CMS 3D CMS Logo

Public Member Functions | Protected Member Functions | Private Attributes

DQMSourcePi0 Class Reference

#include <DQMSourcePi0.h>

Inheritance diagram for DQMSourcePi0:
edm::EDAnalyzer

List of all members.

Public Member Functions

 DQMSourcePi0 (const edm::ParameterSet &)
 ~DQMSourcePi0 ()

Protected Member Functions

void analyze (const edm::Event &e, const edm::EventSetup &c)
void beginJob ()
void beginLuminosityBlock (const edm::LuminosityBlock &lumiSeg, const edm::EventSetup &context)
void beginRun (const edm::Run &r, const edm::EventSetup &c)
void convxtalid (int &, int &)
int diff_neta_s (int, int)
int diff_nphi_s (int, int)
void endJob ()
void endLuminosityBlock (const edm::LuminosityBlock &lumiSeg, const edm::EventSetup &c)
void endRun (const edm::Run &r, const edm::EventSetup &c)

Private Attributes

int clusEtaSize_
int clusPhiSize_
double clusSeedThr_
double clusSeedThrEndCap_
DQMStoredbe_
std::vector< EBDetIddetIdEBRecHits
std::vector< EEDetIddetIdEERecHits
std::vector< EcalRecHitEBRecHits
std::vector< EcalRecHitEERecHits
int eventCounter_
std::string fileName_
 Output file name if required.
std::string folderName_
 DQM folder name.
int gammaCandEtaSize_
int gammaCandPhiSize_
MonitorElementhEventEnergyEBeta_
 Distribution of total event energy EB (eta)
MonitorElementhEventEnergyEBpi0_
 Distribution of total event energy EB (pi0)
MonitorElementhEventEnergyEEeta_
 Distribution of total event energy EE (eta)
MonitorElementhEventEnergyEEpi0_
 Distribution of total event energy EE (pi0)
MonitorElementhiEtaDistrEBeta_
 Distribution of rechits in iEta (eta)
MonitorElementhiEtaDistrEBpi0_
 Distribution of rechits in iEta (pi0)
MonitorElementhiPhiDistrEBeta_
 Distribution of rechits in iPhi (eta)
MonitorElementhiPhiDistrEBpi0_
 Distribution of rechits in iPhi (pi0)
MonitorElementhIsoEtaEB_
 Eta Iso EB.
MonitorElementhIsoEtaEE_
 Eta Iso EE.
MonitorElementhIsoPi0EB_
 Pi0 Iso EB.
MonitorElementhIsoPi0EE_
 Pi0 Iso EE.
MonitorElementhiXDistrEEeta_
 Distribution of rechits in ix EE (eta)
MonitorElementhiXDistrEEpi0_
 Distribution of rechits in ix EE (pi0)
MonitorElementhiYDistrEEeta_
 Distribution of rechits in iy EE (eta)
MonitorElementhiYDistrEEpi0_
 Distribution of rechits in iy EE (pi0)
MonitorElementhMeanRecHitEnergyEBeta_
 Distribution of Mean energy per rechit EB (eta)
MonitorElementhMeanRecHitEnergyEBpi0_
 Distribution of Mean energy per rechit EB (pi0)
MonitorElementhMeanRecHitEnergyEEeta_
 Distribution of Mean energy per rechit EE (eta)
MonitorElementhMeanRecHitEnergyEEpi0_
 Distribution of Mean energy per rechit EE (pi0)
MonitorElementhMinvEtaEB_
 Eta invariant mass in EB.
MonitorElementhMinvEtaEE_
 Eta invariant mass in EE.
MonitorElementhMinvPi0EB_
 Pi0 invariant mass in EB.
MonitorElementhMinvPi0EE_
 Pi0 invariant mass in EE.
MonitorElementhNRecHitsEBeta_
 Distribution of number of RecHits EB (eta)
MonitorElementhNRecHitsEBpi0_
 Distribution of number of RecHits EB (pi0)
MonitorElementhNRecHitsEEeta_
 Distribution of number of RecHits EE (eta)
MonitorElementhNRecHitsEEpi0_
 Distribution of number of RecHits EE (pi0)
MonitorElementhPt1EtaEB_
 Pt of the 1st most energetic Eta photon in EB.
MonitorElementhPt1EtaEE_
 Pt of the 1st most energetic Eta photon in EE.
MonitorElementhPt1Pi0EB_
 Pt of the 1st most energetic Pi0 photon in EB.
MonitorElementhPt1Pi0EE_
 Pt of the 1st most energetic Pi0 photon in EE.
MonitorElementhPt2EtaEB_
 Pt of the 2nd most energetic Eta photon in EB.
MonitorElementhPt2EtaEE_
 Pt of the 2nd most energetic Eta photon in EE.
MonitorElementhPt2Pi0EB_
 Pt of the 2nd most energetic Pi0 photon in EB.
MonitorElementhPt2Pi0EE_
 Pt of the 2nd most energetic Pi0 photon in EE.
MonitorElementhPtEtaEB_
 Eta Pt in EB.
MonitorElementhPtEtaEE_
 Eta Pt in EE.
MonitorElementhPtPi0EB_
 Pi0 Pt in EB.
MonitorElementhPtPi0EE_
 Pi0 Pt in EE.
MonitorElementhRechitEnergyEBeta_
 Energy Distribution of rechits EB (eta)
MonitorElementhRechitEnergyEBpi0_
 Energy Distribution of rechits EB (pi0)
MonitorElementhRechitEnergyEEeta_
 Energy Distribution of rechits EE (eta)
MonitorElementhRechitEnergyEEpi0_
 Energy Distribution of rechits EE (pi0)
MonitorElementhS4S91EtaEB_
 S4S9 of the 1st most energetic eta photon.
MonitorElementhS4S91EtaEE_
 S4S9 of the 1st most energetic eta photon EE.
MonitorElementhS4S91Pi0EB_
 S4S9 of the 1st most energetic pi0 photon.
MonitorElementhS4S91Pi0EE_
 S4S9 of the 1st most energetic pi0 photon EE.
MonitorElementhS4S92EtaEB_
 S4S9 of the 2nd most energetic eta photon.
MonitorElementhS4S92EtaEE_
 S4S9 of the 2nd most energetic eta photon EE.
MonitorElementhS4S92Pi0EB_
 S4S9 of the 2nd most energetic pi0 photon.
MonitorElementhS4S92Pi0EE_
 S4S9 of the 2nd most energetic pi0 photon EE.
bool isMonEBeta_
bool isMonEBpi0_
 which subdet will be monitored
bool isMonEEeta_
bool isMonEEpi0_
bool ParameterLogWeighted_
double ParameterT0_barl_
double ParameterT0_endc_
double ParameterT0_endcPresh_
double ParameterW0_
double ParameterX0_
PositionCalc posCalculator_
unsigned int prescaleFactor_
 Monitor every prescaleFactor_ events.
edm::InputTag productMonitoredEBeta_
edm::InputTag productMonitoredEBpi0_
 object to monitor
edm::InputTag productMonitoredEEeta_
edm::InputTag productMonitoredEEpi0_
 object to monitor
double ptMinForIsolation_
double ptMinForIsolationEndCap_
double ptMinForIsolationEta_
double ptMinForIsolationEtaEndCap_
bool saveToFile_
 Write to file.
double seleEtaBeltDeta_
double seleEtaBeltDetaEndCap_
double seleEtaBeltDR_
double seleEtaBeltDREndCap_
double seleEtaIso_
double seleEtaIsoEndCap_
double seleMinvMaxEta_
double seleMinvMaxEtaEndCap_
double seleMinvMaxPi0_
double seleMinvMaxPi0EndCap_
double seleMinvMinEta_
double seleMinvMinEtaEndCap_
double seleMinvMinPi0_
double seleMinvMinPi0EndCap_
double selePi0BeltDeta_
double selePi0BeltDetaEndCap_
double selePi0BeltDR_
double selePi0BeltDREndCap_
double selePi0Iso_
double selePi0IsoEndCap_
double selePtEta_
double selePtEtaEndCap_
double selePtGamma_
double selePtGammaEndCap_
 for pi0->gg endcap
double selePtGammaEta_
 for eta->gg barrel
double selePtGammaEtaEndCap_
 for eta->gg endcap
double selePtPi0_
double selePtPi0EndCap_
double seleS4S9Gamma_
double seleS4S9GammaEndCap_
double seleS4S9GammaEta_
double seleS4S9GammaEtaEndCap_
double seleS9S25GammaEta_
double seleS9S25GammaEtaEndCap_
double seleXtalMinEnergy_
double seleXtalMinEnergyEndCap_

