CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
List of all members | Classes | Public Member Functions | Private Member Functions | Private Attributes
CSCEfficiency Class Reference

#include <CSCEfficiency.h>

Inheritance diagram for CSCEfficiency:
edm::EDFilter edm::ProducerBase edm::EDConsumerBase edm::ProductRegistryHelper

Classes

struct  ChamberHistos
 
struct  StationHistos
 

Public Member Functions

 CSCEfficiency (const edm::ParameterSet &pset)
 Constructor. More...
 
virtual ~CSCEfficiency ()
 Destructor. More...
 
- Public Member Functions inherited from edm::EDFilter
 EDFilter ()
 
virtual ~EDFilter ()
 
- Public Member Functions inherited from edm::ProducerBase
 ProducerBase ()
 
void registerProducts (ProducerBase *, ProductRegistry *, ModuleDescription const &)
 
std::function< void(BranchDescription
const &)> 
registrationCallback () const
 used by the fwk to register list of products More...
 
virtual ~ProducerBase ()
 
- Public Member Functions inherited from edm::EDConsumerBase
 EDConsumerBase ()
 
ProductHolderIndex indexFrom (EDGetToken, BranchType, TypeID const &) const
 
void itemsMayGet (BranchType, std::vector< ProductHolderIndex > &) const
 
void itemsToGet (BranchType, std::vector< ProductHolderIndex > &) const
 
void labelsForToken (EDGetToken iToken, Labels &oLabels) const
 
void updateLookup (BranchType iBranchType, ProductHolderIndexHelper const &)
 
virtual ~EDConsumerBase ()
 

Private Member Functions

bool applyTrigger (edm::Handle< edm::TriggerResults > &hltR, const edm::TriggerNames &triggerNames)
 
virtual void beginJob ()
 
void chamberCandidates (int station, int ring, float phi, std::vector< int > &coupleOfChambers)
 
bool checkLocal (double yLocal, double yBoundary, int station, int ring)
 
void chooseDirection (CLHEP::Hep3Vector &innerPosition, CLHEP::Hep3Vector &outerPosition)
 
bool efficienciesPerChamber (CSCDetId &id, const CSCChamber *cscChamber, FreeTrajectoryState &ftsChamber)
 
virtual void endJob ()
 
double extrapolate1D (double initPosition, double initDirection, double parameterOfTheLine)
 
void fillDigiInfo (edm::Handle< CSCALCTDigiCollection > &alcts, edm::Handle< CSCCLCTDigiCollection > &clcts, edm::Handle< CSCCorrelatedLCTDigiCollection > &correlatedlcts, edm::Handle< CSCWireDigiCollection > &wires, edm::Handle< CSCStripDigiCollection > &strips, edm::Handle< edm::PSimHitContainer > &simhits, edm::Handle< CSCRecHit2DCollection > &rechits, edm::Handle< CSCSegmentCollection > &segments, edm::ESHandle< CSCGeometry > &cscGeom)
 
void fillLCT_info (edm::Handle< CSCALCTDigiCollection > &alcts, edm::Handle< CSCCLCTDigiCollection > &clcts, edm::Handle< CSCCorrelatedLCTDigiCollection > &correlatedlcts)
 
void fillRechitsSegments_info (edm::Handle< CSCRecHit2DCollection > &rechits, edm::Handle< CSCSegmentCollection > &segments, edm::ESHandle< CSCGeometry > &cscGeom)
 
void fillSimhit_info (edm::Handle< edm::PSimHitContainer > &simHits)
 
void fillStrips_info (edm::Handle< CSCStripDigiCollection > &strips)
 
void fillWG_info (edm::Handle< CSCWireDigiCollection > &wires, edm::ESHandle< CSCGeometry > &cscGeom)
 
virtual bool filter (edm::Event &event, const edm::EventSetup &eventSetup)
 
FreeTrajectoryState getFromCLHEP (const CLHEP::Hep3Vector &p3, const CLHEP::Hep3Vector &r3, int charge, const AlgebraicSymMatrix66 &cov, const MagneticField *field)
 
void getFromFTS (const FreeTrajectoryState &fts, CLHEP::Hep3Vector &p3, CLHEP::Hep3Vector &r3, int &charge, AlgebraicSymMatrix66 &cov)
 
bool inSensitiveLocalRegion (double xLocal, double yLocal, int station, int ring)
 
void linearExtrapolation (GlobalPoint initialPosition, GlobalVector initialDirection, float zSurface, std::vector< float > &posZY)
 
double lineParameter (double initZPosition, double destZPosition, double initZDirection)
 
TrajectoryStateOnSurface propagate (FreeTrajectoryState &ftsStart, const BoundPlane &bp)
 
const Propagatorpropagator (std::string propagatorName) const
 
bool recHitSegment_Efficiencies (CSCDetId &cscDetId, const CSCChamber *cscChamber, FreeTrajectoryState &ftsChamber)
 
bool recSimHitEfficiency (CSCDetId &id, FreeTrajectoryState &ftsChamber)
 
void returnTypes (CSCDetId &id, int &ec, int &st, int &rg, int &ch, int &secondRing)
 
void ringCandidates (int station, float absEta, std::map< std::string, bool > &chamberTypes)
 
bool stripWire_Efficiencies (CSCDetId &cscDetId, FreeTrajectoryState &ftsChamber)
 

Private Attributes

edm::InputTag alctDigiTag_
 
TH1F * ALCTPerEvent
 
bool allALCT [2][4][4][NumCh]
 
bool allCLCT [2][4][4][NumCh]
 
bool allCorrLCT [2][4][4][NumCh]
 
std::vector< std::pair
< LocalPoint, bool > > 
allRechits [2][4][4][NumCh][6]
 
std::vector< std::pair
< LocalPoint, LocalVector > > 
allSegments [2][4][4][NumCh]
 
std::vector< std::pair
< LocalPoint, int > > 
allSimhits [2][4][4][NumCh][6]
 
std::vector< std::pair< int,
float > > 
allStrips [2][4][4][NumCh][6]
 
std::vector< std::pair
< std::pair< int, float >, int > > 
allWG [2][4][4][NumCh][6]
 
bool alongZ
 
bool andOr
 
bool applyIPangleCuts
 
struct CSCEfficiency::ChamberHistos ChHist [2][4][3][LastCh-FirstCh+1]
 
edm::InputTag clctDigiTag_
 
TH1F * CLCTPerEvent
 
edm::InputTag corrlctDigiTag_
 
TH1F * DataFlow
 
double distanceFromDeadZone
 
bool emptyChambers [2][4][4][NumCh]
 
bool getAbsoluteEfficiency
 
edm::InputTag hlTriggerResults_
 
bool isBeamdata
 
bool isData
 
bool isIPdata
 
double local_DX_DZ_Max
 
double local_DY_DZ_Max
 
double local_DY_DZ_Min
 
bool magField
 
double maxNormChi2
 
double maxP
 
double minP
 
unsigned int minTrackHits
 
std::vector< std::string > myTriggers
 
int nEventsAnalyzed
 
bool passTheEvent
 
std::vector< int > pointToTriggers
 
bool printalot
 
unsigned int printout_NEvents
 
edm::InputTag rechitDigiTag_
 
TH1F * recHitsPerEvent
 
std::string rootFileName
 
edm::InputTag segmentDigiTag_
 
TH1F * segmentsPerEvent
 
edm::InputTag simHitTag
 
struct CSCEfficiency::StationHistos StHist [2][4]
 
edm::InputTag stripDigiTag_
 
TFile * theFile
 
MuonServiceProxytheService
 
edm::InputTag tracksTag
 
TH1F * TriggersFired
 
bool useDigis
 
bool useTrigger
 
edm::InputTag wireDigiTag_
 

Additional Inherited Members

- Public Types inherited from edm::EDFilter
typedef EDFilter ModuleType
 
typedef WorkerT< EDFilterWorkerType
 
- Public Types inherited from edm::ProducerBase
typedef
ProductRegistryHelper::TypeLabelList 
TypeLabelList
 
- Static Public Member Functions inherited from edm::EDFilter
static const std::string & baseType ()
 
static void fillDescriptions (ConfigurationDescriptions &descriptions)
 
static void prevalidate (ConfigurationDescriptions &)
 
- Protected Member Functions inherited from edm::EDFilter
CurrentProcessingContext const * currentContext () const
 
- Protected Member Functions inherited from edm::ProducerBase
void callWhenNewProductsRegistered (std::function< void(BranchDescription const &)> const &func)
 
- Protected Member Functions inherited from edm::EDConsumerBase
template<typename ProductType , BranchType B = InEvent>
EDGetTokenT< ProductType > consumes (edm::InputTag const &tag)
 
EDGetToken consumes (const TypeToGet &id, edm::InputTag const &tag)
 
template<BranchType B>
EDGetToken consumes (TypeToGet const &id, edm::InputTag const &tag)
 
ConsumesCollector consumesCollector ()
 Use a ConsumesCollector to gather consumes information from helper functions. More...
 
template<typename ProductType , BranchType B = InEvent>
void consumesMany ()
 
void consumesMany (const TypeToGet &id)
 
template<BranchType B>
void consumesMany (const TypeToGet &id)
 
template<typename ProductType , BranchType B = InEvent>
EDGetTokenT< ProductType > mayConsume (edm::InputTag const &tag)
 
EDGetToken mayConsume (const TypeToGet &id, edm::InputTag const &tag)
 
template<BranchType B>
EDGetToken mayConsume (const TypeToGet &id, edm::InputTag const &tag)
 

Detailed Description

Efficiency calculations Stoyan Stoynev, Northwestern University

Definition at line 116 of file CSCEfficiency.h.

Constructor & Destructor Documentation

CSCEfficiency::CSCEfficiency ( const edm::ParameterSet pset)

Constructor.

Definition at line 1627 of file CSCEfficiency.cc.

References CommPDSkim_cfg::andOr, FirstCh, edm::ParameterSet::getParameter(), edm::ParameterSet::getUntrackedParameter(), alignBH_cfg::minP, MuonServiceProxy_cff::MuonServiceProxy, NumCh, dtT0Analyzer_cfg::rootFileName, AlCaHLTBitMon_QueryRunRegistry::string, and interactiveExample::theFile.

