CMS 3D CMS Logo

Public Member Functions

MultiTrajectoryStateMode Class Reference

#include <MultiTrajectoryStateMode.h>

List of all members.

Public Member Functions

int chargeFromMode (const TrajectoryStateOnSurface tsos) const
bool momentumFromModeCartesian (const TrajectoryStateOnSurface tsos, GlobalVector &momentum) const
bool momentumFromModeLocal (const TrajectoryStateOnSurface tsos, GlobalVector &momentum) const
bool momentumFromModeP (const TrajectoryStateOnSurface tsos, double &momentum) const
bool momentumFromModePPhiEta (const TrajectoryStateOnSurface tsos, GlobalVector &momentum) const
bool momentumFromModeQP (const TrajectoryStateOnSurface tsos, double &momentum) const
bool positionFromModeCartesian (const TrajectoryStateOnSurface tsos, GlobalPoint &position) const
bool positionFromModeLocal (const TrajectoryStateOnSurface tsos, GlobalPoint &position) const

Detailed Description

Definition at line 11 of file MultiTrajectoryStateMode.h.


Member Function Documentation

int MultiTrajectoryStateMode::chargeFromMode ( const TrajectoryStateOnSurface  tsos) const

Charge from 1D mode calculation in q/p. Q=0 in case of failure.

Definition at line 331 of file MultiTrajectoryStateMode.cc.

References TrajectoryStateOnSurface::isValid(), GaussianSumUtilities1D::mean(), SingleGaussianState1D::mean(), GaussianSumUtilities1D::mode(), GaussianSumUtilities1D::modeIsValid(), MultiGaussianStateTransform::multiState1D(), and query::result.

{
  //
  // clear result vector and check validity of the TSOS
  //
  if ( !tsos.isValid() ) {
    edm::LogInfo("MultiTrajectoryStateMode") << "Cannot calculate mode from invalid TSOS";
    return 0;
  }
  //  
  // mode computation for local co-ordinates q/p
  // extraction of multi-state using helper class
  MultiGaussianState1D state1D = MultiGaussianStateTransform::multiState1D(tsos,0);
  GaussianSumUtilities1D utils(state1D);
  // mode (in case of failure: mean)
  double result = utils.mode().mean();
  if ( !utils.modeIsValid() )  result = utils.mean();

  return result>0. ? 1 : -1;
}
bool MultiTrajectoryStateMode::momentumFromModeCartesian ( const TrajectoryStateOnSurface  tsos,
GlobalVector momentum 
) const

Cartesian momentum from 1D mode calculation in cartesian co-ordinates. Return value true for success.

Definition at line 13 of file MultiTrajectoryStateMode.cc.

References makeMuonMisalignmentScenario::components, TrajectoryStateOnSurface::components(), TrajectoryStateOnSurface::isValid(), SingleGaussianState1D::mean(), and GaussianSumUtilities1D::mode().

Referenced by PFTrackTransformer::addPointsAndBrems(), GsfElectronAlgo::ElectronData::calculateMode(), MultiTrajectoryStateTransform::innerMomentumFromMode(), MultiTrajectoryStateTransform::outerMomentumFromMode(), EgammaHLTPixelMatchElectronAlgo::process(), and PFElecTkProducer::resolveGsfTracks().