Detailed Description

Definition at line 42 of file DQMSourcePi0.h.


Constructor & Destructor Documentation

DQMSourcePi0::DQMSourcePi0 ( const edm::ParameterSet ps)

for Pi0 barrel selection

for Pi0 endcap selection

for Eta barrel selection

for Eta endcap selection

Definition at line 52 of file DQMSourcePi0.cc.

References clusEtaSize_, clusPhiSize_, clusSeedThr_, clusSeedThrEndCap_, dbe_, fileName_, folderName_, edm::ParameterSet::getParameter(), edm::ParameterSet::getUntrackedParameter(), isMonEBeta_, isMonEBpi0_, isMonEEeta_, isMonEEpi0_, cppFunctionSkipper::operator, posCalculator_, prescaleFactor_, productMonitoredEBeta_, productMonitoredEBpi0_, productMonitoredEEeta_, productMonitoredEEpi0_, ptMinForIsolation_, ptMinForIsolationEndCap_, ptMinForIsolationEta_, ptMinForIsolationEtaEndCap_, saveToFile_, seleEtaBeltDeta_, seleEtaBeltDetaEndCap_, seleEtaBeltDR_, seleEtaBeltDREndCap_, seleEtaIso_, seleEtaIsoEndCap_, seleMinvMaxEta_, seleMinvMaxEtaEndCap_, seleMinvMaxPi0_, seleMinvMaxPi0EndCap_, seleMinvMinEta_, seleMinvMinEtaEndCap_, seleMinvMinPi0_, seleMinvMinPi0EndCap_, selePi0BeltDeta_, selePi0BeltDetaEndCap_, selePi0BeltDR_, selePi0BeltDREndCap_, selePi0Iso_, selePi0IsoEndCap_, selePtEta_, selePtEtaEndCap_, selePtGamma_, selePtGammaEndCap_, selePtGammaEta_, selePtGammaEtaEndCap_, selePtPi0_, selePtPi0EndCap_, seleS4S9Gamma_, seleS4S9GammaEndCap_, seleS4S9GammaEta_, seleS4S9GammaEtaEndCap_, seleS9S25GammaEta_, seleS9S25GammaEtaEndCap_, seleXtalMinEnergy_, and seleXtalMinEnergyEndCap_.

                                                      :
eventCounter_(0)
{
  dbe_ = Service<DQMStore>().operator->();
  folderName_ = ps.getUntrackedParameter<string>("FolderName","HLT/AlCaEcalPi0");
  prescaleFactor_ = ps.getUntrackedParameter<int>("prescaleFactor",1);
  productMonitoredEBpi0_= ps.getUntrackedParameter<edm::InputTag>("AlCaStreamEBpi0Tag");
  productMonitoredEBeta_= ps.getUntrackedParameter<edm::InputTag>("AlCaStreamEBetaTag");
  productMonitoredEEpi0_= ps.getUntrackedParameter<edm::InputTag>("AlCaStreamEEpi0Tag");
  productMonitoredEEeta_= ps.getUntrackedParameter<edm::InputTag>("AlCaStreamEEetaTag");

  isMonEBpi0_ = ps.getUntrackedParameter<bool>("isMonEBpi0",false);
  isMonEBeta_ = ps.getUntrackedParameter<bool>("isMonEBeta",false);
  isMonEEpi0_ = ps.getUntrackedParameter<bool>("isMonEEpi0",false);
  isMonEEeta_ = ps.getUntrackedParameter<bool>("isMonEEeta",false);

  saveToFile_=ps.getUntrackedParameter<bool>("SaveToFile",false);
  fileName_=  ps.getUntrackedParameter<string>("FileName","MonitorAlCaEcalPi0.root");

  clusSeedThr_ = ps.getParameter<double> ("clusSeedThr");
  clusSeedThrEndCap_ = ps.getParameter<double> ("clusSeedThrEndCap");
  clusEtaSize_ = ps.getParameter<int> ("clusEtaSize");
  clusPhiSize_ = ps.getParameter<int> ("clusPhiSize");
  if ( clusPhiSize_ % 2 == 0 ||  clusEtaSize_ % 2 == 0)
    edm::LogError("AlCaPi0RecHitsProducerError") << "Size of eta/phi for simple clustering should be odd numbers";


  seleXtalMinEnergy_ = ps.getParameter<double>("seleXtalMinEnergy");
  seleXtalMinEnergyEndCap_ = ps.getParameter<double>("seleXtalMinEnergyEndCap");