1627  {
1628 
1629  // const float Xmin = -70;
1630  //const float Xmax = 70;
1631  //const int nXbins = int(4.*(Xmax - Xmin));
1632  const float Ymin = -165;
1633  const float Ymax = 165;
1634  const int nYbins = int((Ymax - Ymin)/2);
1635  const float Layer_min = -0.5;
1636  const float Layer_max = 9.5;
1637  const int nLayer_bins = int(Layer_max - Layer_min);
1638  //
1639 
1640  //---- Get the input parameters
1641  printout_NEvents = pset.getUntrackedParameter<unsigned int>("printout_NEvents",0);
1642  rootFileName = pset.getUntrackedParameter<string>("rootFileName","cscHists.root");
1643 
1644  isData = pset.getUntrackedParameter<bool>("runOnData",true);//
1645  isIPdata = pset.getUntrackedParameter<bool>("IPdata",false);//
1646  isBeamdata = pset.getUntrackedParameter<bool>("Beamdata",false);//
1647  getAbsoluteEfficiency = pset.getUntrackedParameter<bool>("getAbsoluteEfficiency",true);//
1648  useDigis = pset.getUntrackedParameter<bool>("useDigis", true);//
1649  distanceFromDeadZone = pset.getUntrackedParameter<double>("distanceFromDeadZone", 10.);//
1650  minP = pset.getUntrackedParameter<double>("minP",20.);//
1651  maxP = pset.getUntrackedParameter<double>("maxP",100.);//
1652  maxNormChi2 = pset.getUntrackedParameter<double>("maxNormChi2", 3.);//
1653  minTrackHits = pset.getUntrackedParameter<unsigned int>("minTrackHits",10);//
1654 
1655  applyIPangleCuts = pset.getUntrackedParameter<bool>("applyIPangleCuts", false);//
1656  local_DY_DZ_Max = pset.getUntrackedParameter<double>("local_DY_DZ_Max",-0.1);//
1657  local_DY_DZ_Min = pset.getUntrackedParameter<double>("local_DY_DZ_Min",-0.8);//
1658  local_DX_DZ_Max = pset.getUntrackedParameter<double>("local_DX_DZ_Max",0.2);//
1659 
1660  alctDigiTag_ = pset.getParameter<edm::InputTag>("alctDigiTag") ;
1661  clctDigiTag_ = pset.getParameter<edm::InputTag>("clctDigiTag") ;
1662  corrlctDigiTag_ = pset.getParameter<edm::InputTag>("corrlctDigiTag") ;
1663  stripDigiTag_ = pset.getParameter<edm::InputTag>("stripDigiTag") ;
1664  wireDigiTag_ = pset.getParameter<edm::InputTag>("wireDigiTag") ;
1665  rechitDigiTag_ = pset.getParameter<edm::InputTag>("rechitDigiTag") ;
1666  segmentDigiTag_ = pset.getParameter<edm::InputTag>("segmentDigiTag") ;
1667  simHitTag = pset.getParameter<edm::InputTag>("simHitTag");
1668  tracksTag = pset.getParameter< edm::InputTag >("tracksTag");
1669 
1670  ParameterSet serviceParameters = pset.getParameter<ParameterSet>("ServiceParameters");
1671  // maybe use the service for getting magnetic field, propagators, etc. ...
1672  theService = new MuonServiceProxy(serviceParameters);
1673 
1674  // Trigger
1675  useTrigger = pset.getUntrackedParameter<bool>("useTrigger", false);
1676  hlTriggerResults_ = pset.getParameter<edm::InputTag> ("HLTriggerResults");
1677  myTriggers = pset.getParameter<std::vector <std::string> >("myTriggers");
1678  andOr = pset.getUntrackedParameter<bool>("andOr");
1679  pointToTriggers.clear();
1680 
1681 
1682  //---- set counter to zero
1683  nEventsAnalyzed = 0;
1684  //---- set presence of magnetic field
1685  magField = true;
1686  //
1687  std::string Path = "AllChambers/";
1688  std::string FullName;
1689  //---- File with output histograms
1690  theFile = new TFile(rootFileName.c_str(), "RECREATE");
1691  theFile->cd();
1692  //---- Book histograms for the analysis
1693  char SpecName[50];
1694 
1695  sprintf(SpecName,"DataFlow");
1696  DataFlow =
1697  new TH1F(SpecName,"Data flow;condition number;entries",40,-0.5,39.5);
1698  //
1699  sprintf(SpecName,"TriggersFired");
1700  TriggersFired =
1701  new TH1F(SpecName,"Triggers fired;trigger number;entries",140,-0.5,139.5);
1702  //
1703  int Chan = 50;
1704  float minChan = -0.5;
1705  float maxChan = 49.5;
1706  //
1707  sprintf(SpecName,"ALCTPerEvent");
1708  ALCTPerEvent = new TH1F(SpecName,"ALCTs per event;N digis;entries",Chan,minChan,maxChan);
1709  //
1710  sprintf(SpecName,"CLCTPerEvent");
1711  CLCTPerEvent = new TH1F(SpecName,"CLCTs per event;N digis;entries",Chan,minChan,maxChan);
1712  //
1713  sprintf(SpecName,"recHitsPerEvent");
1714  recHitsPerEvent = new TH1F(SpecName,"RecHits per event;N digis;entries",150,-0.5,149.5);
1715  //
1716  sprintf(SpecName,"segmentsPerEvent");
1717  segmentsPerEvent = new TH1F(SpecName,"segments per event;N digis;entries",Chan,minChan,maxChan);
1718  //
1719  //---- Book groups of histograms (for any chamber)
1720 
1721  map<std::string,bool>::iterator iter;
1722  for(int ec = 0;ec<2;++ec){
1723  for(int st = 0;st<4;++st){
1724  theFile->cd();
1725  sprintf(SpecName,"Stations__E%d_S%d",ec+1, st+1);
1726  theFile->mkdir(SpecName);
1727  theFile->cd(SpecName);
1728 
1729  //
1730  sprintf(SpecName,"segmentChi2_ndf_St%d",st+1);
1731  StHist[ec][st].segmentChi2_ndf =
1732  new TH1F(SpecName,"Chi2/ndf of a segment;chi2/ndf;entries",100,0.,20.);
1733  //
1734  sprintf(SpecName,"hitsInSegment_St%d",st+1);
1735  StHist[ec][st].hitsInSegment =
1736  new TH1F(SpecName,"Number of hits in a segment;nHits;entries",7,-0.5,6.5);
1737  //
1738  Chan = 170;
1739  minChan = 0.85;
1740  maxChan = 2.55;
1741  //
1742  sprintf(SpecName,"AllSegments_eta_St%d",st+1);
1743  StHist[ec][st].AllSegments_eta =
1744  new TH1F(SpecName,"All segments in eta;eta;entries",Chan,minChan,maxChan);
1745  //
1746  sprintf(SpecName,"EfficientSegments_eta_St%d",st+1);
1747  StHist[ec][st].EfficientSegments_eta =
1748  new TH1F(SpecName,"Efficient segments in eta;eta;entries",Chan,minChan,maxChan);
1749  //
1750  sprintf(SpecName,"ResidualSegments_St%d",st+1);
1751  StHist[ec][st].ResidualSegments =
1752  new TH1F(SpecName,"Residual (segments);residual,cm;entries",75,0.,15.);
1753  //
1754  Chan = 200;
1755  minChan = -800.;
1756  maxChan = 800.;
1757  int Chan2 = 200;
1758  float minChan2 = -800.;
1759  float maxChan2 = 800.;
1760 
1761  sprintf(SpecName,"EfficientSegments_XY_St%d",st+1);
1762  StHist[ec][st].EfficientSegments_XY = new TH2F(SpecName,"Efficient segments in XY;X;Y",
1763  Chan,minChan,maxChan,Chan2,minChan2,maxChan2);
1764  sprintf(SpecName,"InefficientSegments_XY_St%d",st+1);
1765  StHist[ec][st].InefficientSegments_XY = new TH2F(SpecName,"Inefficient segments in XY;X;Y",
1766  Chan,minChan,maxChan,Chan2,minChan2,maxChan2);
1767  //
1768  Chan = 80;
1769  minChan = 0;
1770  maxChan = 3.2;
1771  sprintf(SpecName,"EfficientALCT_momTheta_St%d",st+1);
1772  StHist[ec][st].EfficientALCT_momTheta = new TH1F(SpecName,"Efficient ALCT in theta (momentum);theta, rad;entries",
1773  Chan,minChan,maxChan);
1774  //
1775  sprintf(SpecName,"InefficientALCT_momTheta_St%d",st+1);
1776  StHist[ec][st].InefficientALCT_momTheta = new TH1F(SpecName,"Inefficient ALCT in theta (momentum);theta, rad;entries",
1777  Chan,minChan,maxChan);
1778  //
1779  Chan = 160;
1780  minChan = -3.2;
1781  maxChan = 3.2;
1782  sprintf(SpecName,"EfficientCLCT_momPhi_St%d",st+1);
1783  StHist[ec][st].EfficientCLCT_momPhi = new TH1F(SpecName,"Efficient CLCT in phi (momentum);phi, rad;entries",
1784  Chan,minChan,maxChan);
1785  //
1786  sprintf(SpecName,"InefficientCLCT_momPhi_St%d",st+1);
1787  StHist[ec][st].InefficientCLCT_momPhi = new TH1F(SpecName,"Inefficient CLCT in phi (momentum);phi, rad;entries",
1788  Chan,minChan,maxChan);
1789  //
1790  theFile->cd();
1791  for(int rg = 0;rg<3;++rg){
1792  if(0!=st && rg>1){
1793  continue;
1794  }
1795  else if(1==rg && 3==st){
1796  continue;
1797  }
1798  for(int iChamber=FirstCh;iChamber<FirstCh+NumCh;iChamber++){
1799  if(0!=st && 0==rg && iChamber >18){
1800  continue;
1801  }
1802  theFile->cd();
1803  sprintf(SpecName,"Chambers__E%d_S%d_R%d_Chamber_%d",ec+1, st+1, rg+1,iChamber);
1804  theFile->mkdir(SpecName);
1805  theFile->cd(SpecName);
1806  //
1807 
1808  sprintf(SpecName,"EfficientRechits_inSegment_Ch%d",iChamber);
1809  ChHist[ec][st][rg][iChamber-FirstCh].EfficientRechits_inSegment =
1810  new TH1F(SpecName,"Existing RecHit given a segment;layers (1-6);entries",nLayer_bins,Layer_min,Layer_max);
1811  //
1812  sprintf(SpecName,"InefficientSingleHits_Ch%d",iChamber);
1813  ChHist[ec][st][rg][iChamber-FirstCh].InefficientSingleHits =
1814  new TH1F(SpecName,"Single RecHits not in the segment;layers (1-6);entries ",nLayer_bins,Layer_min,Layer_max);
1815  //
1816  sprintf(SpecName,"AllSingleHits_Ch%d",iChamber);
1817  ChHist[ec][st][rg][iChamber-FirstCh].AllSingleHits =
1818  new TH1F(SpecName,"Single RecHits given a segment; layers (1-6);entries",nLayer_bins,Layer_min,Layer_max);
1819  //
1820  sprintf(SpecName,"digiAppearanceCount_Ch%d",iChamber);
1821  ChHist[ec][st][rg][iChamber-FirstCh].digiAppearanceCount =
1822  new TH1F(SpecName,"Digi appearance (no-yes): segment(0,1), ALCT(2,3), CLCT(4,5), CorrLCT(6,7); digi type;entries",
1823  8,-0.5,7.5);
1824  //
1825  Chan = 100;
1826  minChan = -1.1;
1827  maxChan = 0.9;
1828  sprintf(SpecName,"EfficientALCT_dydz_Ch%d",iChamber);
1829  ChHist[ec][st][rg][iChamber-FirstCh].EfficientALCT_dydz =
1830  new TH1F(SpecName,"Efficient ALCT; local dy/dz (ME 3 and 4 flipped);entries",
1831  Chan, minChan, maxChan);
1832  //
1833  sprintf(SpecName,"InefficientALCT_dydz_Ch%d",iChamber);
1834  ChHist[ec][st][rg][iChamber-FirstCh].InefficientALCT_dydz =
1835  new TH1F(SpecName,"Inefficient ALCT; local dy/dz (ME 3 and 4 flipped);entries",
1836  Chan, minChan, maxChan);
1837  //
1838  Chan = 100;
1839  minChan = -1.;
1840  maxChan = 1.0;
1841  sprintf(SpecName,"EfficientCLCT_dxdz_Ch%d",iChamber);
1842  ChHist[ec][st][rg][iChamber-FirstCh].EfficientCLCT_dxdz =
1843  new TH1F(SpecName,"Efficient CLCT; local dxdz;entries",
1844  Chan, minChan, maxChan);
1845  //
1846  sprintf(SpecName,"InefficientCLCT_dxdz_Ch%d",iChamber);
1847  ChHist[ec][st][rg][iChamber-FirstCh].InefficientCLCT_dxdz =
1848  new TH1F(SpecName,"Inefficient CLCT; local dxdz;entries",
1849  Chan, minChan, maxChan);
1850  //
1851  sprintf(SpecName,"EfficientRechits_good_Ch%d",iChamber);
1852  ChHist[ec][st][rg][iChamber-FirstCh].EfficientRechits_good =
1853  new TH1F(SpecName,"Existing RecHit - sensitive area only;layers (1-6);entries",nLayer_bins,Layer_min,Layer_max);
1854  //
1855  sprintf(SpecName,"EfficientStrips_Ch%d",iChamber);
1856  ChHist[ec][st][rg][iChamber-FirstCh].EfficientStrips =
1857  new TH1F(SpecName,"Existing strip;layer (1-6); entries",nLayer_bins,Layer_min,Layer_max);
1858  //
1859  sprintf(SpecName,"EfficientWireGroups_Ch%d",iChamber);
1860  ChHist[ec][st][rg][iChamber-FirstCh].EfficientWireGroups =
1861  new TH1F(SpecName,"Existing WireGroups;layer (1-6); entries ",nLayer_bins,Layer_min,Layer_max);
1862  //
1863  sprintf(SpecName,"StripWiresCorrelations_Ch%d",iChamber);
1864  ChHist[ec][st][rg][iChamber-FirstCh].StripWiresCorrelations =
1865  new TH1F(SpecName,"StripWire correlations;; entries ",5,0.5,5.5);
1866  //
1867  Chan = 80;
1868  minChan = 0;
1869  maxChan = 3.2;
1870  sprintf(SpecName,"NoWires_momTheta_Ch%d",iChamber);
1871  ChHist[ec][st][rg][iChamber-FirstCh].NoWires_momTheta =
1872  new TH1F(SpecName,"No wires (all strips present) - in theta (momentum);theta, rad;entries",
1873  Chan,minChan,maxChan);
1874  //
1875  Chan = 160;
1876  minChan = -3.2;
1877  maxChan = 3.2;
1878  sprintf(SpecName,"NoStrips_momPhi_Ch%d",iChamber);
1879  ChHist[ec][st][rg][iChamber-FirstCh].NoStrips_momPhi =
1880  new TH1F(SpecName,"No strips (all wires present) - in phi (momentum);phi, rad;entries",
1881  Chan,minChan,maxChan);
1882  //
1883  for(int iLayer=0; iLayer<6;iLayer++){
1884  sprintf(SpecName,"Y_InefficientRecHits_inSegment_Ch%d_L%d",iChamber,iLayer);
1885  ChHist[ec][st][rg][iChamber-FirstCh].Y_InefficientRecHits_inSegment.push_back
1886  (new TH1F(SpecName,"Missing RecHit/layer in a segment (local system, whole chamber);Y, cm; entries",
1887  nYbins,Ymin, Ymax));
1888  //
1889  sprintf(SpecName,"Y_EfficientRecHits_inSegment_Ch%d_L%d",iChamber,iLayer);
1890  ChHist[ec][st][rg][iChamber-FirstCh].Y_EfficientRecHits_inSegment.push_back
1891  (new TH1F(SpecName,"Efficient (extrapolated from the segment) RecHit/layer in a segment (local system, whole chamber);Y, cm; entries",
1892  nYbins,Ymin, Ymax));
1893  //
1894  Chan = 200;
1895  minChan = -0.2;
1896  maxChan = 0.2;
1897  sprintf(SpecName,"Phi_InefficientRecHits_inSegment_Ch%d_L%d",iChamber,iLayer);
1898  ChHist[ec][st][rg][iChamber-FirstCh].Phi_InefficientRecHits_inSegment.push_back
1899  (new TH1F(SpecName,"Missing RecHit/layer in a segment (local system, whole chamber);Phi, rad; entries",
1900  Chan, minChan, maxChan));
1901  //
1902  sprintf(SpecName,"Phi_EfficientRecHits_inSegment_Ch%d_L%d",iChamber,iLayer);
1903  ChHist[ec][st][rg][iChamber-FirstCh].Phi_EfficientRecHits_inSegment.push_back
1904  (new TH1F(SpecName,"Efficient (extrapolated from the segment) in a segment (local system, whole chamber);Phi, rad; entries",
1905  Chan, minChan, maxChan));
1906 
1907  }
1908  //
1909  sprintf(SpecName,"Sim_Rechits_Ch%d",iChamber);
1910  ChHist[ec][st][rg][iChamber-FirstCh].SimRechits =
1911  new TH1F(SpecName,"Existing RecHit (Sim);layers (1-6);entries",nLayer_bins,Layer_min,Layer_max);
1912  //
1913  sprintf(SpecName,"Sim_Simhits_Ch%d",iChamber);
1914  ChHist[ec][st][rg][iChamber-FirstCh].SimSimhits =
1915  new TH1F(SpecName,"Existing SimHit (Sim);layers (1-6);entries",nLayer_bins,Layer_min,Layer_max);
1916  //
1917  /*
1918  sprintf(SpecName,"Sim_Rechits_each_Ch%d",iChamber);
1919  ChHist[ec][st][rg][iChamber-FirstCh].SimRechits_each =
1920  new TH1F(SpecName,"Existing RecHit (Sim), each;layers (1-6);entries",nLayer_bins,Layer_min,Layer_max);
1921  //
1922  sprintf(SpecName,"Sim_Simhits_each_Ch%d",iChamber);
1923  ChHist[ec][st][rg][iChamber-FirstCh].SimSimhits_each =
1924  new TH1F(SpecName,"Existing SimHit (Sim), each;layers (1-6);entries",nLayer_bins,Layer_min,Layer_max);
1925  */
1926  theFile->cd();
1927  }
1928  }
1929  }
1930  }
1931 }
edm::InputTag corrlctDigiTag_
T getParameter(std::string const &) const
struct CSCEfficiency::StationHistos StHist[2][4]
T getUntrackedParameter(std::string const &, T const &) const
std::string rootFileName
edm::InputTag segmentDigiTag_
struct CSCEfficiency::ChamberHistos ChHist[2][4][3][LastCh-FirstCh+1]
TH1F * CLCTPerEvent
std::vector< TH1F * > Y_InefficientRecHits_inSegment
double local_DX_DZ_Max
bool getAbsoluteEfficiency
std::vector< std::string > myTriggers
std::vector< TH1F * > Phi_InefficientRecHits_inSegment
double local_DY_DZ_Max
std::vector< TH1F * > Y_EfficientRecHits_inSegment
MuonServiceProxy * theService
Definition: Path.h:39
edm::InputTag rechitDigiTag_
edm::InputTag hlTriggerResults_
double distanceFromDeadZone
std::vector< TH1F * > Phi_EfficientRecHits_inSegment
double maxNormChi2
double local_DY_DZ_Min
#define FirstCh
edm::InputTag tracksTag
unsigned int printout_NEvents
TH1F * TriggersFired
edm::InputTag clctDigiTag_
TH1F * segmentsPerEvent
TH1F * recHitsPerEvent
edm::InputTag simHitTag
std::vector< int > pointToTriggers
TH1F * ALCTPerEvent
edm::InputTag stripDigiTag_
#define NumCh
edm::InputTag alctDigiTag_
edm::InputTag wireDigiTag_
unsigned int minTrackHits
CSCEfficiency::~CSCEfficiency ( )
virtual

Destructor.

Definition at line 1934 of file CSCEfficiency.cc.

References gather_cfg::cout, FirstCh, NumCh, and interactiveExample::theFile.

1934  {
1935  if (theService) delete theService;
1936  // Write the histos to a file
1937  theFile->cd();
1938  //
1939  char SpecName[20];
1940  std::vector<float> bins, Efficiency, EffError;
1941  std::vector<float> eff(2);
1942 
1943  //---- loop over chambers
1944  std::map <std::string, bool> chamberTypes;
1945  chamberTypes["ME11"] = false;
1946  chamberTypes["ME12"] = false;
1947  chamberTypes["ME13"] = false;
1948  chamberTypes["ME21"] = false;
1949  chamberTypes["ME22"] = false;
1950  chamberTypes["ME31"] = false;
1951  chamberTypes["ME32"] = false;
1952  chamberTypes["ME41"] = false;
1953 
1954  map<std::string,bool>::iterator iter;
1955  std::cout<<" Writing proper histogram structure (patience)..."<<std::endl;
1956  for(int ec = 0;ec<2;++ec){
1957  for(int st = 0;st<4;++st){
1958  sprintf(SpecName,"Stations__E%d_S%d",ec+1, st+1);
1959  theFile->cd(SpecName);
1960  StHist[ec][st].segmentChi2_ndf->Write();
1961  StHist[ec][st].hitsInSegment->Write();
1962  StHist[ec][st].AllSegments_eta->Write();
1963  StHist[ec][st].EfficientSegments_eta->Write();
1964  StHist[ec][st].ResidualSegments->Write();
1965  StHist[ec][st].EfficientSegments_XY->Write();
1966  StHist[ec][st].InefficientSegments_XY->Write();
1967  StHist[ec][st].EfficientALCT_momTheta->Write();
1968  StHist[ec][st].InefficientALCT_momTheta->Write();
1969  StHist[ec][st].EfficientCLCT_momPhi->Write();
1970  StHist[ec][st].InefficientCLCT_momPhi->Write();
1971  for(int rg = 0;rg<3;++rg){
1972  if(0!=st && rg>1){
1973  continue;
1974  }
1975  else if(1==rg && 3==st){
1976  continue;
1977  }
1978  for(int iChamber=FirstCh;iChamber<FirstCh+NumCh;iChamber++){
1979  if(0!=st && 0==rg && iChamber >18){
1980  continue;
1981  }
1982  sprintf(SpecName,"Chambers__E%d_S%d_R%d_Chamber_%d",ec+1, st+1, rg+1,iChamber);
1983  theFile->cd(SpecName);
1984 
1985  ChHist[ec][st][rg][iChamber-FirstCh].EfficientRechits_inSegment->Write();
1986  ChHist[ec][st][rg][iChamber-FirstCh].AllSingleHits->Write();
1987  ChHist[ec][st][rg][iChamber-FirstCh].digiAppearanceCount->Write();
1988  ChHist[ec][st][rg][iChamber-FirstCh].EfficientALCT_dydz->Write();
1989  ChHist[ec][st][rg][iChamber-FirstCh].InefficientALCT_dydz->Write();
1990  ChHist[ec][st][rg][iChamber-FirstCh].EfficientCLCT_dxdz->Write();
1991  ChHist[ec][st][rg][iChamber-FirstCh].InefficientCLCT_dxdz->Write();
1992  ChHist[ec][st][rg][iChamber-FirstCh].InefficientSingleHits->Write();
1993  ChHist[ec][st][rg][iChamber-FirstCh].EfficientRechits_good->Write();
1994  ChHist[ec][st][rg][iChamber-FirstCh].EfficientStrips->Write();
1995  ChHist[ec][st][rg][iChamber-FirstCh].StripWiresCorrelations->Write();
1996  ChHist[ec][st][rg][iChamber-FirstCh].NoWires_momTheta->Write();
1997  ChHist[ec][st][rg][iChamber-FirstCh].NoStrips_momPhi->Write();
1998  ChHist[ec][st][rg][iChamber-FirstCh].EfficientWireGroups->Write();
1999  for(unsigned int iLayer = 0; iLayer< 6; iLayer++){
2000  ChHist[ec][st][rg][iChamber-FirstCh].Y_InefficientRecHits_inSegment[iLayer]->Write();
2001  ChHist[ec][st][rg][iChamber-FirstCh].Y_EfficientRecHits_inSegment[iLayer]->Write();
2002  ChHist[ec][st][rg][iChamber-FirstCh].Phi_InefficientRecHits_inSegment[iLayer]->Write();
2003  ChHist[ec][st][rg][iChamber-FirstCh].Phi_EfficientRecHits_inSegment[iLayer]->Write();
2004  }
2005  ChHist[ec][st][rg][iChamber-FirstCh].SimRechits->Write();
2006  ChHist[ec][st][rg][iChamber-FirstCh].SimSimhits->Write();
2007  /*
2008  ChHist[ec][st][rg][iChamber-FirstCh].SimRechits_each->Write();
2009  ChHist[ec][st][rg][iChamber-FirstCh].SimSimhits_each->Write();
2010  */
2011  //
2012  theFile->cd(SpecName);
2013  theFile->cd();
2014  }
2015  }
2016  }
2017  }
2018  //
2019  sprintf(SpecName,"AllChambers");
2020  theFile->mkdir(SpecName);
2021  theFile->cd(SpecName);
2022  DataFlow->Write();
2023  TriggersFired->Write();
2024  ALCTPerEvent->Write();
2025  CLCTPerEvent->Write();
2026  recHitsPerEvent->Write();
2027  segmentsPerEvent->Write();
2028  //
2029  theFile->cd(SpecName);
2030  //---- Close the file
2031  theFile->Close();
2032 }
struct CSCEfficiency::StationHistos StHist[2][4]
struct CSCEfficiency::ChamberHistos ChHist[2][4][3][LastCh-FirstCh+1]
TH1F * CLCTPerEvent
std::vector< TH1F * > Y_InefficientRecHits_inSegment
std::vector< TH1F * > Phi_InefficientRecHits_inSegment
std::vector< TH1F * > Y_EfficientRecHits_inSegment
MuonServiceProxy * theService
std::vector< TH1F * > Phi_EfficientRecHits_inSegment
#define FirstCh
TH1F * TriggersFired
TH1F * segmentsPerEvent
TH1F * recHitsPerEvent
tuple cout
Definition: gather_cfg.py:121
TH1F * ALCTPerEvent
#define NumCh

Member Function Documentation

bool CSCEfficiency::applyTrigger ( edm::Handle< edm::TriggerResults > &  hltR,
const edm::TriggerNames triggerNames 
)
private

Definition at line 1545 of file CSCEfficiency.cc.

