78 DTSegmentTags_(iConfig.getParameter<edm::InputTag>(
"DTsegments")),
79 theHitsMin_(iConfig.getParameter<int>(
"HitsMin")),
80 thePruneCut_(iConfig.getParameter<double>(
"PruneCut")),
81 theTimeOffset_(iConfig.getParameter<double>(
"DTTimeOffset")),
82 theError_(iConfig.getParameter<double>(
"HitError")),
83 useSegmentT0_(iConfig.getParameter<bool>(
"UseSegmentT0")),
84 doWireCorr_(iConfig.getParameter<bool>(
"DoWireCorr")),
85 dropTheta_(iConfig.getParameter<bool>(
"DropTheta")),
86 requireBothProjections_(iConfig.getParameter<bool>(
"RequireBothProjections")),
87 debug(iConfig.getParameter<bool>(
"debug"))
117 std::cout <<
" *** Muon Timimng Extractor ***" << std::endl;
133 double totalWeightInvbeta=0;
134 double totalWeightVertex=0;
135 std::vector<TimeMeasurement> tms;
144 std::vector<const DTRecSegment4D*> range =
theMatcher->
matchDT(*muonTrack,iEvent);
147 for (std::vector<const DTRecSegment4D*>::iterator rechit = range.begin(); rechit!=range.end();++rechit) {
150 DetId id = (*rechit)->geographicalId();
155 bool bothProjections = ( ((*rechit)->hasPhi()) && ((*rechit)->hasZed()) );
166 else segm =
dynamic_cast<const DTRecSegment2D*
>((*rechit)->zSegment());
168 if(segm == 0)
continue;
175 for (std::vector<DTRecHit1D>::const_iterator hiti=hits1d.begin(); hiti!=hits1d.end(); hiti++) {
177 const GeomDet* dtcell = theTrackingGeometry->
idToDet(hiti->geographicalId());
180 std::pair< TrajectoryStateOnSurface, double> tsos;
184 double dist_straight = dtcell->
toGlobal(hiti->localPosition()).
mag();
185 if (tsos.first.isValid()) {
186 dist = tsos.second+posp.mag();
189 dist = dist_straight;
193 thisHit.
driftCell = hiti->geographicalId();
204 if (
doWireCorr_ && !bothProjections && tsos.first.isValid()) {
205 const DTLayer* layer = theDTGeom->layer(hiti->wireId());
206 float propgL = layer->
toLocal( tsos.first.globalPosition() ).
y();
207 float wirePropCorr = propgL/24.4*0.00543;
208 if (thisHit.
isLeft) wirePropCorr=-wirePropCorr;
212 tofCorr = (tofCorr/29.979)*0.00543;
213 if (thisHit.
isLeft) tofCorr=-tofCorr;
217 float slCorr = (dist_straight-dist)/29.979*0.00543;
218 if (thisHit.
isLeft) slCorr=-slCorr;
222 tms.push_back(thisHit);
227 bool modified =
false;
228 std::vector <double> dstnc, dsegm, dtraj, hitWeightVertex, hitWeightInvbeta, left;
237 hitWeightVertex.clear();
238 hitWeightInvbeta.clear();
241 std::vector <int> hit_idx;
242 totalWeightInvbeta=0;
246 for (
int sta=1;sta<5;sta++)
248 std::vector <TimeMeasurement> seg;
249 std::vector <int> seg_idx;
251 for (std::vector<TimeMeasurement>::iterator tm=tms.begin(); tm!=tms.end(); ++tm) {
252 if ((tm->station==sta) && (tm->isPhi==
phi)) {
254 seg_idx.push_back(tmpos);
259 unsigned int segsize = seg.size();
263 std::vector <double> hitxl,hitxr,hityl,hityr;
265 for (std::vector<TimeMeasurement>::iterator tm=seg.begin(); tm!=seg.end(); ++tm) {
267 DetId id = tm->driftCell;
275 hitxl.push_back(celly);
276 hityl.push_back(tm->posInLayer);
278 hitxr.push_back(celly);
279 hityr.push_back(tm->posInLayer);
283 if (!