    selePtGamma_ = ps.getParameter<double> ("selePtGamma");  
    selePtPi0_ = ps.getParameter<double> ("selePtPi0");  
    seleMinvMaxPi0_ = ps.getParameter<double> ("seleMinvMaxPi0");  
    seleMinvMinPi0_ = ps.getParameter<double> ("seleMinvMinPi0");  
    seleS4S9Gamma_ = ps.getParameter<double> ("seleS4S9Gamma");  
    selePi0Iso_ = ps.getParameter<double> ("selePi0Iso");  
    ptMinForIsolation_ = ps.getParameter<double> ("ptMinForIsolation");
    selePi0BeltDR_ = ps.getParameter<double> ("selePi0BeltDR");  
    selePi0BeltDeta_ = ps.getParameter<double> ("selePi0BeltDeta");  

  
    selePtGammaEndCap_ = ps.getParameter<double> ("selePtGammaEndCap");  
    selePtPi0EndCap_ = ps.getParameter<double> ("selePtPi0EndCap");   
    seleS4S9GammaEndCap_ = ps.getParameter<double> ("seleS4S9GammaEndCap");  
    seleMinvMaxPi0EndCap_ = ps.getParameter<double> ("seleMinvMaxPi0EndCap");  
    seleMinvMinPi0EndCap_ = ps.getParameter<double> ("seleMinvMinPi0EndCap");  
    ptMinForIsolationEndCap_ = ps.getParameter<double> ("ptMinForIsolationEndCap");
    selePi0BeltDREndCap_ = ps.getParameter<double> ("selePi0BeltDREndCap");  
    selePi0BeltDetaEndCap_ = ps.getParameter<double> ("selePi0BeltDetaEndCap");  
    selePi0IsoEndCap_ = ps.getParameter<double> ("selePi0IsoEndCap");  


    selePtGammaEta_ = ps.getParameter<double> ("selePtGammaEta");  
    selePtEta_ = ps.getParameter<double> ("selePtEta");   
    seleS4S9GammaEta_ = ps.getParameter<double> ("seleS4S9GammaEta");  
    seleS9S25GammaEta_ = ps.getParameter<double> ("seleS9S25GammaEta");  
    seleMinvMaxEta_ = ps.getParameter<double> ("seleMinvMaxEta");  
    seleMinvMinEta_ = ps.getParameter<double> ("seleMinvMinEta");  
    ptMinForIsolationEta_ = ps.getParameter<double> ("ptMinForIsolationEta");
    seleEtaIso_ = ps.getParameter<double> ("seleEtaIso");  
    seleEtaBeltDR_ = ps.getParameter<double> ("seleEtaBeltDR");  
    seleEtaBeltDeta_ = ps.getParameter<double> ("seleEtaBeltDeta");  

  
    selePtGammaEtaEndCap_ = ps.getParameter<double> ("selePtGammaEtaEndCap");  
    selePtEtaEndCap_ = ps.getParameter<double> ("selePtEtaEndCap");   
    seleS4S9GammaEtaEndCap_ = ps.getParameter<double> ("seleS4S9GammaEtaEndCap");  
    seleS9S25GammaEtaEndCap_ = ps.getParameter<double> ("seleS9S25GammaEtaEndCap");  
    seleMinvMaxEtaEndCap_ = ps.getParameter<double> ("seleMinvMaxEtaEndCap");  
    seleMinvMinEtaEndCap_ = ps.getParameter<double> ("seleMinvMinEtaEndCap");  
    ptMinForIsolationEtaEndCap_ = ps.getParameter<double> ("ptMinForIsolationEtaEndCap");
    seleEtaIsoEndCap_ = ps.getParameter<double> ("seleEtaIsoEndCap");  
    seleEtaBeltDREndCap_ = ps.getParameter<double> ("seleEtaBeltDREndCap");  
    seleEtaBeltDetaEndCap_ = ps.getParameter<double> ("seleEtaBeltDetaEndCap");  



    // Parameters for the position calculation:
    edm::ParameterSet posCalcParameters = 
      ps.getParameter<edm::ParameterSet>("posCalcParameters");
    posCalculator_ = PositionCalc(posCalcParameters);
    
}
DQMSourcePi0::~DQMSourcePi0 ( )

Definition at line 141 of file DQMSourcePi0.cc.

{}

Member Function Documentation

void DQMSourcePi0::analyze ( const edm::Event e,
const edm::EventSetup c 
) [protected, virtual]

EcalRecHit

check s4s9

calculate e5x5

already clustered

check s4s9

calculate e5x5

already clustered

EcalRecHit

EcalRecHit

Implements edm::EDAnalyzer.

Definition at line 344 of file DQMSourcePi0.cc.

References abs, PositionCalc::Calculate_Location(), clusEtaSize_, clusPhiSize_, clusSeedThr_, clusSeedThrEndCap_, convxtalid(), funct::cos(), detIdEBRecHits, detIdEERecHits, diff_neta_s(), diff_nphi_s(), EBRecHits, DetId::Ecal, EcalBarrel, EcalEndcap, EcalPreshower, EERecHits, relval_parameters_module::energy, eventCounter_, funct::exp(), MonitorElement::Fill(), spr::find(), edm::EventSetup::get(), edm::Event::getByLabel(), CaloSubdetectorTopology::getWindow(), hEventEnergyEBeta_, hEventEnergyEBpi0_, hEventEnergyEEeta_, hEventEnergyEEpi0_, hiEtaDistrEBeta_, hiEtaDistrEBpi0_, hiPhiDistrEBeta_, hiPhiDistrEBpi0_, hIsoEtaEB_, hIsoEtaEE_, hIsoPi0EB_, hIsoPi0EE_, hiXDistrEEeta_, hiXDistrEEpi0_, hiYDistrEEeta_, hiYDistrEEpi0_, hMeanRecHitEnergyEBeta_, hMeanRecHitEnergyEBpi0_, hMeanRecHitEnergyEEeta_, hMeanRecHitEnergyEEpi0_, hMinvEtaEB_, hMinvEtaEE_, hMinvPi0EB_, hMinvPi0EE_, hNRecHitsEBeta_, hNRecHitsEBpi0_, hNRecHitsEEeta_, hNRecHitsEEpi0_, hPt1EtaEB_, hPt1EtaEE_, hPt1Pi0EB_, hPt1Pi0EE_, hPt2EtaEB_, hPt2EtaEE_, hPt2Pi0EB_, hPt2Pi0EE_, hPtEtaEB_, hPtEtaEE_, hPtPi0EB_, hPtPi0EE_, hRechitEnergyEBeta_, hRechitEnergyEBpi0_, hRechitEnergyEEeta_, hRechitEnergyEEpi0_, hS4S91EtaEB_, hS4S91EtaEE_, hS4S91Pi0EB_, hS4S91Pi0EE_, hS4S92EtaEB_, hS4S92EtaEE_, hS4S92Pi0EB_, hS4S92Pi0EE_, i, EBDetId::ieta(), createXMLFile::iphi, EBDetId::iphi(), isMonEBeta_, isMonEBpi0_, isMonEEeta_, isMonEEpi0_, edm::HandleBase::isValid(), EEDetId::ix(), EEDetId::iy(), j, gen::k, posCalculator_, prescaleFactor_, edm::Handle< T >::product(), productMonitoredEBeta_, productMonitoredEBpi0_, productMonitoredEEeta_, productMonitoredEEpi0_, ptMinForIsolation_, ptMinForIsolationEndCap_, ptMinForIsolationEta_, ptMinForIsolationEtaEndCap_, seleEtaBeltDeta_, seleEtaBeltDetaEndCap_, seleEtaBeltDR_, seleEtaBeltDREndCap_, seleEtaIso_, seleEtaIsoEndCap_, seleMinvMaxEta_, seleMinvMaxEtaEndCap_, seleMinvMaxPi0_, seleMinvMaxPi0EndCap_, seleMinvMinEta_, seleMinvMinEtaEndCap_, seleMinvMinPi0_, seleMinvMinPi0EndCap_, selePi0BeltDeta_, selePi0BeltDetaEndCap_, selePi0BeltDR_, selePi0BeltDREndCap_, selePi0Iso_, selePi0IsoEndCap_, selePtEta_, selePtEtaEndCap_, selePtGamma_, selePtGammaEndCap_, selePtGammaEta_, selePtGammaEtaEndCap_, selePtPi0_, selePtPi0EndCap_, seleS4S9Gamma_, seleS4S9GammaEndCap_, seleS4S9GammaEta_, seleS4S9GammaEtaEndCap_, seleXtalMinEnergy_, seleXtalMinEnergyEndCap_, funct::sin(), python::multivaluedict::sort(), and mathSSE::sqrt().