References CommPDSkim_cfg::andOr, gather_cfg::cout, edm::HandleBase::isValid(), and edm::TriggerNames::triggerNames().

1546  {
1547  bool triggerPassed = true;
1548  std::vector<std::string> hlNames=triggerNames.triggerNames();
1549  pointToTriggers.clear();
1550  for(size_t imyT = 0;imyT<myTriggers.size();++imyT){
1551  for (size_t iT=0; iT<hlNames.size(); ++iT) {
1552  //std::cout<<" iT = "<<iT<<" hlNames[iT] = "<<hlNames[iT]<<
1553  //" : wasrun = "<<hltR->wasrun(iT)<<" accept = "<<
1554  // hltR->accept(iT)<<" !error = "<<
1555  // !hltR->error(iT)<<std::endl;
1556  if(!imyT){
1557  if(hltR->wasrun(iT) &&
1558  hltR->accept(iT) &&
1559  !hltR->error(iT) ){
1560  TriggersFired->Fill(iT);
1561  }
1562  }
1563  if(hlNames[iT]==myTriggers[imyT]){
1564  pointToTriggers.push_back(iT);
1565  if(imyT){
1566  break;
1567  }
1568  }
1569  }
1570  }
1571  if(pointToTriggers.size()!=myTriggers.size()){
1572  pointToTriggers.clear();
1573  if(printalot){
1574  std::cout<<" Not all trigger names found - all trigger specifications will be ignored. Check your cfg file!"<<std::endl;
1575  }
1576  }
1577  else{
1578  if(pointToTriggers.size()){
1579  if(printalot){
1580  std::cout<<"The following triggers will be required in the event: "<<std::endl;
1581  for(size_t imyT =0; imyT <pointToTriggers.size();++imyT){
1582  std::cout<<" "<<hlNames[pointToTriggers[imyT]];
1583  }
1584  std::cout<<std::endl;
1585  std::cout<<" in condition (AND/OR) : "<<!andOr<<"/"<<andOr<<std::endl;
1586  }
1587  }
1588  }
1589 
1590  if (hltR.isValid()) {
1591  if(!pointToTriggers.size()){
1592  if(printalot){
1593  std::cout<<" No triggers specified in the configuration or all ignored - no trigger information will be considered"<<std::endl;
1594  }
1595  }
1596  for(size_t imyT =0; imyT <pointToTriggers.size();++imyT){
1597  if(hltR->wasrun(pointToTriggers[imyT]) &&
1598  hltR->accept(pointToTriggers[imyT]) &&
1599  !hltR->error(pointToTriggers[imyT]) ){
1600  triggerPassed = true;
1601  if(andOr){
1602  break;
1603  }
1604  }
1605  else{
1606  triggerPassed = false;
1607  if(!andOr){
1608  triggerPassed = false;
1609  break;
1610  }
1611  }
1612  }
1613  }
1614  else{
1615  if(printalot){
1616  std::cout<<" TriggerResults handle returns invalid state?! No trigger information will be considered"<<std::endl;
1617  }
1618  }
1619  if(printalot){
1620  std::cout<<" Trigger passed: "<<triggerPassed<<std::endl;
1621  }
1622  return triggerPassed;
1623 }
Strings const & triggerNames() const
Definition: TriggerNames.cc:24
std::vector< std::string > myTriggers
bool isValid() const
Definition: HandleBase.h:76
TH1F * TriggersFired
std::vector< int > pointToTriggers
tuple cout
Definition: gather_cfg.py:121
void CSCEfficiency::beginJob ( void  )
privatevirtual

Reimplemented from edm::EDFilter.

Definition at line 2036 of file CSCEfficiency.cc.

2037 {
2038 }
void CSCEfficiency::chamberCandidates ( int  station,
int  ring,
float  phi,
std::vector< int > &  coupleOfChambers 
)
private

Definition at line 1009 of file CSCEfficiency.cc.

References gather_cfg::cout, and M_PI.

1009  {
1010  coupleOfChambers.clear();
1011  // -pi< phi<+pi
1012  float phi_zero = 0.;// check! the phi at the "edge" of Ch 1
1013  float phi_const = 2.*M_PI/36.;
1014  int last_chamber = 36;
1015  int first_chamber = 1;
1016  if(1 != station && 1==ring){ // 18 chambers in the ring
1017  phi_const*=2;
1018  last_chamber /= 2;
1019  }
1020  if(phi<0.){
1021  if (printalot) std::cout<<" info: negative phi = "<<phi<<std::endl;
1022  phi += 2*M_PI;
1023  }
1024  float chamber_float = (phi - phi_zero)/phi_const;
1025  int chamber_int = int(chamber_float);
1026  if (chamber_float - float(chamber_int) -0.5 <0.){
1027  if(0!=chamber_int ){
1028  coupleOfChambers.push_back(chamber_int);
1029  }
1030  else{
1031  coupleOfChambers.push_back(last_chamber);
1032  }
1033  coupleOfChambers.push_back(chamber_int+1);
1034 
1035  }
1036  else{
1037  coupleOfChambers.push_back(chamber_int+1);
1038  if(last_chamber!=chamber_int+1){
1039  coupleOfChambers.push_back(chamber_int+2);
1040  }
1041  else{
1042  coupleOfChambers.push_back(first_chamber);
1043  }
1044  }
1045  if (printalot) std::cout<<" phi = "<<phi<<" phi_zero = "<<phi_zero<<" phi_const = "<<phi_const<<
1046  " candidate chambers: first ch = "<<coupleOfChambers[0]<<" second ch = "<<coupleOfChambers[1]<<std::endl;
1047 }
#define M_PI
Definition: BFit3D.cc:3
tuple cout
Definition: gather_cfg.py:121
Definition: DDAxes.h:10
bool CSCEfficiency::checkLocal ( double  yLocal,
double  yBoundary,
int  station,
int  ring 
)
private

Definition at line 605 of file CSCEfficiency.cc.

605  {
606 //---- check if it is in a good local region (sensitive area - geometrical and HV boundaries excluded)
607  bool pass = false;
608  std::vector <float> deadZoneCenter(6);
609  const float deadZoneHalf = 0.32*7/2;// wire spacing * (wires missing + 1)/2
610  float cutZone = deadZoneHalf + distanceFromDeadZone;//cm
611  //---- hardcoded... not good
612  if(station>1 && station<5){
613  if(2==ring){
614  deadZoneCenter[0]= -162.48 ;
615  deadZoneCenter[1] = -81.8744;
616  deadZoneCenter[2] = -21.18165;
617  deadZoneCenter[3] = 39.51105;
618  deadZoneCenter[4] = 100.2939;
619  deadZoneCenter[5] = 160.58;
620 
621  if(yLocal >yBoundary &&
622  ((yLocal> deadZoneCenter[0] + cutZone && yLocal< deadZoneCenter[1] - cutZone) ||
623  (yLocal> deadZoneCenter[1] + cutZone && yLocal< deadZoneCenter[2] - cutZone) ||
624  (yLocal> deadZoneCenter[2] + cutZone && yLocal< deadZoneCenter[3] - cutZone) ||
625  (yLocal> deadZoneCenter[3] + cutZone && yLocal< deadZoneCenter[4] - cutZone) ||
626  (yLocal> deadZoneCenter[4] + cutZone && yLocal< deadZoneCenter[5] - cutZone))){
627  pass = true;
628  }
629  }
630  else if(1==ring){
631  if(2==station){
632  deadZoneCenter[0]= -95.94 ;
633  deadZoneCenter[1] = -27.47;
634  deadZoneCenter[2] = 33.67;
635  deadZoneCenter[3] = 93.72;
636  }
637  else if(3==station){
638  deadZoneCenter[0]= -85.97 ;
639  deadZoneCenter[1] = -36.21;
640  deadZoneCenter[2] = 23.68;
641  deadZoneCenter[3] = 84.04;
642  }
643  else if(4==station){
644  deadZoneCenter[0]= -75.82;
645  deadZoneCenter[1] = -26.14;
646  deadZoneCenter[2] = 23.85;
647  deadZoneCenter[3] = 73.91;
648  }
649  if(yLocal >yBoundary &&
650  ((yLocal> deadZoneCenter[0] + cutZone && yLocal< deadZoneCenter[1] - cutZone) ||
651  (yLocal> deadZoneCenter[1] + cutZone && yLocal< deadZoneCenter[2] - cutZone) ||
652  (yLocal> deadZoneCenter[2] + cutZone && yLocal< deadZoneCenter[3] - cutZone))){
653  pass = true;
654  }
655  }
656  }
657  else if(1==station){
658  if(3==ring){
659  deadZoneCenter[0]= -83.155 ;
660  deadZoneCenter[1] = -22.7401;
661  deadZoneCenter[2] = 27.86665;
662  deadZoneCenter[3] = 81.005;
663  if(yLocal > yBoundary &&
664  ((yLocal> deadZoneCenter[0] + cutZone && yLocal< deadZoneCenter[1] - cutZone) ||
665  (yLocal> deadZoneCenter[1] + cutZone && yLocal< deadZoneCenter[2] - cutZone) ||
666  (yLocal> deadZoneCenter[2] + cutZone && yLocal< deadZoneCenter[3] - cutZone))){
667  pass = true;
668  }
669  }
670  else if(2==ring){
671  deadZoneCenter[0]= -86.285 ;
672  deadZoneCenter[1] = -32.88305;
673  deadZoneCenter[2] = 32.867423;
674  deadZoneCenter[3] = 88.205;
675  if(yLocal > (yBoundary) &&
676  ((yLocal> deadZoneCenter[0] + cutZone && yLocal< deadZoneCenter[1] - cutZone) ||
677  (yLocal> deadZoneCenter[1] + cutZone && yLocal< deadZoneCenter[2] - cutZone) ||
678  (yLocal> deadZoneCenter[2] + cutZone && yLocal< deadZoneCenter[3] - cutZone))){
679  pass = true;
680  }
681  }
682  else{
683  deadZoneCenter[0]= -81.0;
684  deadZoneCenter[1] = 81.0;
685  if(yLocal > (yBoundary) &&
686  ((yLocal> deadZoneCenter[0] + cutZone && yLocal< deadZoneCenter[1] - cutZone) )){
687  pass = true;
688  }
689  }
690  }
691  return pass;
692 }
double distanceFromDeadZone
void CSCEfficiency::chooseDirection ( CLHEP::Hep3Vector &  innerPosition,
CLHEP::Hep3Vector &  outerPosition 
)
private

Definition at line 1487 of file CSCEfficiency.cc.

1487  {
1488 
1489  //---- Be careful with trigger conditions too
1490  if(!isIPdata){
1491  float dy = outerPosition.y() - innerPosition.y();
1492  float dz = outerPosition.z() - innerPosition.z();
1493  if(isBeamdata){
1494  if(dz>0){
1495  alongZ = true;
1496  }
1497  else{
1498  alongZ = false;
1499  }
1500  }
1501  else{//cosmics
1502  if(dy/dz>0){
1503  alongZ = false;
1504  }
1505  else{
1506  alongZ = true;
1507  }
1508  }
1509  }
1510 }
bool CSCEfficiency::efficienciesPerChamber ( CSCDetId id,
const CSCChamber cscChamber,
FreeTrajectoryState ftsChamber 
)
private

Definition at line 1050 of file CSCEfficiency.cc.

References gather_cfg::cout, FreeTrajectoryState::momentum(), dbtoconf::out, PV3DBase< T, PVType, FrameType >::phi(), PV3DBase< T, PVType, FrameType >::theta(), GeomDet::toLocal(), PV3DBase< T, PVType, FrameType >::x(), PV3DBase< T, PVType, FrameType >::y(), and PV3DBase< T, PVType, FrameType >::z().

1050  {
1051  int ec, st, rg, ch, secondRing;
1052  returnTypes(id, ec, st, rg, ch, secondRing);
1053 
1054  LocalVector localDir = cscChamber->toLocal(ftsChamber.momentum());
1055  if(printalot){
1056  std::cout<<" global dir = "<<ftsChamber.momentum()<<std::endl;
1057  std::cout<<" local dir = "<<localDir<<std::endl;
1058  std::cout<<" local theta = "<<localDir.theta()<<std::endl;
1059  }
1060  float dxdz = localDir.x()/localDir.z();
1061  float dydz = localDir.y()/localDir.z();
1062  if(2==st || 3==st){
1063  if(printalot){
1064  std::cout<<"st 3 or 4 ... flip dy/dz"<<std::endl;
1065  }
1066  dydz = - dydz;
1067  }
1068  if(printalot){
1069  std::cout<<"dy/dz = "<<dydz<<std::endl;
1070  }
1071  // Apply angle cut
1072  bool out = true;
1073  if(applyIPangleCuts){
1074  if(dydz>local_DY_DZ_Max || dydz<local_DY_DZ_Min || fabs(dxdz)>local_DX_DZ_Max){
1075  out = false;
1076  }
1077  }
1078 
1079  // Segments
1080  bool firstCondition = allSegments[ec][st][rg][ch].size() ? true : false;
1081  bool secondCondition = false;
1082  //---- ME1 is special as usual - ME1a and ME1b are actually one chamber
1083  if(secondRing>-1){
1084  secondCondition = allSegments[ec][st][secondRing][ch].size() ? true : false;
1085  }
1086  if(firstCondition || secondCondition){
1087  if(out){
1088  ChHist[ec][st][rg][ch].digiAppearanceCount->Fill(1);
1089  }
1090  }
1091  else{
1092  if(out){
1093  ChHist[ec][st][rg][ch].digiAppearanceCount->Fill(0);
1094  }
1095  }
1096 
1097  if(useDigis){
1098  // ALCTs
1099  firstCondition = allALCT[ec][st][rg][ch];
1100  secondCondition = false;
1101  if(secondRing>-1){
1102  secondCondition = allALCT[ec][st][secondRing][ch];
1103  }
1104  if(firstCondition || secondCondition){
1105  if(out){
1106  ChHist[ec][st][rg][ch].digiAppearanceCount->Fill(3);
1107  }
1108  // always apply partial angle cuts for this kind of histos
1109  if(fabs(dxdz)<local_DX_DZ_Max){
1110  StHist[ec][st].EfficientALCT_momTheta->Fill(ftsChamber.momentum().theta());
1111  ChHist[ec][st][rg][ch].EfficientALCT_dydz->Fill(dydz);
1112  }
1113  }
1114  else{
1115  if(out){
1116  ChHist[ec][st][rg][ch].digiAppearanceCount->Fill(2);
1117  }
1118  if(fabs(dxdz)<local_DX_DZ_Max){
1119  StHist[ec][st].InefficientALCT_momTheta->Fill(ftsChamber.momentum().theta());
1120  ChHist[ec][st][rg][ch].InefficientALCT_dydz->Fill(dydz);
1121  }
1122  if(printalot){
1123  std::cout<<" missing ALCT (dy/dz = "<<dydz<<")";
1124  printf("\t\tendcap/station/ring/chamber: %i/%i/%i/%i\n",ec+1,st+1,rg+1,ch+1);
1125  }
1126  }
1127 
1128  // CLCTs
1129  firstCondition = allCLCT[ec][st][rg][ch];
1130  secondCondition = false;
1131  if(secondRing>-1){
1132  secondCondition = allCLCT[ec][st][secondRing][ch];
1133  }
1134  if(firstCondition || secondCondition){
1135  if(out){
1136  ChHist[ec][st][rg][ch].digiAppearanceCount->Fill(5);
1137  }
1138  if(dydz<local_DY_DZ_Max && dydz>local_DY_DZ_Min){
1139  StHist[ec][st].EfficientCLCT_momPhi->Fill(ftsChamber.momentum().phi() );// - phi chamber...
1140  ChHist[ec][st][rg][ch].EfficientCLCT_dxdz->Fill(dxdz);
1141  }
1142  }
1143  else{
1144  if(out){
1145  ChHist[ec][st][rg][ch].digiAppearanceCount->Fill(4);
1146  }
1147  if(dydz<local_DY_DZ_Max && dydz>local_DY_DZ_Min){
1148  StHist[ec][st].InefficientCLCT_momPhi->Fill(ftsChamber.momentum().phi());// - phi chamber...
1149  ChHist[ec][st][rg][ch].InefficientCLCT_dxdz->Fill(dxdz);
1150  }
1151  if(printalot){
1152  std::cout<<" missing CLCT (dx/dz = "<<dxdz<<")";
1153  printf("\t\tendcap/station/ring/chamber: %i/%i/%i/%i\n",ec+1,st+1,rg+1,ch+1);
1154  }
1155  }
1156  if(out){
1157  // CorrLCTs
1158  firstCondition = allCorrLCT[ec][st][rg][ch];
1159  secondCondition = false;
1160  if(secondRing>-1){
1161  secondCondition = allCorrLCT[ec][st][secondRing][ch];
1162  }
1163  if(firstCondition || secondCondition){
1164  ChHist[ec][st][rg][ch].digiAppearanceCount->Fill(7);
1165  }
1166  else{
1167  ChHist[ec][st][rg][ch].digiAppearanceCount->Fill(6);
1168  }
1169  }
1170  }
1171  return out;
1172 }
struct CSCEfficiency::StationHistos StHist[2][4]
struct CSCEfficiency::ChamberHistos ChHist[2][4][3][LastCh-FirstCh+1]
Geom::Phi< T > phi() const
Definition: PV3DBase.h:69
T y() const
Definition: PV3DBase.h:63
bool allCLCT[2][4][4][NumCh]
LocalPoint toLocal(const GlobalPoint &gp) const
Conversion to the R.F. of the GeomDet.
Definition: GeomDet.h:62
double local_DX_DZ_Max
void returnTypes(CSCDetId &id, int &ec, int &st, int &rg, int &ch, int &secondRing)
Geom::Theta< T > theta() const
Definition: PV3DBase.h:75
double local_DY_DZ_Max
T z() const
Definition: PV3DBase.h:64
bool allALCT[2][4][4][NumCh]
GlobalVector momentum() const
double local_DY_DZ_Min
tuple out
Definition: dbtoconf.py:99
std::vector< std::pair< LocalPoint, LocalVector > > allSegments[2][4][4][NumCh]
tuple cout
Definition: gather_cfg.py:121
T x() const
Definition: PV3DBase.h:62
bool allCorrLCT[2][4][4][NumCh]
void CSCEfficiency::endJob ( void  )
privatevirtual

Reimplemented from edm::EDFilter.