{
  //
  // clear result vector and check validity of the TSOS
  //
  momentum = GlobalVector(0.,0.,0.);
  if ( !tsos.isValid() ) {
    edm::LogInfo("MultiTrajectoryStateMode") << "Cannot calculate mode from invalid TSOS";
    return false;
  }
  //  
  // 1D mode computation for px, py and pz
  // 
  std::vector<TrajectoryStateOnSurface> components(tsos.components());
  unsigned int numb = components.size();
  // vectors of components in x, y and z
  std::vector<SingleGaussianState1D> pxStates; pxStates.reserve(numb);
  std::vector<SingleGaussianState1D> pyStates; pyStates.reserve(numb);
  std::vector<SingleGaussianState1D> pzStates; pzStates.reserve(numb);
  // iteration over components
  for ( std::vector<TrajectoryStateOnSurface>::const_iterator ic=components.begin();
        ic!=components.end(); ++ic ) {
    // extraction of parameters and variances
    GlobalVector mom(ic->globalMomentum());
    AlgebraicSymMatrix66 cov(ic->cartesianError().matrix());
    pxStates.push_back(SingleGaussianState1D(mom.x(),cov(3,3),ic->weight()));
    pyStates.push_back(SingleGaussianState1D(mom.y(),cov(4,4),ic->weight()));
    pzStates.push_back(SingleGaussianState1D(mom.z(),cov(5,5),ic->weight()));
  }
  //
  // transformation in 1D multi-states and creation of utility classes
  //
  MultiGaussianState1D pxState(pxStates);
  MultiGaussianState1D pyState(pyStates);
  MultiGaussianState1D pzState(pzStates);
  GaussianSumUtilities1D pxUtils(pxState);
  GaussianSumUtilities1D pyUtils(pyState);
  GaussianSumUtilities1D pzUtils(pzState);
  //
  // cartesian momentum vector from modes
  //
  momentum = GlobalVector(pxUtils.mode().mean(),pyUtils.mode().mean(),pzUtils.mode().mean());
  return true;
}
bool MultiTrajectoryStateMode::momentumFromModeLocal ( const TrajectoryStateOnSurface  tsos,
GlobalVector momentum 
) const

Cartesian momentum from 1D mode calculation in local co-ordinates (q/p, dx/dz, dy/dz). Return value true for success.

Definition at line 107 of file MultiTrajectoryStateMode.cc.

References TrajectoryStateOnSurface::isValid(), TrajectoryStateOnSurface::localParameters(), SingleGaussianState1D::mean(), GaussianSumUtilities1D::mean(), GaussianSumUtilities1D::mode(), GaussianSumUtilities1D::modeIsValid(), MultiGaussianStateTransform::multiState1D(), LocalTrajectoryParameters::pzSign(), query::result, mathSSE::sqrt(), TrajectoryStateOnSurface::surface(), and Surface::toGlobal().

{
  //
  // clear result vector and check validity of the TSOS
  //
  momentum = GlobalVector(0.,0.,0.);
  if ( !tsos.isValid() ) {
    edm::LogInfo("MultiTrajectoryStateMode") << "Cannot calculate mode from invalid TSOS";
    return false;
  }
  //  
  // mode computation for local co-ordinates q/p, dx/dz, dy/dz
  //
  double qpMode(0);
  double dxdzMode(0);
  double dydzMode(0);
  //
  // first 3 elements of local parameters = q/p, dx/dz, dy/dz
  //
  for ( unsigned int iv=0; iv<3; ++iv ) {
    // extraction of multi-state using helper class
    MultiGaussianState1D state1D = MultiGaussianStateTransform::multiState1D(tsos,iv);
    GaussianSumUtilities1D utils(state1D);
    // mode (in case of failure: mean)
    double result = utils.mode().mean();
    if ( !utils.modeIsValid() )  result = utils.mean();
    if ( iv==0 )  qpMode = result;
    else if ( iv==1 )  dxdzMode = result;
    else  dydzMode = result;
  }
  // local momentum vector from dx/dz, dy/dz and q/p + sign of local pz
  LocalVector localP(dxdzMode,dydzMode,1.);
  localP *= tsos.localParameters().pzSign()/fabs(qpMode)
    /sqrt(dxdzMode*dxdzMode+dydzMode*dydzMode+1.);
  // conversion to global coordinates
  momentum = tsos.surface().toGlobal(localP);
  return true;
}
bool MultiTrajectoryStateMode::momentumFromModeP ( const TrajectoryStateOnSurface  tsos,
double &  momentum 
) const

Momentum from 1D mode calculation in p. Return value true for sucess.

Definition at line 178 of file MultiTrajectoryStateMode.cc.