                                                         {  
 
  if (eventCounter_% prescaleFactor_ ) return; 
  eventCounter_++;

  edm::ESHandle<CaloTopology> theCaloTopology;
  iSetup.get<CaloTopologyRecord>().get(theCaloTopology);


  std::vector<EcalRecHit> seeds;
  seeds.clear();

  vector<EBDetId> usedXtals;
  usedXtals.clear();

  detIdEBRecHits.clear(); 
  EBRecHits.clear();  





    
  edm::Handle<EcalRecHitCollection> rhEBpi0;
  edm::Handle<EcalRecHitCollection> rhEBeta;
  edm::Handle<EcalRecHitCollection> rhEEpi0;
  edm::Handle<EcalRecHitCollection> rhEEeta;
 
  if(isMonEBpi0_) iEvent.getByLabel(productMonitoredEBpi0_, rhEBpi0); 
  if(isMonEBeta_) iEvent.getByLabel(productMonitoredEBeta_, rhEBeta); 
  if(isMonEEpi0_) iEvent.getByLabel(productMonitoredEEpi0_, rhEEpi0);
  if(isMonEEeta_) iEvent.getByLabel(productMonitoredEEeta_, rhEEeta);

  // Initialize the Position Calc
  const CaloSubdetectorGeometry *geometry_p; 
  const CaloSubdetectorGeometry *geometryEE_p;    
  const CaloSubdetectorGeometry *geometryES_p;
  
  const CaloSubdetectorTopology *topology_p;
  const CaloSubdetectorTopology *topology_ee;
  


  edm::ESHandle<CaloGeometry> geoHandle;
  iSetup.get<CaloGeometryRecord>().get(geoHandle);     
  geometry_p = geoHandle->getSubdetectorGeometry(DetId::Ecal,EcalBarrel);
  geometryEE_p = geoHandle->getSubdetectorGeometry(DetId::Ecal,EcalEndcap);
  geometryES_p = geoHandle->getSubdetectorGeometry(DetId::Ecal, EcalPreshower);
  topology_p = theCaloTopology->getSubdetectorTopology(DetId::Ecal,EcalBarrel);
  topology_ee = theCaloTopology->getSubdetectorTopology(DetId::Ecal,EcalEndcap);
  
  EcalRecHitCollection::const_iterator itb;
  
  // fill EB pi0 histos 
  if(isMonEBpi0_ ){
    if (rhEBpi0.isValid() && (rhEBpi0->size() > 0)){


      const EcalRecHitCollection *hitCollection_p = rhEBpi0.product();
      float etot =0;
      for(itb=rhEBpi0->begin(); itb!=rhEBpi0->end(); ++itb){
        
        EBDetId id(itb->id());
        double energy = itb->energy();
        if( energy < seleXtalMinEnergy_) continue; 

        EBDetId det = itb->id();


        detIdEBRecHits.push_back(det);
        EBRecHits.push_back(*itb);

        if (energy > clusSeedThr_) seeds.push_back(*itb);

        hiPhiDistrEBpi0_->Fill(id.iphi());
        hiEtaDistrEBpi0_->Fill(id.ieta());
        hRechitEnergyEBpi0_->Fill(itb->energy());
        
        etot+= itb->energy();    
      } // Eb rechits
      
      hNRecHitsEBpi0_->Fill(rhEBpi0->size());
      hMeanRecHitEnergyEBpi0_->Fill(etot/rhEBpi0->size());
      hEventEnergyEBpi0_->Fill(etot);

      //      cout << " EB RH Pi0 collection: #, mean rh_e, event E "<<rhEBpi0->size()<<" "<<etot/rhEBpi0->size()<<" "<<etot<<endl;   


      // Pi0 maker

      //cout<< " RH coll size: "<<rhEBpi0->size()<<endl;
      //cout<< " Pi0 seeds: "<<seeds.size()<<endl;

      int nClus;
      vector<float> eClus;
      vector<float> etClus;
      vector<float> etaClus; 
      vector<float> thetaClus;
      vector<float> phiClus;
      vector<EBDetId> max_hit;

      vector< vector<EcalRecHit> > RecHitsCluster;
      vector< vector<EcalRecHit> > RecHitsCluster5x5;
      vector<float> s4s9Clus;
      vector<float> s9s25Clus;


      nClus=0;