Definition at line 2042 of file CSCEfficiency.cc.

2042  {
2043 }
double CSCEfficiency::extrapolate1D ( double  initPosition,
double  initDirection,
double  parameterOfTheLine 
)
private

Definition at line 1477 of file CSCEfficiency.cc.

1477  {
1478  double extrapolatedPosition = initPosition + initDirection*parameterOfTheLine;
1479  return extrapolatedPosition;
1480 }
void CSCEfficiency::fillDigiInfo ( edm::Handle< CSCALCTDigiCollection > &  alcts,
edm::Handle< CSCCLCTDigiCollection > &  clcts,
edm::Handle< CSCCorrelatedLCTDigiCollection > &  correlatedlcts,
edm::Handle< CSCWireDigiCollection > &  wires,
edm::Handle< CSCStripDigiCollection > &  strips,
edm::Handle< edm::PSimHitContainer > &  simhits,
edm::Handle< CSCRecHit2DCollection > &  rechits,
edm::Handle< CSCSegmentCollection > &  segments,
edm::ESHandle< CSCGeometry > &  cscGeom 
)
private

Definition at line 694 of file CSCEfficiency.cc.

References NumCh.

702  {
703  for(int iE=0;iE<2;iE++){
704  for(int iS=0;iS<4;iS++){
705  for(int iR=0;iR<4;iR++){
706  for(int iC=0;iC<NumCh;iC++){
707  allSegments[iE][iS][iR][iC].clear();
708  allCLCT[iE][iS][iR][iC] = allALCT[iE][iS][iR][iC] = allCorrLCT[iE][iS][iR][iC] = false;
709  for(int iL=0;iL<6;iL++){
710  allStrips[iE][iS][iR][iC][iL].clear();
711  allWG[iE][iS][iR][iC][iL].clear();
712  allRechits[iE][iS][iR][iC][iL].clear();
713  allSimhits[iE][iS][iR][iC][iL].clear();
714  }
715  }
716  }
717  }
718  }
719  //
720  if(useDigis){
721  fillLCT_info(alcts, clcts, correlatedlcts);
722  fillWG_info(wires, cscGeom);
723  fillStrips_info(strips);
724  }
725  fillRechitsSegments_info(rechits, segments, cscGeom);
726  if(!isData){
727  fillSimhit_info(simhits);
728  }
729 }
void fillWG_info(edm::Handle< CSCWireDigiCollection > &wires, edm::ESHandle< CSCGeometry > &cscGeom)
std::vector< std::pair< LocalPoint, int > > allSimhits[2][4][4][NumCh][6]
bool allCLCT[2][4][4][NumCh]
bool allALCT[2][4][4][NumCh]
std::vector< std::pair< std::pair< int, float >, int > > allWG[2][4][4][NumCh][6]
void fillLCT_info(edm::Handle< CSCALCTDigiCollection > &alcts, edm::Handle< CSCCLCTDigiCollection > &clcts, edm::Handle< CSCCorrelatedLCTDigiCollection > &correlatedlcts)
void fillRechitsSegments_info(edm::Handle< CSCRecHit2DCollection > &rechits, edm::Handle< CSCSegmentCollection > &segments, edm::ESHandle< CSCGeometry > &cscGeom)
std::vector< std::pair< int, float > > allStrips[2][4][4][NumCh][6]
std::vector< std::pair< LocalPoint, LocalVector > > allSegments[2][4][4][NumCh]
void fillSimhit_info(edm::Handle< edm::PSimHitContainer > &simHits)
#define NumCh
std::vector< std::pair< LocalPoint, bool > > allRechits[2][4][4][NumCh][6]
bool allCorrLCT[2][4][4][NumCh]
void fillStrips_info(edm::Handle< CSCStripDigiCollection > &strips)
void CSCEfficiency::fillLCT_info ( edm::Handle< CSCALCTDigiCollection > &  alcts,
edm::Handle< CSCCLCTDigiCollection > &  clcts,
edm::Handle< CSCCorrelatedLCTDigiCollection > &  correlatedlcts 
)
private

Definition at line 732 of file CSCEfficiency.cc.

References FirstCh, j, and prof2calltree::last.

734  {
735  //---- ALCTDigis
736  int nSize = 0;
737  for (CSCALCTDigiCollection::DigiRangeIterator j=alcts->begin(); j!=alcts->end(); j++) {
738  ++nSize;
739  const CSCDetId& id = (*j).first;
740  const CSCALCTDigiCollection::Range& range =(*j).second;
742  range.first; digiIt!=range.second;
743  ++digiIt){
744  // Valid digi in the chamber (or in neighbouring chamber)
745  if((*digiIt).isValid()){
746  allALCT[id.endcap()-1][id.station()-1][id.ring()-1][id.chamber()-FirstCh] = true;
747  }
748  }// for digis in layer
749  }// end of for (j=...
750  ALCTPerEvent->Fill(nSize);
751  //---- CLCTDigis
752  nSize = 0;
753  for (CSCCLCTDigiCollection::DigiRangeIterator j=clcts->begin(); j!=clcts->end(); j++) {
754  ++nSize;
755  const CSCDetId& id = (*j).first;
756  std::vector<CSCCLCTDigi>::const_iterator digiIt = (*j).second.first;
757  std::vector<CSCCLCTDigi>::const_iterator last = (*j).second.second;
758  for( ; digiIt != last; ++digiIt) {
759  // Valid digi in the chamber (or in neighbouring chamber)
760  if((*digiIt).isValid()){
761  allCLCT[id.endcap()-1][id.station()-1][id.ring()-1][id.chamber()-FirstCh] = true;
762  }
763  }
764  }
765  CLCTPerEvent->Fill(nSize);
766  //---- CorrLCTDigis
767  for (CSCCorrelatedLCTDigiCollection::DigiRangeIterator j=correlatedlcts->begin(); j!=correlatedlcts->end(); j++) {
768  const CSCDetId& id = (*j).first;
769  std::vector<CSCCorrelatedLCTDigi>::const_iterator digiIt = (*j).second.first;
770  std::vector<CSCCorrelatedLCTDigi>::const_iterator last = (*j).second.second;
771  for( ; digiIt != last; ++digiIt) {
772  // Valid digi in the chamber (or in neighbouring chamber)
773  if((*digiIt).isValid()){
774  allCorrLCT[id.endcap()-1][id.station()-1][id.ring()-1][id.chamber()-FirstCh] = true;
775  }
776  }
777  }
778 }
TH1F * CLCTPerEvent
bool allCLCT[2][4][4][NumCh]
bool allALCT[2][4][4][NumCh]
int j
Definition: DBlmapReader.cc:9
#define FirstCh
std::vector< DigiType >::const_iterator const_iterator
std::pair< const_iterator, const_iterator > Range
TH1F * ALCTPerEvent
bool allCorrLCT[2][4][4][NumCh]
void CSCEfficiency::fillRechitsSegments_info ( edm::Handle< CSCRecHit2DCollection > &  rechits,
edm::Handle< CSCSegmentCollection > &  segments,
edm::ESHandle< CSCGeometry > &  cscGeom 
)
private

Definition at line 855 of file CSCEfficiency.cc.

References CSCDetId::chamber(), gather_cfg::cout, CSCDetId, Reference_intrackfit_cff::endcap, CSCDetId::endcap(), FirstCh, CSCDetId::layer(), NumCh, relativeConstraints::ring, CSCDetId::ring(), findQualityFiles::size, relativeConstraints::station, CSCDetId::station(), GeomDet::toGlobal(), PV3DBase< T, PVType, FrameType >::x(), LocalError::xx(), LocalError::xy(), PV3DBase< T, PVType, FrameType >::y(), LocalError::yy(), and PV3DBase< T, PVType, FrameType >::z().

858  {
859  //---- RECHITS AND SEGMENTS
860  //---- Loop over rechits
861  if (printalot){
862  //printf("\tGet the recHits collection.\t ");
863  printf(" The size of the rechit collection is %i\n",int(rechits->size()));
864  //printf("\t...start loop over rechits...\n");
865  }
866  recHitsPerEvent->Fill(rechits->size());
867  //---- Build iterator for rechits and loop :
869  for (recIt = rechits->begin(); recIt != rechits->end(); recIt++) {
870  //---- Find chamber with rechits in CSC
871  CSCDetId id = (CSCDetId)(*recIt).cscDetId();
872  if (printalot){
873  const CSCLayer* csclayer = cscGeom->layer( id);
874  LocalPoint rhitlocal = (*recIt).localPosition();
875  LocalError rerrlocal = (*recIt).localPositionError();
876  GlobalPoint rhitglobal= csclayer->toGlobal(rhitlocal);
877  printf("\t\tendcap/station/ring/chamber/layer: %i/%i/%i/%i/%i\n",id.endcap(),id.station(),id.ring(),id.chamber(),id.layer());
878  printf("\t\tx,y,z: %f, %f, %f\texx,eey,exy: %f, %f, %f\tglobal x,y,z: %f, %f, %f \n",
879  rhitlocal.x(), rhitlocal.y(), rhitlocal.z(), rerrlocal.xx(), rerrlocal.yy(), rerrlocal.xy(),
880  rhitglobal.x(), rhitglobal.y(), rhitglobal.z());
881  }
882  std::pair <LocalPoint, bool> recHitPos((*recIt).localPosition(), false);
883  allRechits[id.endcap()-1][id.station()-1][id.ring()-1][id.chamber()-FirstCh][id.layer()-1].push_back(recHitPos);
884  }
885  //---- "Empty" chambers
886  for(int iE=0;iE<2;iE++){
887  for(int iS=0;iS<4;iS++){
888  for(int iR=0;iR<4;iR++){
889  for(int iC=0;iC<NumCh;iC++){
890  int numLayers = 0;
891  for(int iL=0;iL<6;iL++){
892  if(allRechits[iE][iS][iR][iC][iL].size()){
893  ++numLayers;
894  }
895  }
896  if(numLayers>1){
897  emptyChambers[iE][iS][iR][iC] = false;
898  }
899  else{
900  emptyChambers[iE][iS][iR][iC] = true;
901  }
902  }
903  }
904  }
905  }
906 
907  //
908  if (printalot){
909  printf(" The size of the segment collection is %i\n", int(segments->size()));
910  //printf("\t...start loop over segments...\n");
911  }
912  segmentsPerEvent->Fill(segments->size());
913  for(CSCSegmentCollection::const_iterator it = segments->begin(); it != segments->end(); it++) {
914  CSCDetId id = (CSCDetId)(*it).cscDetId();
915  StHist[id.endcap()-1][id.station()-1].segmentChi2_ndf->Fill((*it).chi2()/(*it).degreesOfFreedom());
916  StHist[id.endcap()-1][id.station()-1].hitsInSegment->Fill((*it).nRecHits());
917  if (printalot){
918  printf("\tendcap/station/ring/chamber: %i %i %i %i\n",
919  id.endcap(),id.station(),id.ring(),id.chamber());
920  std::cout<<"\tposition(loc) = "<<(*it).localPosition()<<" error(loc) = "<<(*it).localPositionError()<<std::endl;
921  std::cout<<"\t chi2/ndf = "<<(*it).chi2()/(*it).degreesOfFreedom()<<" nhits = "<<(*it).nRecHits() <<std::endl;
922 
923  }
924  allSegments[id.endcap()-1][id.station()-1][id.ring()-1][id.chamber()-FirstCh].push_back
925  (make_pair((*it).localPosition(), (*it).localDirection()));
926 
927 
928  //---- try to get the CSC recHits that contribute to this segment.
929  //if (printalot) printf("\tGet the recHits for this segment.\t");
930  std::vector<CSCRecHit2D> theseRecHits = (*it).specificRecHits();
931  int nRH = (*it).nRecHits();
932  if (printalot){
933  printf("\tGet the recHits for this segment.\t");
934  printf(" nRH = %i\n",nRH);
935  }
936  //---- Find which of the rechits in the chamber is in the segment
937  int layerRH = 0;
938  for ( vector<CSCRecHit2D>::const_iterator iRH = theseRecHits.begin(); iRH != theseRecHits.end(); iRH++) {
939  ++layerRH;
940  CSCDetId idRH = (CSCDetId)(*iRH).cscDetId();
941  if(printalot){
942  printf("\t%i RH\tendcap/station/ring/chamber/layer: %i/%i/%i/%i/%i\n",
943  layerRH,idRH.endcap(),idRH.station(),idRH.ring(),idRH.chamber(),idRH.layer());
944  }
945  for(size_t jRH = 0;
946  jRH<allRechits[idRH.endcap()-1][idRH.station()-1][idRH.ring()-1][idRH.chamber()-FirstCh][idRH.layer()-1].size();
947  ++jRH){
948  allRechits[idRH.endcap()-1][idRH.station()-1][idRH.ring()-1][idRH.chamber()-FirstCh][idRH.layer()-1][jRH].first;
949  float xDiff = iRH->localPosition().x() -
950  allRechits[idRH.endcap()-1][idRH.station()-1][idRH.ring()-1][idRH.chamber()-FirstCh][idRH.layer()-1][jRH].first.x();
951  float yDiff = iRH->localPosition().y() -
952  allRechits[idRH.endcap()-1][idRH.station()-1][idRH.ring()-1][idRH.chamber()-FirstCh][idRH.layer()-1][jRH].first.y();
953  if(fabs(xDiff)<0.0001 && fabs(yDiff)<0.0001){
954  std::pair <LocalPoint, bool>
955  recHitPos(allRechits[idRH.endcap()-1][idRH.station()-1][idRH.ring()-1][idRH.chamber()-FirstCh][idRH.layer()-1][jRH].first, true);
956  allRechits[idRH.endcap()-1][idRH.station()-1][idRH.ring()-1][idRH.chamber()-FirstCh][idRH.layer()-1][jRH] = recHitPos;
957  if(printalot){
958  std::cout<<" number of the rechit (from zero) in the segment = "<< jRH<<std::endl;
959  }
960  }
961  }
962  }
963  }
964 }
int chamber() const
Definition: CSCDetId.h:70
struct CSCEfficiency::StationHistos StHist[2][4]
float xx() const
Definition: LocalError.h:24
GlobalPoint toGlobal(const Local2DPoint &lp) const
Conversion to the global R.F. from the R.F. of the GeomDet.
Definition: GeomDet.h:47
T y() const
Definition: PV3DBase.h:63
int layer() const
Definition: CSCDetId.h:63
int endcap() const
Definition: CSCDetId.h:95
C::const_iterator const_iterator
constant access iterator type
Definition: RangeMap.h:45
float xy() const
Definition: LocalError.h:25
float yy() const
Definition: LocalError.h:26
T z() const
Definition: PV3DBase.h:64
int ring() const
Definition: CSCDetId.h:77
#define FirstCh
std::vector< std::pair< LocalPoint, LocalVector > > allSegments[2][4][4][NumCh]
TH1F * segmentsPerEvent
TH1F * recHitsPerEvent
bool emptyChambers[2][4][4][NumCh]
int station() const
Definition: CSCDetId.h:88
tuple cout
Definition: gather_cfg.py:121
#define NumCh
T x() const
Definition: PV3DBase.h:62
std::vector< std::pair< LocalPoint, bool > > allRechits[2][4][4][NumCh][6]
tuple size
Write out results.
void CSCEfficiency::fillSimhit_info ( edm::Handle< edm::PSimHitContainer > &  simHits)
private

Definition at line 844 of file CSCEfficiency.cc.

References CSCDetId::chamber(), CSCDetId, CSCDetId::endcap(), FirstCh, CSCDetId::layer(), CSCDetId::ring(), and CSCDetId::station().

844  {
845  //---- SIMHITS
846  edm::PSimHitContainer::const_iterator dSHsimIter;
847  for (dSHsimIter = simhits->begin(); dSHsimIter != simhits->end(); dSHsimIter++){
848  // Get DetID for this simHit:
849  CSCDetId sId = (CSCDetId)(*dSHsimIter).detUnitId();
850  std::pair <LocalPoint, int> simHitPos((*dSHsimIter).localPosition(), (*dSHsimIter).particleType());
851  allSimhits[sId.endcap()-1][sId.station()-1][sId.ring()-1][sId.chamber()-FirstCh][sId.layer()-1].push_back(simHitPos);
852  }
853 }
int chamber() const
Definition: CSCDetId.h:70
std::vector< std::pair< LocalPoint, int > > allSimhits[2][4][4][NumCh][6]
int layer() const
Definition: CSCDetId.h:63
int endcap() const
Definition: CSCDetId.h:95
int ring() const
Definition: CSCDetId.h:77
#define FirstCh
int station() const
Definition: CSCDetId.h:88
void CSCEfficiency::fillStrips_info ( edm::Handle< CSCStripDigiCollection > &  strips)
private

Definition at line 806 of file CSCEfficiency.cc.