References MultiGaussianState1D::components(), i, TrajectoryStateOnSurface::isValid(), SingleGaussianState1D::mean(), GaussianSumUtilities1D::mean(), GaussianSumUtilities1D::mode(), GaussianSumUtilities1D::modeIsValid(), MultiGaussianStateTransform::multiState1D(), AlCaHLTBitMon_ParallelJobs::p, SingleGaussianState1D::variance(), and SingleGaussianState1D::weight().

{
  //
  // clear result vector and check validity of the TSOS
  //
  momentum = 0.;
  if ( !tsos.isValid() ) {
    edm::LogInfo("MultiTrajectoryStateMode") << "Cannot calculate mode from invalid TSOS";
    return false;
  }
  //  
  // first element of local parameters = q/p
  //
  // extraction of multi-state using helper class
  MultiGaussianState1D qpMultiState = MultiGaussianStateTransform::multiState1D(tsos,0);
  std::vector<SingleGaussianState1D> states(qpMultiState.components());
  // transform from q/p to p
  for ( unsigned int i=0; i<states.size(); ++i ) {
    SingleGaussianState1D& qpState = states[i];
    double wgt = qpState.weight();
    double qp = qpState.mean();
    double varQp = qpState.variance();
    double p = 1./fabs(qp);
    double varP = p*p*p*p*varQp;
    states[i] = SingleGaussianState1D(p,varP,wgt);
  }
  MultiGaussianState1D pMultiState(states);
  GaussianSumUtilities1D utils(pMultiState);
  // mode (in case of failure: mean)
  momentum = utils.mode().mean();
  if ( !utils.modeIsValid() )  momentum = utils.mean();

  return true;
}
bool MultiTrajectoryStateMode::momentumFromModePPhiEta ( const TrajectoryStateOnSurface  tsos,
GlobalVector momentum 
) const

Cartesian momentum from 1D mode calculation in p, phi, eta. Return value true for success.

Definition at line 252 of file MultiTrajectoryStateMode.cc.

References makeMuonMisalignmentScenario::components, TrajectoryStateOnSurface::components(), funct::cos(), eta, funct::exp(), TrajectoryStateOnSurface::isValid(), GaussianSumUtilities1D::mean(), SingleGaussianState1D::mean(), GaussianSumUtilities1D::mode(), GaussianSumUtilities1D::modeIsValid(), AlCaHLTBitMon_ParallelJobs::p, phi, funct::sin(), and PV3DBase< T, PVType, FrameType >::x().