      // Make own simple clusters (3x3, 5x5 or clusPhiSize_ x clusEtaSize_)
      sort(seeds.begin(), seeds.end(), ecalRecHitLess());

      for (std::vector<EcalRecHit>::iterator itseed=seeds.begin(); itseed!=seeds.end(); itseed++) {
        EBDetId seed_id = itseed->id();
        std::vector<EBDetId>::const_iterator usedIds;

        bool seedAlreadyUsed=false;
        for(usedIds=usedXtals.begin(); usedIds!=usedXtals.end(); usedIds++){
          if(*usedIds==seed_id){
            seedAlreadyUsed=true;
            //cout<< " Seed with energy "<<itseed->energy()<<" was used !"<<endl;
            break; 
          }
        }
        if(seedAlreadyUsed)continue;
        std::vector<DetId> clus_v = topology_p->getWindow(seed_id,clusEtaSize_,clusPhiSize_);       
        std::vector<std::pair<DetId,float> > clus_used;
        //Reject the seed if not able to build the cluster around it correctly
        //if(clus_v.size() < clusEtaSize_*clusPhiSize_){cout<<" Not enough RecHits "<<endl; continue;}
        vector<EcalRecHit> RecHitsInWindow;
        vector<EcalRecHit> RecHitsInWindow5x5;

        double simple_energy = 0; 

        for (std::vector<DetId >::iterator det=clus_v.begin(); det!=clus_v.end(); det++) {
          EBDetId EBdet = *det;
          //      cout<<" det "<< EBdet<<" ieta "<<EBdet.ieta()<<" iphi "<<EBdet.iphi()<<endl;
          bool  HitAlreadyUsed=false;
          for(usedIds=usedXtals.begin(); usedIds!=usedXtals.end(); usedIds++){
            if(*usedIds==*det){
              HitAlreadyUsed=true;
              break;
            }
          }
          if(HitAlreadyUsed)continue;


          std::vector<EBDetId>::iterator itdet = find( detIdEBRecHits.begin(),detIdEBRecHits.end(),EBdet);
          if(itdet == detIdEBRecHits.end()) continue; 
      
          int nn = int(itdet - detIdEBRecHits.begin());
          usedXtals.push_back(*det);
          RecHitsInWindow.push_back(EBRecHits[nn]);
          clus_used.push_back(std::make_pair(*det,1));
          simple_energy = simple_energy + EBRecHits[nn].energy();


        }

        if(simple_energy <= 0) continue;
   
        math::XYZPoint clus_pos = posCalculator_.Calculate_Location(clus_used,hitCollection_p,geometry_p,geometryES_p);
        //cout<< "       Simple Clustering: Total energy for this simple cluster : "<<simple_energy<<endl; 
        //cout<< "       Simple Clustering: eta phi : "<<clus_pos.eta()<<" "<<clus_pos.phi()<<endl; 
        //cout<< "       Simple Clustering: x y z : "<<clus_pos.x()<<" "<<clus_pos.y()<<" "<<clus_pos.z()<<endl; 

        float theta_s = 2. * atan(exp(-clus_pos.eta()));
        //      float p0x_s = simple_energy * sin(theta_s) * cos(clus_pos.phi());
        //float p0y_s = simple_energy * sin(theta_s) * sin(clus_pos.phi());
        //    float p0z_s = simple_energy * cos(theta_s);
        //float et_s = sqrt( p0x_s*p0x_s + p0y_s*p0y_s);
        
        float et_s = simple_energy * sin(theta_s);
        //cout << "       Simple Clustering: E,Et,px,py,pz: "<<simple_energy<<" "<<et_s<<" "<<p0x_s<<" "<<p0y_s<<" "<<endl;

        //Compute S4/S9 variable
        //We are not sure to have 9 RecHits so need to check eta and phi:
        float s4s9_tmp[4];
        for(int i=0;i<4;i++)s4s9_tmp[i]= 0;

        int seed_ieta = seed_id.ieta();
        int seed_iphi = seed_id.iphi();
    
        convxtalid( seed_iphi,seed_ieta);
    
        float e3x3 = 0; 
        float e5x5 = 0; 

        for(unsigned int j=0; j<RecHitsInWindow.size();j++){
          EBDetId det = (EBDetId)RecHitsInWindow[j].id(); 
      
          int ieta = det.ieta();
          int iphi = det.iphi();
      
          convxtalid(iphi,ieta);
      
          float en = RecHitsInWindow[j].energy(); 
      
          int dx = diff_neta_s(seed_ieta,ieta);
          int dy = diff_nphi_s(seed_iphi,iphi);
      
          if(dx <= 0 && dy <=0) s4s9_tmp[0] += en; 
          if(dx >= 0 && dy <=0) s4s9_tmp[1] += en; 
          if(dx <= 0 && dy >=0) s4s9_tmp[2] += en; 
          if(dx >= 0 && dy >=0) s4s9_tmp[3] += en; 

          if(std::abs(dx)<=1 && std::abs(dy)<=1) e3x3 += en; 
          if(std::abs(dx)<=2 && std::abs(dy)<=2) e5x5 += en; 

      
        }
    
        if(e3x3 <= 0) continue;

        float s4s9_max = *max_element( s4s9_tmp,s4s9_tmp+4)/e3x3; 


    std::vector<DetId> clus_v5x5 = topology_p->getWindow(seed_id,5,5); 
    for( std::vector<DetId>::const_iterator idItr = clus_v5x5.begin(); idItr != clus_v5x5.end(); idItr++){
      EBDetId det = *idItr;
      

      std::vector<EBDetId>::iterator itdet0 = find(usedXtals.begin(),usedXtals.end(),det);

      if(itdet0 != usedXtals.end()) continue; 
      
      //inside collections
      std::vector<EBDetId>::iterator itdet = find( detIdEBRecHits.begin(),detIdEBRecHits.end(),det);
      if(itdet == detIdEBRecHits.end()) continue; 

      int nn = int(itdet - detIdEBRecHits.begin());
      
      RecHitsInWindow5x5.push_back(EBRecHits[nn]);
      e5x5 += EBRecHits[nn].energy();
      
    }



        if(e5x5 <= 0) continue;

            eClus.push_back(simple_energy);
            etClus.push_back(et_s);
            etaClus.push_back(clus_pos.eta());
            thetaClus.push_back(theta_s);
            phiClus.push_back(clus_pos.phi());
            s4s9Clus.push_back(s4s9_max);
            s9s25Clus.push_back(e3x3/e5x5);
            RecHitsCluster.push_back(RecHitsInWindow);
            RecHitsCluster5x5.push_back(RecHitsInWindow5x5);
            
            //      std::cout<<" EB pi0 cluster (n,nxt,e,et eta,phi,s4s9) "<<nClus<<" "<<int(RecHitsInWindow.size())<<" "<<eClus[nClus]<<" "<<" "<<etClus[nClus]<<" "<<etaClus[nClus]<<" "<<phiClus[nClus]<<" "<<s4s9Clus[nClus]<<std::endl;

            nClus++;


  }
    
      // cout<< " Pi0 clusters: "<<nClus<<endl;