References CSCDetId, diffTreeTool::diff, j, prof2calltree::last, and dtDQMClient_cfg::threshold.

806  {
807  //---- STRIPS
808  for (CSCStripDigiCollection::DigiRangeIterator j=strips->begin(); j!=strips->end(); j++) {
809  CSCDetId id = (CSCDetId)(*j).first;
810  int largestADCValue = -1;
811  std::vector<CSCStripDigi>::const_iterator digiItr = (*j).second.first;
812  std::vector<CSCStripDigi>::const_iterator last = (*j).second.second;
813  for( ; digiItr != last; ++digiItr) {
814  int maxADC=largestADCValue;
815  int myStrip = digiItr->getStrip();
816  std::vector<int> myADCVals = digiItr->getADCCounts();
817  float thisPedestal = 0.5*(float)(myADCVals[0]+myADCVals[1]);
818  float threshold = 13.3 ;
819  float diff = 0.;
820  float peakADC = -1000.;
821  for (unsigned int iCount = 0; iCount < myADCVals.size(); iCount++) {
822  diff = (float)myADCVals[iCount]-thisPedestal;
823  if (diff > threshold) {
824  if (myADCVals[iCount] > largestADCValue) {
825  largestADCValue = myADCVals[iCount];
826  }
827  }
828  if (diff > threshold && diff > peakADC) {
829  peakADC = diff;
830  }
831  }
832  if(largestADCValue>maxADC){// FIX IT!!!
833  maxADC = largestADCValue;
834  std::pair <int, float> LayerSignal (myStrip, peakADC);
835 
836  //---- AllStrips contains basic information about strips
837  //---- (strip number and peak signal for most significant strip in the layer)
838  allStrips[id.endcap()-1][id.station()-1][id.ring()-1][id.chamber()-1][id.layer()-1].clear();
839  allStrips[id.endcap()-1][id.station()-1][id.ring()-1][id.chamber()-1][id.layer()-1].push_back(LayerSignal);
840  }
841  }
842  }
843 }
int j
Definition: DBlmapReader.cc:9
std::vector< std::pair< int, float > > allStrips[2][4][4][NumCh][6]
void CSCEfficiency::fillWG_info ( edm::Handle< CSCWireDigiCollection > &  wires,
edm::ESHandle< CSCGeometry > &  cscGeom 
)
private

Definition at line 780 of file CSCEfficiency.cc.

References CSCDetId, FirstCh, j, prof2calltree::last, and CSCLayerGeometry::yOfWireGroup().

780  {
781  //---- WIRE GROUPS
782  for (CSCWireDigiCollection::DigiRangeIterator j=wires->begin(); j!=wires->end(); j++) {
783  CSCDetId id = (CSCDetId)(*j).first;
784  const CSCLayer *layer_p = cscGeom->layer (id);
785  const CSCLayerGeometry *layerGeom = layer_p->geometry ();
786  //
787  std::vector<CSCWireDigi>::const_iterator digiItr = (*j).second.first;
788  std::vector<CSCWireDigi>::const_iterator last = (*j).second.second;
789  //
790  for( ; digiItr != last; ++digiItr) {
791  std::pair < int, float > WG_pos(digiItr->getWireGroup(), layerGeom->yOfWireGroup(digiItr->getWireGroup()));
792  std::pair <std::pair < int, float >, int > LayerSignal(WG_pos, digiItr->getTimeBin());
793 
794  //---- AllWG contains basic information about WG (WG number and Y-position, time bin)
795  allWG[id.endcap()-1][id.station()-1][id.ring()-1][id.chamber()-FirstCh]
796  [id.layer()-1].push_back(LayerSignal);
797  if(printalot){
798  //std::cout<<" WG check : "<<std::endl;
799  //printf("\t\tendcap/station/ring/chamber/layer: %i/%i/%i/%i/%i\n",id.endcap(),id.station(),id.ring(),id.chamber(),id.layer());
800  //std::cout<<" WG size = "<<allWG[id.endcap()-1][id.station()-1][id.ring()-1][id.chamber()-FirstCh]
801  //[id.layer()-1].size()<<std::endl;
802  }
803  }
804  }
805 }
float yOfWireGroup(int wireGroup, float x=0.) const
int j
Definition: DBlmapReader.cc:9
std::vector< std::pair< std::pair< int, float >, int > > allWG[2][4][4][NumCh][6]
#define FirstCh
bool CSCEfficiency::filter ( edm::Event event,
const edm::EventSetup eventSetup 
)
privatevirtual

Implements edm::EDFilter.

Definition at line 21 of file CSCEfficiency.cc.

References muon::caloCompatibility(), DeDxDiscriminatorTools::charge(), reco::TrackBase::charge(), reco::TrackBase::confirmed, gather_cfg::cout, CSCDetId, debug, deltaR(), MuonPatternRecoDumper::dumpFTS(), MuonPatternRecoDumper::dumpMuonId(), alignCSCRings::e, Reference_intrackfit_cff::endcap, reco::TrackBase::eta(), FirstCh, reco::Track::found(), TrajectoryStateOnSurface::freeState(), GeomDet::geographicalId(), edm::EventSetup::get(), reco::TrackBase::goodIterative, reco::TrackBase::highPurity, i, iEvent, reco::Track::innerDetId(), reco::Track::innerPosition(), TrajectoryStateOnSurface::isValid(), reco::TrackBase::loose, alignBH_cfg::minP, metsig::muon, patZpeak::muons, reco::TrackBase::normalizedChi2(), reco::Track::outerDetId(), reco::Track::outerMomentum(), reco::Track::outerPosition(), reco::TrackBase::p(), phi, reco::TrackBase::phi(), reco::BeamSpot::position(), FreeTrajectoryState::position(), funct::pow(), edm::Handle< T >::product(), reco::TrackBase::pt(), reco::TrackBase::ptError(), reco::TrackBase::qoverp(), reco::TrackBase::qoverpError(), reco::TrackBase::quality(), reco::TrackBase::qualitySize, HI_PhotonSkim_cff::rechits, relativeConstraints::ring, reco::Muon::SegmentAndTrackArbitration, edm::View< T >::size(), mathSSE::sqrt(), relativeConstraints::station, RecoTauPiZeroBuilderPlugins_cfi::strips, reco::TrackBase::tight, edm::TriggerNames::triggerNames(), reco::TrackBase::undefQuality, and PV3DBase< T, PVType, FrameType >::z().