{
  //
  // clear result vector and check validity of the TSOS
  //
  momentum = GlobalVector(0.,0.,0.);
  if ( !tsos.isValid() ) {
    edm::LogInfo("MultiTrajectoryStateMode") << "Cannot calculate mode from invalid TSOS";
    return false;
  }
  //  
  // 1D mode computation for p, phi, eta
  // 
  std::vector<TrajectoryStateOnSurface> components(tsos.components());
  unsigned int numb = components.size();
  // vectors of components in p, phi and eta
  std::vector<SingleGaussianState1D> pStates; pStates.reserve(numb);
  std::vector<SingleGaussianState1D> phiStates; phiStates.reserve(numb);
  std::vector<SingleGaussianState1D> etaStates; etaStates.reserve(numb);
  // covariances in cartesian and p-phi-eta and jacobian
  AlgebraicMatrix33 jacobian;
  AlgebraicSymMatrix33 covCart;
  AlgebraicSymMatrix33 covPPhiEta;
  // iteration over components
  for ( std::vector<TrajectoryStateOnSurface>::const_iterator ic=components.begin();
        ic!=components.end(); ++ic ) {
    // parameters
    GlobalVector mom(ic->globalMomentum());
    double px = mom.x();
    double py = mom.y();
    double pz = mom.z();
    double p = mom.mag();
    double pt2 = mom.perp2();
    double phi = mom.phi();
    double eta = mom.eta();
    // jacobian
    jacobian(0,0) = px/p;
    jacobian(0,1) = py/p;
    jacobian(0,2) = pz/p;
    jacobian(1,0) = py/pt2;
    jacobian(1,1) = -px/pt2;
    jacobian(1,2) = 0;
    jacobian(2,0) = px*pz/(pt2*p);
    jacobian(2,1) = py*pz/(pt2*p);
    jacobian(2,2) = -1./p;
    // extraction of the momentum part from the 6x6 cartesian error matrix
    // and conversion to p-phi-eta
    covCart = ic->cartesianError().matrix().Sub<AlgebraicSymMatrix33>(3,3);
    covPPhiEta = ROOT::Math::Similarity(jacobian,covCart);
    pStates.push_back(SingleGaussianState1D(p,covPPhiEta(0,0),ic->weight()));
    phiStates.push_back(SingleGaussianState1D(phi,covPPhiEta(1,1),ic->weight()));
    etaStates.push_back(SingleGaussianState1D(eta,covPPhiEta(2,2),ic->weight()));
  }
  //
  // transformation in 1D multi-states and creation of utility classes
  //
  MultiGaussianState1D pState(pStates);
  MultiGaussianState1D phiState(phiStates);
  MultiGaussianState1D etaState(etaStates);
  GaussianSumUtilities1D pUtils(pState);
  GaussianSumUtilities1D phiUtils(phiState);
  GaussianSumUtilities1D etaUtils(etaState);
  //
  // parameters from mode (in case of failure: mean)
  //
  double p = pUtils.modeIsValid() ? pUtils.mode().mean() : pUtils.mean();
  double phi = phiUtils.modeIsValid() ? phiUtils.mode().mean() : phiUtils.mean();
  double eta = etaUtils.modeIsValid() ? etaUtils.mode().mean() : etaUtils.mean();
//   double theta = 2*atan(exp(-eta));
  double tanth2 = exp(-eta);
  double pt = p*2*tanth2/(1+tanth2*tanth2);  // p*sin(theta)
  double pz = p*(1-tanth2*tanth2)/(1+tanth2*tanth2);  // p*cos(theta)
  // conversion to a cartesian momentum vector
  momentum = GlobalVector(pt*cos(phi),pt*sin(phi),pz);
  return true;
}
bool MultiTrajectoryStateMode::momentumFromModeQP ( const TrajectoryStateOnSurface  tsos,
double &  momentum 
) const

Momentum from 1D mode calculation in q/p. Return value true for sucess.

Definition at line 148 of file MultiTrajectoryStateMode.cc.

References TrajectoryStateOnSurface::isValid(), GaussianSumUtilities1D::mean(), SingleGaussianState1D::mean(), GaussianSumUtilities1D::mode(), GaussianSumUtilities1D::modeIsValid(), and MultiGaussianStateTransform::multiState1D().

{
  //
  // clear result vector and check validity of the TSOS
  //
  momentum = 0.;
  if ( !tsos.isValid() ) {
    edm::LogInfo("MultiTrajectoryStateMode") << "Cannot calculate mode from invalid TSOS";
    return false;
  }
  //  
  // mode computation for local co-ordinates q/p, dx/dz, dy/dz
  //
  double qpMode(0);
  //
  // first element of local parameters = q/p
  //
  // extraction of multi-state using helper class
  MultiGaussianState1D state1D = MultiGaussianStateTransform::multiState1D(tsos,0);
  GaussianSumUtilities1D utils(state1D);
  // mode (in case of failure: mean)
  qpMode = utils.mode().mean();
  if ( !utils.modeIsValid() )  qpMode = utils.mean();

  momentum = 1./fabs(qpMode);
  return true;
}
bool MultiTrajectoryStateMode::positionFromModeCartesian ( const TrajectoryStateOnSurface  tsos,
GlobalPoint position 
) const

Cartesian position from 1D mode calculation in cartesian co-ordinates. Return value true for success.

Definition at line 60 of file MultiTrajectoryStateMode.cc.

References makeMuonMisalignmentScenario::components, TrajectoryStateOnSurface::components(), TrajectoryStateOnSurface::isValid(), SingleGaussianState1D::mean(), GaussianSumUtilities1D::mode(), and pos.