      // Selection, based on Simple clustering
      //pi0 candidates
      int npi0_s=0;


      //      if (nClus <= 1) return;
      for(Int_t i=0 ; i<nClus ; i++){
        for(Int_t j=i+1 ; j<nClus ; j++){
          //      cout<<" i "<<i<<"  etClus[i] "<<etClus[i]<<" j "<<j<<"  etClus[j] "<<etClus[j]<<endl;
          if( etClus[i]>selePtGamma_ && etClus[j]>selePtGamma_ && s4s9Clus[i]>seleS4S9Gamma_ && s4s9Clus[j]>seleS4S9Gamma_){


          float p0x = etClus[i] * cos(phiClus[i]);
          float p1x = etClus[j] * cos(phiClus[j]);
          float p0y = etClus[i] * sin(phiClus[i]);
          float p1y = etClus[j] * sin(phiClus[j]);
          float p0z = eClus[i] * cos(thetaClus[i]);
          float p1z = eClus[j] * cos(thetaClus[j]);
        
        
          float pt_pair = sqrt( (p0x+p1x)*(p0x+p1x) + (p0y+p1y)*(p0y+p1y));

          if (pt_pair < selePtPi0_)continue;

          float m_inv = sqrt ( (eClus[i] + eClus[j])*(eClus[i] + eClus[j]) - (p0x+p1x)*(p0x+p1x) - (p0y+p1y)*(p0y+p1y) - (p0z+p1z)*(p0z+p1z) );  
            if ( (m_inv<seleMinvMaxPi0_) && (m_inv>seleMinvMinPi0_) ){

              //New Loop on cluster to measure isolation:
              vector<int> IsoClus;
              IsoClus.clear();
              float Iso = 0;
              TVector3 pairVect = TVector3((p0x+p1x), (p0y+p1y), (p0z+p1z));
              for(Int_t k=0 ; k<nClus ; k++){


                if(etClus[k] < ptMinForIsolation_) continue;

                if(k==i || k==j)continue;
              TVector3 ClusVect = TVector3(etClus[k] *cos(phiClus[k]), etClus[k] * sin(phiClus[k]) , eClus[k] * cos(thetaClus[k]));

                float dretacl = fabs(etaClus[k] - pairVect.Eta());
                float drcl = ClusVect.DeltaR(pairVect);
                //      cout<< "   Iso: k, E, drclpi0, detaclpi0, dphiclpi0 "<<k<<" "<<eClus[k]<<" "<<drclpi0<<" "<<dretaclpi0<<endl;
                if((drcl<selePi0BeltDR_) && (dretacl<selePi0BeltDeta_) ){
                  //              cout<< "   ... good iso cluster #: "<<k<<" etClus[k] "<<etClus[k] <<endl;
                  Iso = Iso + etClus[k];
                  IsoClus.push_back(k);
                }
              }

              //      cout<<"  Iso/pt_pi0 "<<Iso/pt_pi0<<endl;
              if(Iso/pt_pair<selePi0Iso_){
                //for(unsigned int Rec=0;Rec<RecHitsCluster[i].size();Rec++)pi0EBRecHitCollection->push_back(RecHitsCluster[i][Rec]);
                //for(unsigned int Rec2=0;Rec2<RecHitsCluster[j].size();Rec2++)pi0EBRecHitCollection->push_back(RecHitsCluster[j][Rec2]);


                hMinvPi0EB_->Fill(m_inv);
                hPt1Pi0EB_->Fill(etClus[i]);
                hPt2Pi0EB_->Fill(etClus[j]);
                hPtPi0EB_->Fill(pt_pair);
                hIsoPi0EB_->Fill(Iso/pt_pair);
                hS4S91Pi0EB_->Fill(s4s9Clus[i]);
                hS4S92Pi0EB_->Fill(s4s9Clus[j]);
                
                //              cout <<"  EB Simple Clustering: pi0 Candidate pt, eta, phi, Iso, m_inv, i, j :   "<<pt_pair<<" "<<pairVect.Eta()<<" "<<pairVect.Phi()<<" "<<Iso<<" "<<m_inv<<" "<<i<<" "<<j<<" "<<endl;  

                npi0_s++;
                
              }
            


          
            }
          }
        } // End of the "j" loop over Simple Clusters
      } // End of the "i" loop over Simple Clusters

      //      cout<<"  (Simple Clustering) EB Pi0 candidates #: "<<npi0_s<<endl;

    } // rhEBpi0.valid() ends

  } //  isMonEBpi0 ends

  //------------------ End of pi0 in EB --------------------------//

  // fill EB eta histos 
  if(isMonEBeta_ ){
    if (rhEBeta.isValid() && (rhEBeta->size() > 0)){


      const EcalRecHitCollection *hitCollection_p = rhEBeta.product();
      float etot =0;
      for(itb=rhEBeta->begin(); itb!=rhEBeta->end(); ++itb){
        
        EBDetId id(itb->id());
        double energy = itb->energy();
        if( energy < seleXtalMinEnergy_) continue; 

        EBDetId det = itb->id();


        detIdEBRecHits.push_back(det);
        EBRecHits.push_back(*itb);

        if (energy > clusSeedThr_) seeds.push_back(*itb);

        hiPhiDistrEBeta_->Fill(id.iphi());
        hiEtaDistrEBeta_->Fill(id.ieta());
        hRechitEnergyEBeta_->Fill(itb->energy());
        
        etot+= itb->energy();    
      } // Eb rechits
      
      hNRecHitsEBeta_->Fill(rhEBeta->size());
      hMeanRecHitEnergyEBeta_->Fill(etot/rhEBeta->size());
      hEventEnergyEBeta_->Fill(etot);

      //      cout << " EB RH Eta collection: #, mean rh_e, event E "<<rhEBeta->size()<<" "<<etot/rhEBeta->size()<<" "<<etot<<endl;   


      // Eta maker

      //cout<< " RH coll size: "<<rhEBeta->size()<<endl;
      //cout<< " Eta seeds: "<<seeds.size()<<endl;

      int nClus;
      vector<float> eClus;
      vector<float> etClus;
      vector<float> etaClus; 
      vector<float> thetaClus;
      vector<float> phiClus;
      vector<EBDetId> max_hit;

      vector< vector<EcalRecHit> > RecHitsCluster;
      vector< vector<EcalRecHit> > RecHitsCluster5x5;
      vector<float> s4s9Clus;
      vector<float> s9s25Clus;


      nClus=0;