21  {
22  passTheEvent = false;
23  DataFlow->Fill(0.);
25 
26  //---- increment counter
28  // printalot debug output
30  int iRun = event.id().run();
31  int iEvent = event.id().event();
32  if(0==fmod(double (nEventsAnalyzed) ,double(1000) )){
33  if(printalot){
34  printf("\n==enter==CSCEfficiency===== run %i\tevent %i\tn Analyzed %i\n",iRun,iEvent,nEventsAnalyzed);
35  }
36  }
37  theService->update(eventSetup);
38  //---- These declarations create handles to the types of records that you want
39  //---- to retrieve from event "e".
40  if (printalot) printf("\tget handles for digi collections\n");
41 
42  //---- Pass the handle to the method "getByType", which is used to retrieve
43  //---- one and only one instance of the type in question out of event "e". If
44  //---- zero or more than one instance exists in the event an exception is thrown.
45  if (printalot) printf("\tpass handles\n");
53  //edm::Handle<reco::TrackCollection> saMuons;
54  edm::Handle<edm::View<reco::Track> > trackCollectionH;
56 
57  if(useDigis){
58  event.getByLabel(alctDigiTag_, alcts);
59  event.getByLabel(clctDigiTag_, clcts);
60  event.getByLabel(corrlctDigiTag_, correlatedlcts);
61 
62  event.getByLabel( stripDigiTag_, strips);
63  event.getByLabel( wireDigiTag_, wires);
64  }
65  if(!isData){
66  event.getByLabel(simHitTag, simhits);
67  }
68  event.getByLabel(rechitDigiTag_,rechits);
69  event.getByLabel(segmentDigiTag_, segments);
70  //event.getByLabel(saMuonTag,saMuons);
71  event.getByLabel(tracksTag,trackCollectionH);
72  const edm::View<reco::Track> trackCollection = *(trackCollectionH.product());
73 
74  //---- Get the CSC Geometry :
75  if (printalot) printf("\tget the CSC geometry.\n");
77  eventSetup.get<MuonGeometryRecord>().get(cscGeom);
78 
79  // use theTrackingGeometry instead of cscGeom?
80  ESHandle<GlobalTrackingGeometry> theTrackingGeometry;
81  eventSetup.get<GlobalTrackingGeometryRecord>().get(theTrackingGeometry);
82 
83  bool triggerPassed = true;
84  if(useTrigger){
85  // access the trigger information
86  // trigger names can be find in HLTrigger/Configuration/python/HLT_2E30_cff.py (or?)
87  // get hold of TriggerResults
89  event.getByLabel(hlTriggerResults_,hltR);
90  const edm::TriggerNames & triggerNames = event.triggerNames(*hltR);
91  triggerPassed = applyTrigger(hltR, triggerNames);
92  }
93  if(!triggerPassed){
94  return triggerPassed;
95  }
96  DataFlow->Fill(1.);
97  GlobalPoint gpZero(0.,0.,0.);
98  if(theService->magneticField()->inTesla(gpZero).mag2()<0.1){
99  magField = false;
100  }
101  else{
102  magField = true;
103  }
104 
105  //---- store info from digis
106  fillDigiInfo(alcts, clcts, correlatedlcts, wires, strips, simhits, rechits, segments, cscGeom);
107  //
109  edm::InputTag muonTag_("muons");
110  event.getByLabel(muonTag_,muons);
111 
112  edm::Handle<reco::BeamSpot> beamSpotHandle;
113  event.getByLabel("offlineBeamSpot", beamSpotHandle);
114  reco::BeamSpot vertexBeamSpot = *beamSpotHandle;
115  //
116  std::vector <reco::MuonCollection::const_iterator> goodMuons_it;
117  unsigned int nPositiveZ = 0;
118  unsigned int nNegativeZ = 0;
119  float muonOuterZPosition = -99999.;
120  if(isIPdata){
121  if (printalot)std::cout<<" muons.size() = "<<muons->size() <<std::endl;
122  for ( reco::MuonCollection::const_iterator muon = muons->begin(); muon != muons->end(); ++muon ) {
123  DataFlow->Fill(31.);
124  if (printalot) {
125  std::cout<<" iMuon = "<<muon-muons->begin()<<" charge = "<<muon->charge()<<" p = "<<muon->p()<<" pt = "<<muon->pt()<<
126  " eta = "<<muon->eta()<<" phi = "<<muon->phi()<<
127  " matches = "<<
128  muon->matches().size()<<" matched Seg = "<<muon->numberOfMatches(reco::Muon::SegmentAndTrackArbitration)<<" GLB/TR/STA = "<<
129  muon->isGlobalMuon()<<"/"<<muon->isTrackerMuon()<<"/"<<muon->isStandAloneMuon()<<std::endl;
130  }
131  if(!(muon->isTrackerMuon() && muon->isGlobalMuon())){
132  continue;
133  }
134  DataFlow->Fill(32.);
135  double relISO = ( muon->isolationR03().sumPt +
136  muon->isolationR03().emEt +
137  muon->isolationR03().hadEt)/muon->track()->pt();
138  if (printalot) {
139  std::cout<<" relISO = "<<relISO<<" emVetoEt = "<<muon->isolationR03().emVetoEt<<" caloComp = "<<
140  muon::caloCompatibility(*(muon))<<" dxy = "<<fabs(muon->track()->dxy(vertexBeamSpot.position()))<<std::endl;
141  }
142  if(
143  //relISO>0.1 || muon::caloCompatibility(*(muon))<.90 ||
144  fabs(muon->track()->dxy(vertexBeamSpot.position()))>0.2 || muon->pt()<6.){
145  continue;
146  }
147  DataFlow->Fill(33.);
148  if(muon->track()->hitPattern().numberOfValidPixelHits()<1 ||
149  muon->track()->hitPattern().numberOfValidTrackerHits()<11 ||
150  muon->combinedMuon()->hitPattern().numberOfValidMuonHits()<1 ||
151  muon->combinedMuon()->normalizedChi2()>10. ||
152  muon->numberOfMatches()<2){
153  continue;
154  }
155  DataFlow->Fill(34.);
156  float zOuter = muon->combinedMuon()->outerPosition().z();
157  float rhoOuter = muon->combinedMuon()->outerPosition().rho();
158  bool passDepth = true;
159  // barrel region
160  //if ( fabs(zOuter) < 660. && rhoOuter > 400. && rhoOuter < 480.){
161  if ( fabs(zOuter) < 660. && rhoOuter > 400. && rhoOuter < 540.){
162  passDepth = false;
163  }
164  // endcap region
165  //else if( fabs(zOuter) > 550. && fabs(zOuter) < 650. && rhoOuter < 300.){
166  else if( fabs(zOuter) > 550. && fabs(zOuter) < 650. && rhoOuter < 300.){
167  passDepth = false;
168  }
169  // overlap region
170  //else if ( fabs(zOuter) > 680. && fabs(zOuter) < 730. && rhoOuter < 480.){
171  else if ( fabs(zOuter) > 680. && fabs(zOuter) < 880. && rhoOuter < 540.){
172  passDepth = false;
173  }
174  if(!passDepth){
175  continue;
176  }
177  DataFlow->Fill(35.);
178  goodMuons_it.push_back(muon);
179  if(muon->track()->momentum().z()>0.){
180  ++nPositiveZ;
181  }
182  if(muon->track()->momentum().z()<0.){
183  ++nNegativeZ;
184  }
185  }
186  }
187 
188  //
189 
190 
191  if (printalot) std::cout<<"Start track loop over "<<trackCollection.size()<<" tracks"<<std::endl;
192  for(edm::View<reco::Track>::size_type i=0; i<trackCollection.size(); ++i) {
193  DataFlow->Fill(2.);
194  edm::RefToBase<reco::Track> track(trackCollectionH, i);
195  //std::cout<<" iTR = "<<i<<" eta = "<<track->eta()<<" phi = "<<track->phi()<<std::cout<<" pt = "<<track->pt()<<std::endl;
196  if(isIPdata){
197  if (printalot){
198  std::cout<<" nNegativeZ = "<<nNegativeZ<<" nPositiveZ = "<<nPositiveZ<<std::endl;
199  }
200  if(nNegativeZ>1 || nPositiveZ>1){
201  break;
202  }
203  bool trackOK = false;
204  if (printalot){
205  std::cout<<" goodMuons_it.size() = "<<goodMuons_it.size()<<std::endl;
206  }
207  for(size_t iM=0;iM<goodMuons_it.size();++iM){
208  //std::cout<<" iM = "<<iM<<" eta = "<<goodMuons_it[iM]->track()->eta()<<
209  //" phi = "<<goodMuons_it[iM]->track()->phi()<<
210  //" pt = "<<goodMuons_it[iM]->track()->pt()<<std::endl;
211  float deltaR = pow(track->phi()-goodMuons_it[iM]->track()->phi(),2) +
212  pow(track->eta()-goodMuons_it[iM]->track()->eta(),2);
213  deltaR = sqrt(deltaR);
214  if (printalot){
215  std::cout<<" TR mu match to a tr: deltaR = "<<deltaR<<" dPt = "<<
216  track->pt()-goodMuons_it[iM]->track()->pt()<<std::endl;
217  }
218  if(deltaR>0.01 || fabs(track->pt()-goodMuons_it[iM]->track()->pt())>0.1 ){
219  continue;
220  }
221  else{
222  trackOK = true;
223  if (printalot){
224  std::cout<<" trackOK "<<std::endl;
225  }
226  muonOuterZPosition = goodMuons_it[iM]->combinedMuon()->outerPosition().z();
227  break;
228  //++nChosenTracks;
229  }
230  }
231  if(!trackOK){
232  if (printalot){
233  std::cout<<" failed: trackOK "<<std::endl;
234  }
235  continue;
236  }
237  }
238  else{
239  //---- Do we need a better "clean track" definition?
240  if(trackCollection.size()>2){
241  break;
242  }
243  DataFlow->Fill(3.);
244  if(!i && 2==trackCollection.size()){
246  edm::RefToBase<reco::Track> trackTwo(trackCollectionH, tType);
247  if(track->outerPosition().z()*trackTwo->outerPosition().z()>0){// in one and the same "endcap"
248  break;
249  }
250  }
251  }
252  DataFlow->Fill(4.);
253  if (printalot){
254  std::cout<<"i track = "<<i<<" P = "<<track->p()<<" chi2/ndf = "<<track->normalizedChi2()<<" nSeg = "<<segments->size()<<std::endl;
255  std::cout<<"quality undef/loose/tight/high/confirmed/goodIt/size "<<
256  track->quality(reco::Track::undefQuality)<<"/"<<
257  track->quality(reco::Track::loose)<<"/"<<
258  track->quality(reco::Track::tight)<<"/"<<
259  track->quality(reco::Track::highPurity)<<"/"<<
260  track->quality(reco::Track::confirmed)<<"/"<<
261  track->quality(reco::Track::goodIterative)<<"/"<<
262  track->quality(reco::Track::qualitySize)<<
263  std::endl;
264  std::cout<<" pt = "<< track->pt()<<" +-"<<track->ptError()<<" q/pt = "<<track->qoverp()<<" +- "<<track->qoverpError()<<std::endl;
265  //std::cout<<" const Pmin = "<<minTrackMomentum<<" pMax = "<<maxTrackMomentum<<" maxNormChi2 = "<<maxNormChi2<<std::endl;
266  std::cout<<" track inner position = "<<track->innerPosition()<<" outer position = "<<track->outerPosition()<<std::endl;
267  std::cout<<"track eta (outer) = "<<track->outerPosition().eta()<<" phi (outer) = "<<
268  track->outerPosition().phi()<<std::endl;
269  if(fabs(track->innerPosition().z())>500.){
270  DetId innerDetId(track->innerDetId());
271  std::cout<<" dump inner state MUON detid = "<<debug.dumpMuonId(innerDetId)<<std::endl;
272  }
273  if(fabs(track->outerPosition().z())>500.){
274  DetId outerDetId(track->outerDetId());
275  std::cout<<" dump outer state MUON detid = "<<debug.dumpMuonId(outerDetId)<<std::endl;
276  }
277 
278  std::cout<<" nHits = "<<track->found()<<std::endl;
279  /*
280  trackingRecHit_iterator rhbegin = track->recHitsBegin();
281  trackingRecHit_iterator rhend = track->recHitsEnd();
282  int iRH = 0;
283  for(trackingRecHit_iterator recHit = rhbegin; recHit != rhend; ++recHit){
284  const GeomDet* geomDet = theTrackingGeometry->idToDet((*recHit)->geographicalId());
285  std::cout<<"hit "<<iRH<<" loc pos = " <<(*recHit)->localPosition()<<
286  " glob pos = " <<geomDet->toGlobal((*recHit)->localPosition())<<std::endl;
287  ++iRH;
288  }
289  */
290  }
291  float dpT_ov_pT = 0.;
292  if(fabs(track->pt())>0.001){
293  dpT_ov_pT = track->ptError()/ track->pt();
294  }
295  //---- These define a "good" track
296  if(track->normalizedChi2()>maxNormChi2){// quality
297  break;
298  }
299  DataFlow->Fill(5.);
300  if(track->found()<minTrackHits){// enough data points
301  break;
302  }
303  DataFlow->Fill(6.);
304  if(!segments->size()){// better have something in the CSC
305  break;
306  }
307  DataFlow->Fill(7.);
308  if(magField && (track->p()<minP || track->p()>maxP)){// proper energy range
309  break;
310  }
311  DataFlow->Fill(8.);
312  if(magField && (dpT_ov_pT >0.5) ){// not too crazy uncertainty
313  break;
314  }
315  DataFlow->Fill(9.);
316 
317  passTheEvent = true;
318  if (printalot) std::cout<<"good Track"<<std::endl;
319  CLHEP::Hep3Vector r3T_inner(track->innerPosition().x(),track->innerPosition().y(),track->innerPosition().z());
320  CLHEP::Hep3Vector r3T(track->outerPosition().x(),track->outerPosition().y(),track->outerPosition().z());
321  chooseDirection(r3T_inner, r3T);// for non-IP
322 
323  CLHEP::Hep3Vector p3T(track->outerMomentum().x(),track->outerMomentum().y(),track->outerMomentum().z());
324  CLHEP::Hep3Vector p3_propagated, r3_propagated;
325  AlgebraicSymMatrix66 cov_propagated, covT;
326  covT *= 1e-20;
327  cov_propagated *= 1e-20;
328  int charge = track->charge();
329  FreeTrajectoryState ftsStart = getFromCLHEP(p3T, r3T, charge, covT, &*(theService->magneticField()));
330  if (printalot){
331  std::cout<<" p = "<<track->p()<<" norm chi2 = "<<track->normalizedChi2()<<std::endl;
332  std::cout<<" dump the very first FTS = "<<debug.dumpFTS(ftsStart)<<std::endl;
333  }
334  TrajectoryStateOnSurface tSOSDest;
335  int endcap = 0;
336  //---- which endcap to look at
337  if(track->outerPosition().z()>0){
338  endcap = 1;
339  }
340  else{
341  endcap = 2;
342  }
343  int chamber = 1;
344  //---- a "refference" CSCDetId for each ring
345  std::vector< CSCDetId > refME;
346  for(int iS=1;iS<5;++iS){
347  for(int iR=1;iR<4;++iR){
348  if(1!=iS && iR>2){
349  continue;
350  }
351  else if(4==iS && iR>1){
352  continue;
353  }
354  refME.push_back( CSCDetId(endcap, iS, iR, chamber));
355  }
356  }
357  //---- loop over the "refference" CSCDetIds
358  for(size_t iSt = 0; iSt<refME.size();++iSt){
359  if (printalot){
360  std::cout<<"loop iStatation = "<<iSt<<std::endl;
361  std::cout<<"refME[iSt]: st = "<<refME[iSt].station()<<" rg = "<<refME[iSt].ring()<<std::endl;
362  }
363  std::map <std::string, bool> chamberTypes;
364  chamberTypes["ME11"] = false;
365  chamberTypes["ME12"] = false;
366  chamberTypes["ME13"] = false;
367  chamberTypes["ME21"] = false;
368  chamberTypes["ME22"] = false;
369  chamberTypes["ME31"] = false;
370  chamberTypes["ME32"] = false;
371  chamberTypes["ME41"] = false;
372  const CSCChamber* cscChamber_base = cscGeom->chamber(refME[iSt].chamberId());
373  DetId detId = cscChamber_base->geographicalId();
374  if (printalot){
375  std::cout<<" base iStation : eta = "<<cscGeom->idToDet(detId)->surface().position().eta()<<" phi = "<<
376  cscGeom->idToDet(detId)->surface().position().phi() << " y = " <<cscGeom->idToDet(detId)->surface().position().y()<<std::endl;
377  std::cout<<" dump base iStation detid = "<<debug.dumpMuonId(detId)<<std::endl;
378  std::cout<<" dump FTS start = "<<debug.dumpFTS(ftsStart)<<std::endl;
379  }
380  //---- propagate to this ME
381  tSOSDest = propagate(ftsStart, cscGeom->idToDet(detId)->surface());
382  if(tSOSDest.isValid()){
383  ftsStart = *tSOSDest.freeState();
384  if (printalot) std::cout<<" dump FTS end = "<<debug.dumpFTS(ftsStart)<<std::endl;
385  getFromFTS(ftsStart, p3_propagated, r3_propagated, charge, cov_propagated);
386  float feta = fabs(r3_propagated.eta());
387  float phi = r3_propagated.phi();
388  //---- which rings are (possibly) penetrated
389  ringCandidates(refME[iSt].station(), feta, chamberTypes);
390 
391  map<std::string,bool>::iterator iter;
392  int iterations = 0;
393  //---- loop over ring candidates
394  for( iter = chamberTypes.begin(); iter != chamberTypes.end(); iter++ ) {
395  ++iterations;
396  //---- is this ME a machinig candidate station
397  if(iter->second && (iterations-1)==int(iSt)){
398  if (printalot){
399  std::cout<<" Chamber type "<< iter->first<<" is a candidate..."<<std::endl;
400  std::cout<<" station() = "<< refME[iSt].station()<<" ring() = "<<refME[iSt].ring()<<" iSt = "<<iSt<<std::endl;
401  }
402  std::vector <int> coupleOfChambers;
403  //---- which chamber (and its closes neighbor) is penetrated by the track - candidates
404  chamberCandidates(refME[iSt].station(), refME[iSt].ring(), phi, coupleOfChambers);
405  //---- loop over the two chamber candidates
406  for(size_t iCh =0;iCh<coupleOfChambers.size();++iCh){
407  DataFlow->Fill(11.);
408  if (printalot) std::cout<<" Check chamber N = "<<coupleOfChambers.at(iCh)<<std::endl;;
409  if((!getAbsoluteEfficiency) && (true == emptyChambers
410  [refME[iSt].endcap()-1]
411  [refME[iSt].station()-1]
412  [refME[iSt].ring()-1]
413  [coupleOfChambers.at(iCh)-FirstCh])){
414  continue;
415  }
416  CSCDetId theCSCId(refME[iSt].endcap(), refME[iSt].station(), refME[iSt].ring(), coupleOfChambers.at(iCh));
417  const CSCChamber* cscChamber = cscGeom->chamber(theCSCId.chamberId());
418  const BoundPlane bpCh = cscGeom->idToDet(cscChamber->geographicalId())->surface();
419  float zFTS = ftsStart.position().z();
420  float dz = fabs(bpCh.position().z() - zFTS);
421  float zDistInner = track->innerPosition().z() - bpCh.position().z();
422  float zDistOuter = track->outerPosition().z() - bpCh.position().z();
423  //---- only detectors between the inner and outer points of the track are considered for non IP-data
424  if(printalot){
425  std::cout<<" zIn = "<<track->innerPosition().z()<<" zOut = "<<track->outerPosition().z()<<" zSurf = "<<bpCh.position().z()<<std::endl;
426  }
427  if(!isIPdata && (zDistInner*zDistOuter>0. || fabs(zDistInner)<15. || fabs(zDistOuter)<15.)){ // for non IP-data
428  if(printalot){
429  std::cout<<" Not an intermediate (as defined) point... Skip."<<std::endl;
430  }
431  continue;
432  }
433  if(isIPdata && fabs(track->eta())<1.8){
434  if(fabs(muonOuterZPosition) - fabs(bpCh.position().z())<0 ||
435  fabs(muonOuterZPosition-bpCh.position().z())<15.){
436  continue;
437  }
438  }
439  DataFlow->Fill(13.);
440  //---- propagate to the chamber (from this ME) if it is a different surface (odd/even chambers)
441  if(dz>0.1){// i.e. non-zero (float 0 check is bad)
442  //if(fabs(zChanmber - zFTS ) > 0.1){
443  tSOSDest = propagate(ftsStart, cscGeom->idToDet(cscChamber->geographicalId())->surface());
444  if(tSOSDest.isValid()){
445  ftsStart = *tSOSDest.freeState();
446  }
447  else{
448  if(printalot) std::cout<<"TSOS not valid! Break."<<std::endl;
449  break;
450  }
451  }
452  else{
453  if(printalot) std::cout<<" info: dz<0.1"<<std::endl;
454  }
455  DataFlow->Fill(15.);
456  FreeTrajectoryState ftsInit = ftsStart;
457  bool inDeadZone = false;
458  //---- loop over the 6 layers
459  for(int iLayer = 0;iLayer<6;++iLayer){
460  bool extrapolationPassed = true;
461  if (printalot){
462  std::cout<<" iLayer = "<<iLayer<<" dump FTS init = "<<debug.dumpFTS(ftsInit)<<std::endl;
463  std::cout<<" dump detid = "<<debug.dumpMuonId(cscChamber->geographicalId())<<std::endl;
464  std::cout<<"Surface to propagate to: pos = "<<cscChamber->layer(iLayer+1)->surface().position()<<" eta = "
465  <<cscChamber->layer(iLayer+1)->surface().position().eta()<<" phi = "
466  <<cscChamber->layer(iLayer+1)->surface().position().phi()<<std::endl;
467  }
468  //---- propagate to this layer
469  tSOSDest = propagate(ftsInit, cscChamber->layer(iLayer+1)->surface());
470  if(tSOSDest.isValid()){
471  ftsInit = *tSOSDest.freeState();
472  if (printalot) std::cout<<" Propagation between layers successful: dump FTS end = "<<debug.dumpFTS(ftsInit)<<std::endl;
473  getFromFTS(ftsInit, p3_propagated, r3_propagated, charge, cov_propagated);
474  }
475  else{
476  if (printalot) std::cout<<"Propagation between layers not successful - notValid TSOS"<<std::endl;
477  extrapolationPassed = false;
478  inDeadZone = true;
479  }
480  //}
481  //---- Extrapolation passed? For each layer?
482  if(extrapolationPassed){
483  GlobalPoint theExtrapolationPoint(r3_propagated.x(),r3_propagated.y(),r3_propagated.z());
484  LocalPoint theLocalPoint = cscChamber->layer(iLayer+1)->toLocal(theExtrapolationPoint);
485  //std::cout<<" Candidate chamber: extrapolated LocalPoint = "<<theLocalPoint<<std::endl;
486  inDeadZone = ( inDeadZone ||
487  !inSensitiveLocalRegion(theLocalPoint.x(), theLocalPoint.y(),
488  refME[iSt].station(), refME[iSt].ring()));
489  if (printalot){
490  std::cout<<" Candidate chamber: extrapolated LocalPoint = "<<theLocalPoint<<"inDeadZone = "<<inDeadZone<<std::endl;
491  }
492  //---- break if in dead zone for any layer ("clean" tracks)
493  if(inDeadZone){
494  break;
495  }
496  }
497  else{
498  break;
499  }
500  }
501  DataFlow->Fill(17.);
502  //---- Is a track in a sensitive area for each layer?
503  if(!inDeadZone){//---- for any layer
504  DataFlow->Fill(19.);
505  if (printalot) std::cout<<"Do efficiencies..."<<std::endl;
506  //---- Do efficiencies
507  // angle cuts applied (if configured)
508  bool angle_flag = true; angle_flag = efficienciesPerChamber(theCSCId, cscChamber, ftsStart);
509  if(useDigis && angle_flag){
510  stripWire_Efficiencies(theCSCId, ftsStart);
511  }
512  if(angle_flag){
513  recHitSegment_Efficiencies(theCSCId, cscChamber, ftsStart);
514  if(!isData){
515  recSimHitEfficiency(theCSCId, ftsStart);
516  }
517  }
518  }
519  else{
520  if(printalot) std::cout<<" Not in active area for all layers"<<std::endl;
521  }
522  }
523  if(tSOSDest.isValid()){
524  ftsStart = *tSOSDest.freeState();
525  }
526  }
527  }
528  }
529  else{
530  if (printalot) std::cout<<" TSOS not valid..."<<std::endl;
531  }
532  }
533  }
534  //---- End
535  if (printalot) printf("==exit===CSCEfficiency===== run %i\tevent %i\n\n",iRun,iEvent);
536  return passTheEvent;
537 }
edm::InputTag corrlctDigiTag_
int i
Definition: DBlmapReader.cc:9
edm::InputTag segmentDigiTag_
bool applyTrigger(edm::Handle< edm::TriggerResults > &hltR, const edm::TriggerNames &triggerNames)
void chooseDirection(CLHEP::Hep3Vector &innerPosition, CLHEP::Hep3Vector &outerPosition)
void ringCandidates(int station, float absEta, std::map< std::string, bool > &chamberTypes)
ROOT::Math::SMatrix< double, 6, 6, ROOT::Math::MatRepSym< double, 6 > > AlgebraicSymMatrix66
bool recSimHitEfficiency(CSCDetId &id, FreeTrajectoryState &ftsChamber)
double charge(const std::vector< uint8_t > &Ampls)
Strings const & triggerNames() const
Definition: TriggerNames.cc:24
bool getAbsoluteEfficiency
float caloCompatibility(const reco::Muon &muon)
FreeTrajectoryState getFromCLHEP(const CLHEP::Hep3Vector &p3, const CLHEP::Hep3Vector &r3, int charge, const AlgebraicSymMatrix66 &cov, const MagneticField *field)
std::string dumpMuonId(const DetId &id) const
std::string dumpFTS(const FreeTrajectoryState &fts) const
int iEvent
Definition: GenABIO.cc:243
MuonServiceProxy * theService
FreeTrajectoryState * freeState(bool withErrors=true) const
T sqrt(T t)
Definition: SSEVec.h:48
T z() const
Definition: PV3DBase.h:64
unsigned int size_type
Definition: View.h:85
edm::InputTag rechitDigiTag_
DetId geographicalId() const
The label of this GeomDet.
Definition: GeomDet.h:72
edm::InputTag hlTriggerResults_
void getFromFTS(const FreeTrajectoryState &fts, CLHEP::Hep3Vector &p3, CLHEP::Hep3Vector &r3, int &charge, AlgebraicSymMatrix66 &cov)
bool efficienciesPerChamber(CSCDetId &id, const CSCChamber *cscChamber, FreeTrajectoryState &ftsChamber)
void chamberCandidates(int station, int ring, float phi, std::vector< int > &coupleOfChambers)
double maxNormChi2
bool stripWire_Efficiencies(CSCDetId &cscDetId, FreeTrajectoryState &ftsChamber)
double deltaR(double eta1, double eta2, double phi1, double phi2)
Definition: TreeUtility.cc:17
Definition: DetId.h:20
GlobalPoint position() const
void fillDigiInfo(edm::Handle< CSCALCTDigiCollection > &alcts, edm::Handle< CSCCLCTDigiCollection > &clcts, edm::Handle< CSCCorrelatedLCTDigiCollection > &correlatedlcts, edm::Handle< CSCWireDigiCollection > &wires, edm::Handle< CSCStripDigiCollection > &strips, edm::Handle< edm::PSimHitContainer > &simhits, edm::Handle< CSCRecHit2DCollection > &rechits, edm::Handle< CSCSegmentCollection > &segments, edm::ESHandle< CSCGeometry > &cscGeom)
#define FirstCh
const T & get() const
Definition: EventSetup.h:55
edm::InputTag tracksTag
size_type size() const
bool recHitSegment_Efficiencies(CSCDetId &cscDetId, const CSCChamber *cscChamber, FreeTrajectoryState &ftsChamber)
unsigned int printout_NEvents
T const * product() const
Definition: Handle.h:74
edm::InputTag clctDigiTag_
bool inSensitiveLocalRegion(double xLocal, double yLocal, int station, int ring)
bool emptyChambers[2][4][4][NumCh]
tuple muons
Definition: patZpeak.py:38
edm::InputTag simHitTag
tuple cout
Definition: gather_cfg.py:121
const Point & position() const
position
Definition: BeamSpot.h:63
edm::InputTag stripDigiTag_
#define debug
Definition: MEtoEDMFormat.h:34
edm::InputTag alctDigiTag_
edm::InputTag wireDigiTag_
unsigned int minTrackHits
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:40
TrajectoryStateOnSurface propagate(FreeTrajectoryState &ftsStart, const BoundPlane &bp)
Definition: DDAxes.h:10
FreeTrajectoryState CSCEfficiency::getFromCLHEP ( const CLHEP::Hep3Vector &  p3,
const CLHEP::Hep3Vector &  r3,
int  charge,
const AlgebraicSymMatrix66 cov,
const MagneticField field 
)
private

Definition at line 1454 of file CSCEfficiency.cc.

