterialEffects * theMuonEcalEffects
double crackPadSurvivalProbability_
MaterialEffects * theMuonHcalEffects
const XYZTLorentzVector & momentum() const
Temporary (until move of SimTrack to Mathcore) - No! Actually very useful.
void setCrackPadSurvivalProbability(double val)
GflashHadronShowerProfile * theProfile
const RawParticle & layer1Entrance() const
The particle at Preshower Layer 1.
bool compute()
Compute the shower longitudinal and lateral development.
void setPreshower(PreshowerHitMaker *const myPresh)
set the preshower address
void loadFromPreshower(edm::PCaloHitContainer &c) const
void updateECAL(const std::map< CaloHitID, float > &hitMap, int onEcal, int trackID=0, float corr=1.0)
const CaloSubdetectorGeometry * getHcalGeometry() const
void readParameters(const edm::ParameterSet &fastCalo)
const std::map< CaloHitID, float > & getHits()
const PreshowerLayer1Properties * layer1Properties(int onLayer1) const
Preshower Layer1 properties.
void HDShowerSimulation(const FSimTrack &myTrack)
Hadronic Shower Simulation.
static EEDetId unhashIndex(int hi)
void find(edm::Handle< EcalRecHitCollection > &hits, DetId thisDet, std::vector< EcalRecHitCollection::const_iterator > &hit, bool debug=false)
void MuonMipSimulation(const FSimTrack &myTrack)
std::vector< double > timeShiftHF_
std::vector< double > p_knots
void compute()
Compute the shower longitudinal and lateral development.
std::vector< std::pair< CaloHitID, float > > EBMapping_
virtual const CaloCellGeometry * getGeometry(const DetId &id) const
Get the cell geometry of a given detector id. Should return false if not found.
std::vector< FSimTrack > muonSimTracks
uint32_t rawId() const
get the raw id
const RandomEngine * random
U second(std::pair< T, U > const &p)
const LandauFluctuationGenerator * aLandauGenerator
std::vector< double > samplingHF_
const std::map< CaloHitID, float > & getHits()
bool compute()
Compute the shower longitudinal and lateral development.
void setRadiusFactor(double r)
int depth() const
get the tower depth
GflashAntiProtonShowerProfile * theAntiProtonProfile
math::XYZVector XYZVector
GflashShowino * getGflashShowino()
GflashProtonShowerProfile * theProtonProfile
const PreshowerLayer2Properties * layer2Properties(int onLayer2) const
Preshower Layer2 properties.
const T & max(const T &a, const T &b)
double getPathLengthAtShower()
virtual void loadParameters()
void setTrackParameters(const XYZNormal &normal, double X0depthoffset, const FSimTrack &theTrack)
void loadFromEcalEndcap(edm::PCaloHitContainer &c) const
const XYZTLorentzVector & deltaMom() const
Returns the actual energy lost.
std::vector< double > radiusPreshowerCorrections_
const HCALProperties * hcalProperties(int onHcal) const
HCAL properties.
const RawParticle & ecalEntrance() const
The particle at ECAL entrance.
std::vector< double > theTailIntervals_
std::vector< double > samplingHBHE_
int subdetId() const
get the contents of the subdetector field (not cast into any detector's numbering enum) ...
void loadMuonSimTracks(edm::SimTrackContainer &m) const
unsigned int nTracks() const
Number of tracks.
HCALResponse * myHDResponse_
CaloGeometryHelper * myCalorimeter_
std::vector< double > timeShiftHB_
int ietaAbs() const
get the absolute value of the cell ieta
const double intLength[kNumberCalorimeter]
std::vector< double > theCoreIntervals_
void getGflashTrajectoryPoint(GflashTrajectoryPoint &point, double s) const
edm::EventID id() const
Method to return the EventId.
const XYZTLorentzVector & vertex() const
the vertex fourvector
void hadronicParameterization()
void loadFromHcal(edm::PCaloHitContainer &c) const
void updateState(ParticlePropagator &myTrack, double radlen)
Compute the material effect (calls the sub class)
void EMShowerSimulation(const FSimTrack &myTrack)
GammaFunctionGenerator * aGammaGenerator
XYZVectorD XYZVector
spatial vector with cartesian internal representation
CLHEP::Hep3Vector Gflash3Vector
std::vector< double > mipValues_
static std::vector< std::pair< int, float > > myZero_
bool null() const
is this a null id ?
const std::map< CaloHitID, float > & getHits()
not been done.
std::vector< std::pair< CaloHitID, float > > EEMapping_
CalorimeterNumber getCalorimeterNumber(const Gflash3Vector position)
void setTkPosition(const math::XYZVectorD &pos)
double flatShoot(double xmin=0.0, double xmax=1.0) const
double getPathLengthOnEcal()
static EBDetId unhashIndex(int hi)
get a DetId from a compact index for arrays
int type() const
particle type (HEP PDT convension)
std::vector< unsigned int > evtsToDebug_
int id() const
the index in FBaseSimEvent and other vectors
bool preshowerPresent() const
void setPulledPadSurvivalProbability(double val)
const RawParticle & layer2Entrance() const
The particle at Preshower Layer 2.
std::vector< double > k_e
double responseHCAL(int _mip, double energy, double eta, int partype)
std::vector< GflashHit > & getGflashHitList()
void setTkMomentum(const math::XYZTLorentzVectorD &mom)
const RawParticle & hcalEntrance() const
The particle at HCAL entrance.
std::vector< std::pair< CaloHitID, float > > HMapping_
void setMipEnergy(double e1, double e2)
std::vector< double > samplingHO_
void setPreshowerPresent(bool ps)
DetId getClosestCell(const XYZPoint &point, bool ecal, bool central) const
EnergyLossSimulator * energyLossSimulator() const
Return the Energy Loss engine.
MonitorElement * book2D(const char *name, const char *title, int nchX, double lowX, double highX, int nchY, double lowY, double highY)
Book 2D histogram.
bool addHit(double r, double phi, unsigned layer=0)
add the hit in the HCAL in local coordinates
const GlobalPoint & getPosition() const
Returns the position of reference for this cell.
HSParameters * myHSParameters_
std::vector< SimTrack > SimTrackContainer
tuple size
Write out results.
void setVertex(const XYZTLorentzVector &vtx)
set the vertex
void setCurrentFolder(const std::string &fullpath)
bool setDepth(double, bool inCm=false)
set the depth in X0 or Lambda0 units depending on showerType
void initialize(int showerType, double energy, double globalTime, double charge, Gflash3Vector &position, Gflash3Vector &momentum)
void reconstructHCAL(const FSimTrack &myTrack)
math::XYZTLorentzVector XYZTLorentzVector
void print() const
print the FBaseSimEvent in an intelligible way
void setHcal(HcalHitMaker *const myHcal)
set the HCAL address
void setGrid(EcalHitMaker *const myGrid)
set the grid address
std::vector< double > timeShiftHE_
FSimTrack & track(int id) const
Return track with given Id.
double getMaximumOfShower() const
get the depth of the centre of gravity of the shower(s)
void loadFromEcalBarrel(edm::PCaloHitContainer &c) const