      // Make own simple clusters (3x3, 5x5 or clusPhiSize_ x clusEtaSize_)
      sort(seeds.begin(), seeds.end(), ecalRecHitLess());

      for (std::vector<EcalRecHit>::iterator itseed=seeds.begin(); itseed!=seeds.end(); itseed++) {
        EBDetId seed_id = itseed->id();
        std::vector<EBDetId>::const_iterator usedIds;

        bool seedAlreadyUsed=false;
        for(usedIds=usedXtals.begin(); usedIds!=usedXtals.end(); usedIds++){
          if(*usedIds==seed_id){
            seedAlreadyUsed=true;
            //cout<< " Seed with energy "<<itseed->energy()<<" was used !"<<endl;
            break; 
          }
        }
        if(seedAlreadyUsed)continue;
        std::vector<DetId> clus_v = topology_p->getWindow(seed_id,clusEtaSize_,clusPhiSize_);       
        std::vector<std::pair<DetId,float> > clus_used;
        //Reject the seed if not able to build the cluster around it correctly
        //if(clus_v.size() < clusEtaSize_*clusPhiSize_){cout<<" Not enough RecHits "<<endl; continue;}
        vector<EcalRecHit> RecHitsInWindow;
        vector<EcalRecHit> RecHitsInWindow5x5;

        double simple_energy = 0; 

        for (std::vector<DetId>::iterator det=clus_v.begin(); det!=clus_v.end(); det++) {
          EBDetId EBdet = *det;
          //      cout<<" det "<< EBdet<<" ieta "<<EBdet.ieta()<<" iphi "<<EBdet.iphi()<<endl;
          bool  HitAlreadyUsed=false;
          for(usedIds=usedXtals.begin(); usedIds!=usedXtals.end(); usedIds++){
            if(*usedIds==*det){
              HitAlreadyUsed=true;
              break;
            }
          }
          if(HitAlreadyUsed)continue;


          std::vector<EBDetId>::iterator itdet = find( detIdEBRecHits.begin(),detIdEBRecHits.end(),EBdet);
          if(itdet == detIdEBRecHits.end()) continue; 
      
          int nn = int(itdet - detIdEBRecHits.begin());
          usedXtals.push_back(*det);
          RecHitsInWindow.push_back(EBRecHits[nn]);
          clus_used.push_back(std::make_pair(*det,1));
          simple_energy = simple_energy + EBRecHits[nn].energy();


        }

        if(simple_energy <= 0) continue;
   
        math::XYZPoint clus_pos = posCalculator_.Calculate_Location(clus_used,hitCollection_p,geometry_p,geometryES_p);
        //cout<< "       Simple Clustering: Total energy for this simple cluster : "<<simple_energy<<endl; 
        //cout<< "       Simple Clustering: eta phi : "<<clus_pos.eta()<<" "<<clus_pos.phi()<<endl; 
        //cout<< "       Simple Clustering: x y z : "<<clus_pos.x()<<" "<<clus_pos.y()<<" "<<clus_pos.z()<<endl; 

        float theta_s = 2. * atan(exp(-clus_pos.eta()));
        //      float p0x_s = simple_energy * sin(theta_s) * cos(clus_pos.phi());
        //float p0y_s = simple_energy * sin(theta_s) * sin(clus_pos.phi());
        //    float p0z_s = simple_energy * cos(theta_s);
        //float et_s = sqrt( p0x_s*p0x_s + p0y_s*p0y_s);
        
        float et_s = simple_energy * sin(theta_s);
        //cout << "       Simple Clustering: E,Et,px,py,pz: "<<simple_energy<<" "<<et_s<<" "<<p0x_s<<" "<<p0y_s<<" "<<endl;

        //Compute S4/S9 variable
        //We are not sure to have 9 RecHits so need to check eta and phi:
        float s4s9_tmp[4];
        for(int i=0;i<4;i++)s4s9_tmp[i]= 0;

        int seed_ieta = seed_id.ieta();
        int seed_iphi = seed_id.iphi();
    
        convxtalid( seed_iphi,seed_ieta);
    
        float e3x3 = 0; 
        float e5x5 = 0; 

        for(unsigned int j=0; j<RecHitsInWindow.size();j++){
          EBDetId det = (EBDetId)RecHitsInWindow[j].id(); 
      
          int ieta = det.ieta();
          int iphi = det.iphi();
      
          convxtalid(iphi,ieta);
      
          float en = RecHitsInWindow[j].energy(); 
      
          int dx = diff_neta_s(seed_ieta,ieta);
          int dy = diff_nphi_s(seed_iphi,iphi);
      
          if(dx <= 0 && dy <=0) s4s9_tmp[0] += en; 
          if(dx >= 0 && dy <=0) s4s9_tmp[1] += en; 
          if(dx <= 0 && dy >=0) s4s9_tmp[2] += en; 
          if(dx >= 0 && dy >=0) s4s9_tmp[3] += en; 

          if(std::abs(dx)<=1 && std::abs(dy)<=1) e3x3 += en; 
          if(std::abs(dx)<=2 && std::abs(dy)<=2) e5x5 += en; 

      
        }
    
        if(e3x3 <= 0) continue;

        float s4s9_max = *max_element( s4s9_tmp,s4s9_tmp+4)/e3x3; 


    std::vector<DetId> clus_v5x5 = topology_p->getWindow(seed_id,5,5); 
    for( std::vector<DetId>::const_iterator idItr = clus_v5x5.begin(); idItr != clus_v5x5.end(); idItr++){
      EBDetId det = *idItr;
      

      std::vector<EBDetId>::iterator itdet0 = find(usedXtals.begin(),usedXtals.end(),det);

      if(itdet0 != usedXtals.end()) continue; 
      
      //inside collections
      std::vector<EBDetId>::iterator itdet = find( detIdEBRecHits.begin(),detIdEBRecHits.end(),det);
      if(itdet == detIdEBRecHits.end()) continue; 

      int nn = int(itdet - detIdEBRecHits.begin());
      
      RecHitsInWindow5x5.push_back(EBRecHits[nn]);
      e5x5 += EBRecHits[nn].energy();
      
    }



        if(e5x5 <= 0) continue;

            eClus.push_back(simple_energy);
            etClus.push_back(et_s);
            etaClus.push_back(clus_pos.eta());
            thetaClus.push_back(theta_s);
            phiClus.push_back(clus_pos.phi());
            s4s9Clus.push_back(s4s9_max);
            s9s25Clus.push_back(e3x3/e5x5);
            RecHitsCluster.push_back(RecHitsInWindow);
            RecHitsCluster5x5.push_back(RecHitsInWindow5x5);
            
            //      std::cout<<" EB Eta cluster (n,nxt,e,et eta,phi,s4s9) "<<nClus<<" "<<int(RecHitsInWindow.size())<<" "<<eClus[nClus]<<" "<<" "<<etClus[nClus]<<" "<<etaClus[nClus]<<" "<<phiClus[nClus]<<" "<<s4s9Clus[nClus]<<std::endl;

            nClus++;
            