1456  {
1457 
1458  GlobalVector p3GV(p3.x(), p3.y(), p3.z());
1459  GlobalPoint r3GP(r3.x(), r3.y(), r3.z());
1460  GlobalTrajectoryParameters tPars(r3GP, p3GV, charge, field);
1461 
1462  CartesianTrajectoryError tCov(cov);
1463 
1464  return cov.kRows == 6 ? FreeTrajectoryState(tPars, tCov) : FreeTrajectoryState(tPars) ;
1465 }
double charge(const std::vector< uint8_t > &Ampls)
double p3[4]
Definition: TauolaWrapper.h:91
void CSCEfficiency::getFromFTS ( const FreeTrajectoryState fts,
CLHEP::Hep3Vector &  p3,
CLHEP::Hep3Vector &  r3,
int &  charge,
AlgebraicSymMatrix66 cov 
)
private

Definition at line 1439 of file CSCEfficiency.cc.

References FreeTrajectoryState::cartesianError(), FreeTrajectoryState::charge(), FreeTrajectoryState::hasError(), CartesianTrajectoryError::matrix(), FreeTrajectoryState::momentum(), FreeTrajectoryState::position(), PV3DBase< T, PVType, FrameType >::x(), PV3DBase< T, PVType, FrameType >::y(), and PV3DBase< T, PVType, FrameType >::z().

1441  {
1442 
1443  GlobalVector p3GV = fts.momentum();
1444  GlobalPoint r3GP = fts.position();
1445 
1446  p3.set(p3GV.x(), p3GV.y(), p3GV.z());
1447  r3.set(r3GP.x(), r3GP.y(), r3GP.z());
1448 
1449  charge = fts.charge();
1450  cov = fts.hasError() ? fts.cartesianError().matrix() : AlgebraicSymMatrix66();
1451 
1452 }
CartesianTrajectoryError cartesianError() const
ROOT::Math::SMatrix< double, 6, 6, ROOT::Math::MatRepSym< double, 6 > > AlgebraicSymMatrix66
T y() const
Definition: PV3DBase.h:63
TrackCharge charge() const
double charge(const std::vector< uint8_t > &Ampls)
T z() const
Definition: PV3DBase.h:64
GlobalVector momentum() const
const AlgebraicSymMatrix66 & matrix() const
GlobalPoint position() const
T x() const
Definition: PV3DBase.h:62
double p3[4]
Definition: TauolaWrapper.h:91
bool CSCEfficiency::inSensitiveLocalRegion ( double  xLocal,
double  yLocal,
int  station,
int  ring 
)
private

Definition at line 540 of file CSCEfficiency.cc.

References abs.

540  {
541  //---- Good region means sensitive area of a chamber. "Local" stands for the local system
542  bool pass = false;
543  std::vector <double> chamberBounds(3);// the sensitive area
544  float y_center = 99999.;
545  //---- hardcoded... not good
546  if(station>1 && station<5){
547  if(2==ring){
548  chamberBounds[0] = 66.46/2; // (+-)x1 shorter
549  chamberBounds[1] = 127.15/2; // (+-)x2 longer
550  chamberBounds[2] = 323.06/2;
551  y_center = -0.95;
552  }
553  else{
554  if(2==station){
555  chamberBounds[0] = 54.00/2; // (+-)x1 shorter
556  chamberBounds[1] = 125.71/2; // (+-)x2 longer
557  chamberBounds[2] = 189.66/2;
558  y_center = -0.955;
559  }
560  else if(3==station){
561  chamberBounds[0] = 61.40/2; // (+-)x1 shorter
562  chamberBounds[1] = 125.71/2; // (+-)x2 longer
563  chamberBounds[2] = 169.70/2;
564  y_center = -0.97;
565  }
566  else if(4==station){
567  chamberBounds[0] = 69.01/2; // (+-)x1 shorter
568  chamberBounds[1] = 125.65/2; // (+-)x2 longer
569  chamberBounds[2] = 149.42/2;
570  y_center = -0.94;
571  }
572  }
573  }
574  else if(1==station){
575  if(3==ring){
576  chamberBounds[0] = 63.40/2; // (+-)x1 shorter
577  chamberBounds[1] = 92.10/2; // (+-)x2 longer
578  chamberBounds[2] = 164.16/2;
579  y_center = -1.075;
580  }
581  else if(2==ring){
582  chamberBounds[0] = 51.00/2; // (+-)x1 shorter
583  chamberBounds[1] = 83.74/2; // (+-)x2 longer
584  chamberBounds[2] = 174.49/2;
585  y_center = -0.96;
586  }
587  else{// to be investigated
588  chamberBounds[0] = 30./2;//40./2; // (+-)x1 shorter
589  chamberBounds[1] = 60./2;//100./2; // (+-)x2 longer
590  chamberBounds[2] = 160./2;//142./2;
591  y_center = 0.;
592  }
593  }
594  double yUp = chamberBounds[2] + y_center;
595  double yDown = - chamberBounds[2] + y_center;
596  double xBound1Shifted = chamberBounds[0]-distanceFromDeadZone;//
597  double xBound2Shifted = chamberBounds[1]-distanceFromDeadZone;//
598  double lineSlope = (yUp - yDown)/(xBound2Shifted-xBound1Shifted);
599  double lineConst = yUp - lineSlope*xBound2Shifted;
600  double yBoundary = lineSlope*abs(xLocal) + lineConst;
601  pass = checkLocal(yLocal, yBoundary, station, ring);
602  return pass;
603 }
#define abs(x)
Definition: mlp_lapack.h:159
double distanceFromDeadZone
bool checkLocal(double yLocal, double yBoundary, int station, int ring)
void CSCEfficiency::linearExtrapolation ( GlobalPoint  initialPosition,
GlobalVector  initialDirection,
float  zSurface,
std::vector< float > &  posZY 
)
private

Definition at line 1467 of file CSCEfficiency.cc.

References PV3DBase< T, PVType, FrameType >::x(), PV3DBase< T, PVType, FrameType >::y(), and PV3DBase< T, PVType, FrameType >::z().

1468  {
1469  double paramLine = lineParameter(initialPosition.z(), zSurface, initialDirection.z());
1470  double xPosition = extrapolate1D(initialPosition.x(), initialDirection.x(),paramLine);
1471  double yPosition = extrapolate1D(initialPosition.y(), initialDirection.y(),paramLine);
1472  posZY.clear();
1473  posZY.push_back(xPosition);
1474  posZY.push_back(yPosition);
1475 }
double lineParameter(double initZPosition, double destZPosition, double initZDirection)
T y() const
Definition: PV3DBase.h:63
T z() const
Definition: PV3DBase.h:64
double extrapolate1D(double initPosition, double initDirection, double parameterOfTheLine)
T x() const
Definition: PV3DBase.h:62
double CSCEfficiency::lineParameter ( double  initZPosition,
double  destZPosition,
double  initZDirection 
)
private

Definition at line 1482 of file CSCEfficiency.cc.

1482  {
1483  double paramLine = (destZPosition-initZPosition)/initZDirection;
1484  return paramLine;
1485 }
TrajectoryStateOnSurface CSCEfficiency::propagate ( FreeTrajectoryState ftsStart,
const BoundPlane bp 
)
private

Definition at line 1517 of file CSCEfficiency.cc.

References LargeD0_PixelPairStep_cff::propagator, and AlCaHLTBitMon_QueryRunRegistry::string.

1517  {
1518  TrajectoryStateOnSurface tSOSDest;
1519  std::string propagatorName;
1520 /*
1521 // it would work if cosmic muons had properly assigned direction...
1522  bool dzPositive = bpDest.position().z() - ftsStart.position().z() > 0 ? true : false;
1523  //---- Be careful with trigger conditions too
1524  if(!isIPdata){
1525  bool rightDirection = !(alongZ^dzPositive);
1526  if(rightDirection){
1527  if(printalot) std::cout<<" propagate along momentum"<<std::endl;
1528  propagatorName = "SteppingHelixPropagatorAlong";
1529  }
1530  else{
1531  if(printalot) std::cout<<" propagate opposite momentum"<<std::endl;
1532  propagatorName = "SteppingHelixPropagatorOpposite";
1533  }
1534  }
1535  else{
1536  if(printalot) std::cout<<" propagate any (momentum)"<<std::endl;
1537  propagatorName = "SteppingHelixPropagatorAny";
1538  }
1539 */
1540  propagatorName = "SteppingHelixPropagatorAny";
1541  tSOSDest = propagator(propagatorName)->propagate(ftsStart, bpDest);
1542  return tSOSDest;
1543 }
virtual TrajectoryStateOnSurface propagate(const FreeTrajectoryState &, const Surface &) const
Definition: Propagator.cc:12
const Propagator * propagator(std::string propagatorName) const
const Propagator * CSCEfficiency::propagator ( std::string  propagatorName) const
private

Definition at line 1512 of file CSCEfficiency.cc.

1512  {
1513  return &*theService->propagator(propagatorName);
1514 }
MuonServiceProxy * theService
bool CSCEfficiency::recHitSegment_Efficiencies ( CSCDetId cscDetId,
const CSCChamber cscChamber,
FreeTrajectoryState ftsChamber 
)
private

Definition at line 1298 of file CSCEfficiency.cc.

References gather_cfg::cout, Reference_intrackfit_cff::endcap, PV3DBase< T, PVType, FrameType >::eta(), first, FirstCh, CSCLayer::geometry(), CSCChamber::layer(), M_PI, CSCLayerGeometry::nearestStrip(), FreeTrajectoryState::position(), funct::pow(), relativeConstraints::ring, edm::second(), findQualityFiles::size, mathSSE::sqrt(), relativeConstraints::station, CSCLayerGeometry::stripAngle(), GeomDet::surface(), GeomDet::toGlobal(), GeomDet::toLocal(), PV3DBase< T, PVType, FrameType >::x(), PV3DBase< T, PVType, FrameType >::y(), and PV3DBase< T, PVType, FrameType >::z().

1298  {
1299  int ec, st, rg, ch, secondRing;
1300  returnTypes(id, ec, st, rg, ch, secondRing);
1301  bool firstCondition, secondCondition;
1302 
1303  std::vector <bool> missingLayers_rh(6);
1304  std::vector <int> usedInSegment(6);
1305  // Rechits
1306  if(printalot) std::cout<<"RecHits eff"<<std::endl;
1307  for(int iLayer=0;iLayer<6;++iLayer){
1308  firstCondition = allRechits[ec][st][rg][ch][iLayer].size() ? true : false;
1309  secondCondition = false;
1310  int thisRing = rg;
1311  if(secondRing>-1){
1312  secondCondition = allRechits[ec][st][secondRing][ch][iLayer].size() ? true : false;
1313  if(secondCondition){
1314  thisRing = secondRing;
1315  }
1316  }
1317  if(firstCondition || secondCondition){
1318  ChHist[ec][st][rg][ch].EfficientRechits_good->Fill(iLayer+1);
1319  for(size_t iR=0;
1320  iR<allRechits[ec][st][thisRing][ch][iLayer].size();
1321  ++iR){
1322  if(allRechits[ec][st][thisRing][ch][iLayer][iR].second){
1323  usedInSegment[iLayer] = 1;
1324  break;
1325  }
1326  else{
1327  usedInSegment[iLayer] = -1;
1328  }
1329  }
1330  }
1331  else{
1332  missingLayers_rh[iLayer] = true;
1333  if(printalot){
1334  std::cout<<"missing rechits ";
1335  printf("\t\tendcap/station/ring/chamber/layer: %i/%i/%i/%i/%i\n",id.endcap(),id.station(),id.ring(),id.chamber(),iLayer+1);
1336  }
1337  }
1338  }
1339  GlobalVector globalDir;
1340  GlobalPoint globalPos;
1341  // Segments
1342  firstCondition = allSegments[ec][st][rg][ch].size() ? true : false;
1343  secondCondition = false;
1344  int secondSize = 0;
1345  int thisRing = rg;
1346  if(secondRing>-1){
1347  secondCondition = allSegments[ec][st][secondRing][ch].size() ? true : false;
1348  secondSize = allSegments[ec][st][secondRing][ch].size();
1349  if(secondCondition){
1350  thisRing = secondRing;
1351  }
1352  }
1353  if(firstCondition || secondCondition){
1354  if (printalot) std::cout<<"segments - start ec = "<<ec<<" st = "<<st<<" rg = "<<rg<<" ch = "<<ch<<std::endl;
1355  StHist[ec][st].EfficientSegments_XY->Fill(ftsChamber.position().x(),ftsChamber.position().y());
1356  if(1==allSegments[ec][st][rg][ch].size() + secondSize){
1357  globalDir = cscChamber->toGlobal(allSegments[ec][st][thisRing][ch][0].second);
1358  globalPos = cscChamber->toGlobal(allSegments[ec][st][thisRing][ch][0].first);
1359  StHist[ec][st].EfficientSegments_eta->Fill(fabs(ftsChamber.position().eta()));
1360  double residual = sqrt(pow(ftsChamber.position().x() - globalPos.x(),2)+
1361  pow(ftsChamber.position().y() - globalPos.y(),2)+
1362  pow(ftsChamber.position().z() - globalPos.z(),2));
1363  if (printalot) std::cout<<" fts.position() = "<<ftsChamber.position()<<" segPos = "<<globalPos<<" res = "<<residual<< std::endl;
1364  StHist[ec][st].ResidualSegments->Fill(residual);
1365  }
1366  for(int iLayer=0;iLayer<6;++iLayer){
1367  if(printalot) std::cout<<" iLayer = "<<iLayer<<" usedInSegment = "<<usedInSegment[iLayer]<<std::endl;
1368  if(0!=usedInSegment[iLayer]){
1369  if(-1==usedInSegment[iLayer]){
1370  ChHist[ec][st][rg][ch].InefficientSingleHits->Fill(iLayer+1);
1371  }
1372  ChHist[ec][st][rg][ch].AllSingleHits->Fill(iLayer+1);
1373  }
1374  firstCondition = allRechits[ec][st][rg][ch][iLayer].size() ? true : false;
1375  secondCondition = false;
1376  if(secondRing>-1){
1377  secondCondition = allRechits[ec][st][secondRing][ch][iLayer].size() ? true : false;
1378  }
1379  float stripAngle = 99999.;
1380  std::vector<float> posXY(2);
1381  bool oneSegment = false;
1382  if(1==allSegments[ec][st][rg][ch].size() + secondSize){
1383  oneSegment = true;
1384  const BoundPlane bp = cscChamber->layer(iLayer+1)->surface();
1385  linearExtrapolation(globalPos,globalDir, bp.position().z(), posXY);
1386  GlobalPoint gp_extrapol( posXY.at(0), posXY.at(1),bp.position().z());
1387  const LocalPoint lp_extrapol = cscChamber->layer(iLayer+1)->toLocal(gp_extrapol);
1388  posXY.at(0) = lp_extrapol.x();
1389  posXY.at(1) = lp_extrapol.y();
1390  int nearestStrip = cscChamber->layer(iLayer+1)->geometry()->nearestStrip(lp_extrapol);
1391  stripAngle = cscChamber->layer(iLayer+1)->geometry()->stripAngle(nearestStrip) - M_PI/2. ;
1392  }
1393  if(firstCondition || secondCondition){
1394  ChHist[ec][st][rg][ch].EfficientRechits_inSegment->Fill(iLayer+1);
1395  if(oneSegment){
1396  ChHist[ec][st][rg][ch].Y_EfficientRecHits_inSegment[iLayer]->Fill(posXY.at(1));
1397  ChHist[ec][st][rg][ch].Phi_EfficientRecHits_inSegment[iLayer]->Fill(stripAngle);
1398  }
1399  }
1400  else{
1401  if(oneSegment){
1402  ChHist[ec][st][rg][ch].Y_InefficientRecHits_inSegment[iLayer]->Fill(posXY.at(1));
1403  ChHist[ec][st][rg][ch].Phi_InefficientRecHits_inSegment[iLayer]->Fill(stripAngle);
1404  }
1405  }
1406  }
1407  }
1408  else{
1409  StHist[ec][st].InefficientSegments_XY->Fill(ftsChamber.position().x(),ftsChamber.position().y());
1410  if(printalot){
1411  std::cout<<"missing segment "<<std::endl;
1412  printf("\t\tendcap/station/ring/chamber: %i/%i/%i/%i\n",id.endcap(),id.station(),id.ring(),id.chamber());
1413  std::cout<<" fts.position() = "<<ftsChamber.position()<<std::endl;
1414  }
1415  }
1416  // Normalization
1417  ChHist[ec][st][rg][ch].EfficientRechits_good->Fill(8);
1418  if(allSegments[ec][st][rg][ch].size()+secondSize<2){
1419  StHist[ec][st].AllSegments_eta->Fill(fabs(ftsChamber.position().eta()));
1420  }
1421  ChHist[ec][st][rg][id.chamber()-FirstCh].EfficientRechits_inSegment->Fill(9);
1422 
1423  return true;
1424 }
struct CSCEfficiency::StationHistos StHist[2][4]
struct CSCEfficiency::ChamberHistos ChHist[2][4][3][LastCh-FirstCh+1]
GlobalPoint toGlobal(const Local2DPoint &lp) const
Conversion to the global R.F. from the R.F. of the GeomDet.
Definition: GeomDet.h:47
std::vector< TH1F * > Y_InefficientRecHits_inSegment
T y() const
Definition: PV3DBase.h:63
LocalPoint toLocal(const GlobalPoint &gp) const
Conversion to the R.F. of the GeomDet.
Definition: GeomDet.h:62
const Plane & surface() const
The nominal surface of the GeomDet.
Definition: GeomDet.h:35
void returnTypes(CSCDetId &id, int &ec, int &st, int &rg, int &ch, int &secondRing)
U second(std::pair< T, U > const &p)
std::vector< TH1F * > Phi_InefficientRecHits_inSegment
std::vector< TH1F * > Y_EfficientRecHits_inSegment
T sqrt(T t)
Definition: SSEVec.h:48
T z() const
Definition: PV3DBase.h:64
const CSCLayer * layer(CSCDetId id) const
Return the layer corresponding to the given id.
Definition: CSCChamber.cc:41
void linearExtrapolation(GlobalPoint initialPosition, GlobalVector initialDirection, float zSurface, std::vector< float > &posZY)
bool first
Definition: L1TdeRCT.cc:94
std::vector< TH1F * > Phi_EfficientRecHits_inSegment
int nearestStrip(const LocalPoint &lp) const
GlobalPoint position() const
#define M_PI
Definition: BFit3D.cc:3
#define FirstCh
std::vector< std::pair< LocalPoint, LocalVector > > allSegments[2][4][4][NumCh]
T eta() const
Definition: PV3DBase.h:76
tuple cout
Definition: gather_cfg.py:121
T x() const
Definition: PV3DBase.h:62
std::vector< std::pair< LocalPoint, bool > > allRechits[2][4][4][NumCh][6]
float stripAngle(int strip) const
const CSCLayerGeometry * geometry() const
Definition: CSCLayer.h:47
tuple size
Write out results.
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:40
bool CSCEfficiency::recSimHitEfficiency ( CSCDetId id,
FreeTrajectoryState ftsChamber 
)
private

Definition at line 1251 of file CSCEfficiency.cc.