fitT0(a,
b,hitxl,hityl,hitxr,hityr)) {
285 std::cout <<
" t0 = zero, Left hits: " << hitxl.size() <<
" Right hits: " << hitxr.size() << std::endl;
290 if ((!hitxl.size()) || (!hityl.size()))
continue;
293 for (std::vector<TimeMeasurement>::const_iterator tm=seg.begin(); tm!=seg.end(); ++tm) {
295 DetId id = tm->driftCell;
301 double segmLocalPos =
b+layerZ*
a;
302 double hitLocalPos = tm->posInLayer;
303 int hitSide = -tm->isLeft*2+1;
304 double t0_segm = (-(hitSide*segmLocalPos)+(hitSide*hitLocalPos))/0.00543+tm->timeCorr;
306 dstnc.push_back(tm->distIP);
307 dsegm.push_back(t0_segm);
308 left.push_back(hitSide);
309 hitWeightInvbeta.push_back(((
double)seg.size()-2.)*tm->distIP*tm->distIP/((double)seg.size()*30.*30.*
theError_*
theError_));
310 hitWeightVertex.push_back(((
double)seg.size()-2.)/((double)seg.size()*
theError_*
theError_));
311 hit_idx.push_back(seg_idx.at(segidx));
313 totalWeightInvbeta+=((double)seg.size()-2.)*tm->distIP*tm->distIP/((double)seg.size()*30.*30.*
theError_*
theError_);
318 if (totalWeightInvbeta==0)
break;
322 std::cout <<
" Points for global fit: " << dstnc.size() << std::endl;
326 for (
unsigned int i=0;
i<dstnc.size();
i++)
327 invbeta+=(1.+dsegm.at(
i)/dstnc.at(
i)*30.)*hitWeightInvbeta.at(
i)/totalWeightInvbeta;
330 std::vector<TimeMeasurement>::iterator tmmax;
334 for (
unsigned int i=0;
i<dstnc.size();
i++) {
335 diff=(1.+dsegm.at(
i)/dstnc.at(
i)*30.)-invbeta;
336 diff=diff*diff*hitWeightInvbeta.at(
i);
339 tmmax=tms.begin()+hit_idx.at(
i);
344 invbetaerr=
sqrt(invbetaerr/totalWeightInvbeta);
353 std::cout <<
" Measured 1/beta: " << invbeta <<
" +/- " << invbetaerr << std::endl;
357 for (
unsigned int i=0;
i<dstnc.size();
i++) {
358 tmSequence.
dstnc.push_back(dstnc.at(
i));
359 tmSequence.
local_t0.push_back(dsegm.at(
i));
370 DTTimingExtractor::fitT0(
double &
a,
double &
b,
const std::vector<double>& xl,
const std::vector<double>& yl,
const std::vector<double>& xr,
const std::vector<double>& yr ) {
372 double sx=0,sy=0,sxy=0,sxx=0,ssx=0,ssy=0,
s=0,ss=0;
374 for (
unsigned int i=0;
i<xl.size();
i++) {
385 for (
unsigned int i=0;
i<xr.size();
i++) {
396 double delta = ss*ss*sxx+
s*sx*sx+
s*ssx*ssx-
s*
s*sxx-2*ss*sx*ssx;
401 a=(ssy*
s*ssx+sxy*ss*ss+sy*sx*
s-sy*ss*ssx-ssy*sx*ss-sxy*
s*
s)/delta;
402 b=(ssx*sy*ssx+sxx*ssy*ss+sx*sxy*
s-sxx*sy*
s-ssx*sxy*ss-sx*ssy*ssx)/delta;
403 t0_corr=(ssx*
s*sxy+sxx*ss*sy+sx*sx*ssy-sxx*
s*ssy-sx*ss*sxy-ssx*sx*sy)/delta;
void update(const edm::EventSetup &setup)
update the services each event
T getParameter(std::string const &) const
std::vector< double > local_t0
T mag() const
The vector magnitude. Equivalent to sqrt(vec.mag2())
GlobalPoint toGlobal(const Local2DPoint &lp) const
Conversion to the global R.F. from the R.F. of the GeomDet.
LocalPoint toLocal(const GlobalPoint &gp) const
Conversion to the R.F. of the GeomDet.
edm::ESHandle< MagneticField > magneticField() const
get the magnetic field
const Plane & surface() const
The nominal surface of the GeomDet.
virtual const GeomDet * idToDet(DetId) const
virtual std::pair< TrajectoryStateOnSurface, double > propagateWithPath(const FreeTrajectoryState &, const Surface &) const
const Surface::PositionType & position() const
The position (origin of the R.F.)
edm::ESHandle< GlobalTrackingGeometry > theTrackingGeometry
std::vector< double > weightInvbeta
std::vector< DTRecHit1D > specificRecHits() const
Access to specific components.
double totalWeightInvbeta
XYZVectorD XYZVector
spatial vector with cartesian internal representation
XYZPointD XYZPoint
point in space with cartesian internal representation
T const * product() const
const DTSuperLayer * superLayer() const
edm::ESHandle< GlobalTrackingGeometry > trackingGeometry() const
get the tracking geometry
std::vector< const DTRecSegment4D * > matchDT(const reco::Track &muon, const edm::Event &event)
perform the matching
DetId geographicalId() const
double t0() const
Get the segment t0 (if recomputed, 0 is returned otherwise)
int station() const
Return the station number.
std::vector< double > dstnc
const PositionType & position() const
std::vector< double > weightVertex