Referenced by PFTrackTransformer::addPointsAndBrems(), and GsfElectronAlgo::ElectronData::calculateMode().

{
  //
  // clear result vector and check validity of the TSOS
  //
  position = GlobalPoint(0.,0.,0.);
  if ( !tsos.isValid() ) {
    edm::LogInfo("MultiTrajectoryStateMode") << "Cannot calculate mode from invalid TSOS";
    return false;
  }
  //  
  // 1D mode computation for x, y and z
  // 
  std::vector<TrajectoryStateOnSurface> components(tsos.components());
  unsigned int numb = components.size();
  // vectors of components in x, y and z
  std::vector<SingleGaussianState1D> xStates; xStates.reserve(numb);
  std::vector<SingleGaussianState1D> yStates; yStates.reserve(numb);
  std::vector<SingleGaussianState1D> zStates; zStates.reserve(numb);
  // iteration over components
  for ( std::vector<TrajectoryStateOnSurface>::const_iterator ic=components.begin();
        ic!=components.end(); ++ic ) {
    // extraction of parameters and variances
    GlobalPoint pos(ic->globalPosition());
    AlgebraicSymMatrix66 cov(ic->cartesianError().matrix());
    xStates.push_back(SingleGaussianState1D(pos.x(),cov(0,0),ic->weight()));
    yStates.push_back(SingleGaussianState1D(pos.y(),cov(1,1),ic->weight()));
    zStates.push_back(SingleGaussianState1D(pos.z(),cov(2,2),ic->weight()));
  }
  //
  // transformation in 1D multi-states and creation of utility classes
  //
  MultiGaussianState1D xState(xStates);
  MultiGaussianState1D yState(yStates);
  MultiGaussianState1D zState(zStates);
  GaussianSumUtilities1D xUtils(xState);
  GaussianSumUtilities1D yUtils(yState);
  GaussianSumUtilities1D zUtils(zState);
  //
  // cartesian position vector from modes
  //
  position = GlobalPoint(xUtils.mode().mean(),yUtils.mode().mean(),zUtils.mode().mean());
  return true;
}
bool MultiTrajectoryStateMode::positionFromModeLocal ( const TrajectoryStateOnSurface  tsos,
GlobalPoint position 
) const

Cartesian position from 1D mode calculation in local co-ordinates (x, y). Return value true for success.

Definition at line 215 of file MultiTrajectoryStateMode.cc.

References TrajectoryStateOnSurface::isValid(), GaussianSumUtilities1D::mean(), SingleGaussianState1D::mean(), GaussianSumUtilities1D::mode(), GaussianSumUtilities1D::modeIsValid(), MultiGaussianStateTransform::multiState1D(), query::result, TrajectoryStateOnSurface::surface(), and Surface::toGlobal().

{
  //
  // clear result vector and check validity of the TSOS
  //
  position = GlobalPoint(0.,0.,0.);
  if ( !tsos.isValid() ) {
    edm::LogInfo("MultiTrajectoryStateMode") << "Cannot calculate mode from invalid TSOS";
    return false;
  }
  //  
  // mode computation for local co-ordinates x, y
  //
  double xMode(0);
  double yMode(0);
  //
  // last 2 elements of local parameters = x, y
  //
  for ( unsigned int iv=3; iv<5; ++iv ) {
    // extraction of multi-state using helper class
    MultiGaussianState1D state1D = MultiGaussianStateTransform::multiState1D(tsos,iv);
    GaussianSumUtilities1D utils(state1D);
    // mode (in case of failure: mean)
    double result = utils.mode().mean();
    if ( !utils.modeIsValid() )  result = utils.mean();
    if ( iv==3 )  xMode = result;
    else  yMode = result;
  }
  // local position vector from x, y
  LocalPoint localP(xMode,yMode,0.);
  // conversion to global coordinates
  position = tsos.surface().toGlobal(localP);
  return true;
}