References edm::second(), and findQualityFiles::size.

1251  {
1252  int ec, st, rg, ch, secondRing;
1253  returnTypes(id, ec, st, rg, ch, secondRing);
1254  bool firstCondition, secondCondition;
1255  for(int iLayer=0; iLayer<6;iLayer++){
1256  firstCondition = allSimhits[ec][st][rg][ch][iLayer].size() ? true : false;
1257  secondCondition = false;
1258  int thisRing = rg;
1259  if(secondRing>-1){
1260  secondCondition = allSimhits[ec][st][secondRing][ch][iLayer].size() ? true : false;
1261  if(secondCondition){
1262  thisRing = secondRing;
1263  }
1264  }
1265  if(firstCondition || secondCondition){
1266  for(size_t iSH=0;
1267  iSH<allSimhits[ec][st][thisRing][ch][iLayer].size();
1268  ++iSH){
1269  if(13 ==
1270  fabs(allSimhits[ec][st][thisRing][ch][iLayer][iSH].second)){
1271  ChHist[ec][st][rg][ch].SimSimhits->Fill(iLayer+1);
1272  if(allRechits[ec][st][thisRing][ch][iLayer].size()){
1273  ChHist[ec][st][rg][ch].SimRechits->Fill(iLayer+1);
1274  }
1275  break;
1276  }
1277  }
1278  //---- Next is not too usefull...
1279  /*
1280  for(unsigned int iSimHits=0;
1281  iSimHits<allSimhits[id.endcap()-1][id.station()-1][id.ring()-1][id.chamber()-FirstCh][iLayer].size();
1282  iSimHits++){
1283  ChHist[ec][st][rg][id.chamber()-FirstCh].SimSimhits_each->Fill(iLayer+1);
1284  }
1285  for(unsigned int iRecHits=0;
1286  iRecHits<allRechits[id.endcap()-1][id.station()-1][id.ring()-1][id.chamber()-FirstCh][iLayer].size();
1287  iRecHits++){
1288  ChHist[ec][st][rg][id.chamber()-FirstCh].SimRechits_each->Fill(iLayer+1);
1289  }
1290  */
1291  //
1292  }
1293  }
1294  return true;
1295 }
struct CSCEfficiency::ChamberHistos ChHist[2][4][3][LastCh-FirstCh+1]
std::vector< std::pair< LocalPoint, int > > allSimhits[2][4][4][NumCh][6]
void returnTypes(CSCDetId &id, int &ec, int &st, int &rg, int &ch, int &secondRing)
U second(std::pair< T, U > const &p)
std::vector< std::pair< LocalPoint, bool > > allRechits[2][4][4][NumCh][6]
tuple size
Write out results.
void CSCEfficiency::returnTypes ( CSCDetId id,
int &  ec,
int &  st,
int &  rg,
int &  ch,
int &  secondRing 
)
private

Definition at line 1426 of file CSCEfficiency.cc.

References FirstCh, relativeConstraints::ring, and relativeConstraints::station.

1426  {
1427  ec = id.endcap()-1;
1428  st = id.station()-1;
1429  rg = id.ring()-1;
1430  secondRing = -1;
1431  if(1==id.station() && (4==id.ring() || 1==id.ring()) ){
1432  rg = 0;
1433  secondRing = 3;
1434  }
1435  ch = id.chamber()-FirstCh;
1436 }
#define FirstCh
void CSCEfficiency::ringCandidates ( int  station,
float  absEta,
std::map< std::string, bool > &  chamberTypes 
)
private

Definition at line 967 of file CSCEfficiency.cc.

967  {
968  // yeah, hardcoded again...
969  switch (station){
970  case 1:
971  if(feta>0.85 && feta<1.18){//ME13
972  chamberTypes["ME13"] = true;
973  }
974  if(feta>1.18 && feta<1.7){//ME12
975  chamberTypes["ME12"] = true;
976  }
977  if(feta>1.5 && feta<2.45){//ME11
978  chamberTypes["ME11"] = true;
979  }
980  break;
981  case 2:
982  if(feta>0.95 && feta<1.6){//ME22
983  chamberTypes["ME22"] = true;
984 
985  }
986  if(feta>1.55 && feta<2.45){//ME21
987  chamberTypes["ME21"] = true;
988  }
989  break;
990  case 3:
991  if(feta>1.08 && feta<1.72){//ME32
992  chamberTypes["ME32"] = true;
993 
994  }
995  if(feta>1.69 && feta<2.45){//ME31
996  chamberTypes["ME31"] = true;
997  }
998  break;
999  case 4:
1000  if(feta>1.78 && feta<2.45){//ME41
1001  chamberTypes["ME41"] = true;
1002  }
1003  break;
1004  default:
1005  break;
1006  }
1007 }
bool CSCEfficiency::stripWire_Efficiencies ( CSCDetId cscDetId,
FreeTrajectoryState ftsChamber 
)
private

Definition at line 1175 of file CSCEfficiency.cc.

References gather_cfg::cout, Reference_intrackfit_cff::endcap, FirstCh, FreeTrajectoryState::momentum(), relativeConstraints::ring, relativeConstraints::station, and PV3DBase< T, PVType, FrameType >::theta().

1175  {
1176  int ec, st, rg, ch, secondRing;
1177  returnTypes(id, ec, st, rg, ch, secondRing);
1178 
1179  bool firstCondition, secondCondition;
1180  int missingLayers_s = 0;
1181  int missingLayers_wg = 0;
1182  for(int iLayer=0;iLayer<6;iLayer++){
1183  //----Strips
1184  if(printalot){
1185  printf("\t%i swEff: \tendcap/station/ring/chamber/layer: %i/%i/%i/%i/%i\n",
1186  iLayer + 1,id.endcap(),id.station(),id.ring(),id.chamber(),iLayer+1);
1187  std::cout<<" size S = "<<allStrips[id.endcap()-1][id.station()-1][id.ring()-1][id.chamber()-FirstCh][iLayer].size()<<
1188  "size W = "<<allWG[id.endcap()-1][id.station()-1][id.ring()-1][id.chamber()-FirstCh][iLayer].size()<<std::endl;
1189 
1190  }
1191  firstCondition = allStrips[ec][st][rg][ch][iLayer].size() ? true : false;
1192  //allSegments[ec][st][rg][ch].size() ? true : false;
1193  secondCondition = false;
1194  if(secondRing>-1){
1195  secondCondition = allStrips[ec][st][secondRing][ch][iLayer].size() ? true : false;
1196  }
1197  if(firstCondition || secondCondition){
1198  ChHist[ec][st][rg][ch].EfficientStrips->Fill(iLayer+1);
1199  }
1200  else{
1201  if(printalot){
1202  std::cout<<"missing strips ";
1203  printf("\t\tendcap/station/ring/chamber/layer: %i/%i/%i/%i/%i\n",id.endcap(),id.station(),id.ring(),id.chamber(),iLayer+1);
1204  }
1205  }
1206  // Wires
1207  firstCondition = allWG[ec][st][rg][ch][iLayer].size() ? true : false;
1208  secondCondition = false;
1209  if(secondRing>-1){
1210  secondCondition = allWG[ec][st][secondRing][ch][iLayer].size() ? true : false;
1211  }
1212  if(firstCondition || secondCondition){
1213  ChHist[ec][st][rg][ch].EfficientWireGroups->Fill(iLayer+1);
1214  }
1215  else{
1216  if(printalot){
1217  std::cout<<"missing wires ";
1218  printf("\t\tendcap/station/ring/chamber/layer: %i/%i/%i/%i/%i\n",id.endcap(),id.station(),id.ring(),id.chamber(),iLayer+1);
1219  }
1220  }
1221  }
1222  // Normalization
1223  if(6!=missingLayers_s){
1224  ChHist[ec][st][rg][ch].EfficientStrips->Fill(8);
1225  }
1226  if(6!=missingLayers_wg){
1227  ChHist[ec][st][rg][ch].EfficientWireGroups->Fill(8);
1228  }
1229  ChHist[ec][st][rg][ch].EfficientStrips->Fill(9);
1230  ChHist[ec][st][rg][ch].EfficientWireGroups->Fill(9);
1231 //
1232  ChHist[ec][st][rg][ch].StripWiresCorrelations->Fill(1);
1233  if(missingLayers_s!=missingLayers_wg){
1234  ChHist[ec][st][rg][ch].StripWiresCorrelations->Fill(2);
1235  if(6==missingLayers_wg){
1236  ChHist[ec][st][rg][ch].StripWiresCorrelations->Fill(3);
1237  ChHist[ec][st][rg][ch].NoWires_momTheta->Fill(ftsChamber.momentum().theta());
1238  }
1239  if(6==missingLayers_s){
1240  ChHist[ec][st][rg][ch].StripWiresCorrelations->Fill(4);
1241  ChHist[ec][st][rg][ch].NoStrips_momPhi->Fill(ftsChamber.momentum().theta());
1242  }
1243  }
1244  else if(6==missingLayers_s){
1245  ChHist[ec][st][rg][ch].StripWiresCorrelations->Fill(5);
1246  }
1247 
1248  return true;
1249 }
struct CSCEfficiency::ChamberHistos ChHist[2][4][3][LastCh-FirstCh+1]
void returnTypes(CSCDetId &id, int &ec, int &st, int &rg, int &ch, int &secondRing)
Geom::Theta< T > theta() const
Definition: PV3DBase.h:75
std::vector< std::pair< std::pair< int, float >, int > > allWG[2][4][4][NumCh][6]
GlobalVector momentum() const
std::vector< std::pair< int, float > > allStrips[2][4][4][NumCh][6]
#define FirstCh
tuple cout
Definition: gather_cfg.py:121

Member Data Documentation

edm::InputTag CSCEfficiency::alctDigiTag_
private

Definition at line 135 of file CSCEfficiency.h.

TH1F* CSCEfficiency::ALCTPerEvent
private

Definition at line 267 of file CSCEfficiency.h.

bool CSCEfficiency::allALCT[2][4][4][NumCh]
private

Definition at line 189 of file CSCEfficiency.h.

bool CSCEfficiency::allCLCT[2][4][4][NumCh]
private

Definition at line 188 of file CSCEfficiency.h.

bool CSCEfficiency::allCorrLCT[2][4][4][NumCh]
private

Definition at line 190 of file CSCEfficiency.h.

std::vector<std::pair <LocalPoint, bool> > CSCEfficiency::allRechits[2][4][4][NumCh][6]
private

Definition at line 204 of file CSCEfficiency.h.

std::vector<std::pair <LocalPoint, LocalVector> > CSCEfficiency::allSegments[2][4][4][NumCh]
private

Definition at line 207 of file CSCEfficiency.h.

std::vector<std::pair <LocalPoint, int> > CSCEfficiency::allSimhits[2][4][4][NumCh][6]
private

Definition at line 200 of file CSCEfficiency.h.

std::vector<std::pair <int, float> > CSCEfficiency::allStrips[2][4][4][NumCh][6]
private

Definition at line 193 of file CSCEfficiency.h.

std::vector<std::pair <std::pair <int, float>, int> > CSCEfficiency::allWG[2][4][4][NumCh][6]
private

Definition at line 196 of file CSCEfficiency.h.

bool CSCEfficiency::alongZ
private

Definition at line 182 of file CSCEfficiency.h.

bool CSCEfficiency::andOr
private

Definition at line 168 of file CSCEfficiency.h.

bool CSCEfficiency::applyIPangleCuts
private

Definition at line 157 of file CSCEfficiency.h.

struct CSCEfficiency::ChamberHistos CSCEfficiency::ChHist[2][4][3][LastCh-FirstCh+1]
private
edm::InputTag CSCEfficiency::clctDigiTag_
private

Definition at line 136 of file CSCEfficiency.h.

TH1F* CSCEfficiency::CLCTPerEvent
private

Definition at line 268 of file CSCEfficiency.h.

edm::InputTag CSCEfficiency::corrlctDigiTag_
private

Definition at line 137 of file CSCEfficiency.h.

TH1F* CSCEfficiency::DataFlow
private

Definition at line 264 of file CSCEfficiency.h.

double CSCEfficiency::distanceFromDeadZone
private

Definition at line 151 of file CSCEfficiency.h.

bool CSCEfficiency::emptyChambers[2][4][4][NumCh]
private

Definition at line 210 of file CSCEfficiency.h.

bool CSCEfficiency::getAbsoluteEfficiency
private

Definition at line 149 of file CSCEfficiency.h.

edm::InputTag CSCEfficiency::hlTriggerResults_
private

Definition at line 165 of file CSCEfficiency.h.

bool CSCEfficiency::isBeamdata
private

Definition at line 148 of file CSCEfficiency.h.

bool CSCEfficiency::isData
private

Definition at line 146 of file CSCEfficiency.h.

bool CSCEfficiency::isIPdata
private

Definition at line 147 of file CSCEfficiency.h.

double CSCEfficiency::local_DX_DZ_Max
private

Definition at line 160 of file CSCEfficiency.h.

double CSCEfficiency::local_DY_DZ_Max
private

Definition at line 158 of file CSCEfficiency.h.

double CSCEfficiency::local_DY_DZ_Min
private

Definition at line 159 of file CSCEfficiency.h.

bool CSCEfficiency::magField
private

Definition at line 180 of file CSCEfficiency.h.

double CSCEfficiency::maxNormChi2
private

Definition at line 154 of file CSCEfficiency.h.

double CSCEfficiency::maxP
private

Definition at line 153 of file CSCEfficiency.h.

double CSCEfficiency::minP
private

Definition at line 152 of file CSCEfficiency.h.

unsigned int CSCEfficiency::minTrackHits
private

Definition at line 155 of file CSCEfficiency.h.

std::vector<std::string> CSCEfficiency::myTriggers
private

Definition at line 166 of file CSCEfficiency.h.

int CSCEfficiency::nEventsAnalyzed
private

Definition at line 178 of file CSCEfficiency.h.

bool CSCEfficiency::passTheEvent
private

Definition at line 184 of file CSCEfficiency.h.

std::vector<int> CSCEfficiency::pointToTriggers
private

Definition at line 167 of file CSCEfficiency.h.

bool CSCEfficiency::printalot
private

Definition at line 176 of file CSCEfficiency.h.

unsigned int CSCEfficiency::printout_NEvents
private

Definition at line 145 of file CSCEfficiency.h.

edm::InputTag CSCEfficiency::rechitDigiTag_
private

Definition at line 140 of file CSCEfficiency.h.

TH1F* CSCEfficiency::recHitsPerEvent
private

Definition at line 269 of file CSCEfficiency.h.

std::string CSCEfficiency::rootFileName
private

Definition at line 133 of file CSCEfficiency.h.

edm::InputTag CSCEfficiency::segmentDigiTag_
private

Definition at line 142 of file CSCEfficiency.h.

TH1F* CSCEfficiency::segmentsPerEvent
private

Definition at line 270 of file CSCEfficiency.h.

edm::InputTag CSCEfficiency::simHitTag
private

Definition at line 141 of file CSCEfficiency.h.

struct CSCEfficiency::StationHistos CSCEfficiency::StHist[2][4]
private
edm::InputTag CSCEfficiency::stripDigiTag_
private

Definition at line 138 of file CSCEfficiency.h.

TFile* CSCEfficiency::theFile
private

Definition at line 174 of file CSCEfficiency.h.

MuonServiceProxy* CSCEfficiency::theService
private

Definition at line 172 of file CSCEfficiency.h.

edm::InputTag CSCEfficiency::tracksTag
private

Definition at line 143 of file CSCEfficiency.h.

TH1F* CSCEfficiency::TriggersFired
private

Definition at line 265 of file CSCEfficiency.h.

bool CSCEfficiency::useDigis
private

Definition at line 150 of file CSCEfficiency.h.

bool CSCEfficiency::useTrigger
private

Definition at line 163 of file CSCEfficiency.h.

edm::InputTag CSCEfficiency::wireDigiTag_
private

Definition at line 139 of file CSCEfficiency.h.