  }
    
      // cout<< " Eta clusters: "<<nClus<<endl;

      // Selection, based on Simple clustering
      //eta candidates
      int npi0_s=0;


      //      if (nClus <= 1) return;
      for(Int_t i=0 ; i<nClus ; i++){
        for(Int_t j=i+1 ; j<nClus ; j++){
          //      cout<<" i "<<i<<"  etClus[i] "<<etClus[i]<<" j "<<j<<"  etClus[j] "<<etClus[j]<<endl;
          if( etClus[i]>selePtGammaEta_ && etClus[j]>selePtGammaEta_ && s4s9Clus[i]>seleS4S9GammaEta_ && s4s9Clus[j]>seleS4S9GammaEta_){


          float p0x = etClus[i] * cos(phiClus[i]);
          float p1x = etClus[j] * cos(phiClus[j]);
          float p0y = etClus[i] * sin(phiClus[i]);
          float p1y = etClus[j] * sin(phiClus[j]);
          float p0z = eClus[i] * cos(thetaClus[i]);
          float p1z = eClus[j] * cos(thetaClus[j]);
        
        
          float pt_pair = sqrt( (p0x+p1x)*(p0x+p1x) + (p0y+p1y)*(p0y+p1y));

          if (pt_pair < selePtEta_)continue;

          float m_inv = sqrt ( (eClus[i] + eClus[j])*(eClus[i] + eClus[j]) - (p0x+p1x)*(p0x+p1x) - (p0y+p1y)*(p0y+p1y) - (p0z+p1z)*(p0z+p1z) );  
            if ( (m_inv<seleMinvMaxEta_) && (m_inv>seleMinvMinEta_) ){

              //New Loop on cluster to measure isolation:
              vector<int> IsoClus;
              IsoClus.clear();
              float Iso = 0;
              TVector3 pairVect = TVector3((p0x+p1x), (p0y+p1y), (p0z+p1z));
              for(Int_t k=0 ; k<nClus ; k++){


                if(etClus[k] < ptMinForIsolationEta_) continue;

                if(k==i || k==j)continue;
              TVector3 ClusVect = TVector3(etClus[k] *cos(phiClus[k]), etClus[k] * sin(phiClus[k]) , eClus[k] * cos(thetaClus[k]));

                float dretacl = fabs(etaClus[k] - pairVect.Eta());
                float drcl = ClusVect.DeltaR(pairVect);
                //      cout<< "   Iso: k, E, drclpi0, detaclpi0, dphiclpi0 "<<k<<" "<<eClus[k]<<" "<<drclpi0<<" "<<dretaclpi0<<endl;
                if((drcl<seleEtaBeltDR_) && (dretacl<seleEtaBeltDeta_) ){
                  //              cout<< "   ... good iso cluster #: "<<k<<" etClus[k] "<<etClus[k] <<endl;
                  Iso = Iso + etClus[k];
                  IsoClus.push_back(k);
                }
              }

              //      cout<<"  Iso/pt_pi0 "<<Iso/pt_pi0<<endl;
              if(Iso/pt_pair<seleEtaIso_){
                //for(unsigned int Rec=0;Rec<RecHitsCluster[i].size();Rec++)pi0EBRecHitCollection->push_back(RecHitsCluster[i][Rec]);
                //for(unsigned int Rec2=0;Rec2<RecHitsCluster[j].size();Rec2++)pi0EBRecHitCollection->push_back(RecHitsCluster[j][Rec2]);


                hMinvEtaEB_->Fill(m_inv);
                hPt1EtaEB_->Fill(etClus[i]);
                hPt2EtaEB_->Fill(etClus[j]);
                hPtEtaEB_->Fill(pt_pair);
                hIsoEtaEB_->Fill(Iso/pt_pair);
                hS4S91EtaEB_->Fill(s4s9Clus[i]);
                hS4S92EtaEB_->Fill(s4s9Clus[j]);
                
                //              cout <<"  EB Simple Clustering: Eta Candidate pt, eta, phi, Iso, m_inv, i, j :   "<<pt_pair<<" "<<pairVect.Eta()<<" "<<pairVect.Phi()<<" "<<Iso<<" "<<m_inv<<" "<<i<<" "<<j<<" "<<endl;  

                npi0_s++;
                
              }
            


          
            }
          }
        } // End of the "j" loop over Simple Clusters
      } // End of the "i" loop over Simple Clusters

      //      cout<<"  (Simple Clustering) EB Eta candidates #: "<<npi0_s<<endl;

    } // rhEBeta.valid() ends

  } //  isMonEBeta ends

  //------------------ End of Eta in EB --------------------------//



      //----------------- End of the EB --------------------------//




      //----------------- Start of the EE --------------------//

      // fill pi0 EE histos
      if(isMonEEpi0_){
        if (rhEEpi0.isValid() && (rhEEpi0->size() > 0)){

          const EcalRecHitCollection *hitCollection_ee = rhEEpi0.product();
          float etot =0;


      detIdEERecHits.clear(); 
      EERecHits.clear();  


      std::vector<EcalRecHit> seedsEndCap;
      seedsEndCap.clear();

      vector<EEDetId> usedXtalsEndCap;
      usedXtalsEndCap.clear();


      EERecHitCollection::const_iterator ite;
      for (ite=rhEEpi0->begin(); ite!=rhEEpi0->end(); ite++) {
        double energy = ite->energy();
        if( energy < seleXtalMinEnergyEndCap_) continue; 
    
        EEDetId det = ite->id();
        EEDetId id(ite->id());

    
        detIdEERecHits.push_back(det);
        EERecHits.push_back(*ite);
    
        hiXDistrEEpi0_->Fill(id.ix());
        hiYDistrEEpi0_->Fill(id.iy());
        hRechitEnergyEEpi0_->Fill(ite->energy());

        if (energy > clusSeedThrEndCap_) seedsEndCap.push_back(*ite);
        
        etot+= ite->energy();    
      } // EE rechits
      
      hNRecHitsEEpi0_->Fill(rhEEpi0->size());
      hMeanRecHitEnergyEEpi0_->Fill(etot/rhEEpi0->size());
      hEventEnergyEEpi0_->Fill(etot);

      //      cout << " EE RH Pi0 collection: #, mean rh_e, event E "<<rhEEpi0->size()<<" "<<etot/rhEEpi0->size()<<" "<<etot<<endl;   
  
      int nClusEndCap;
      vector<float> eClusEndCap;
      vector<float> etClusEndCap;
      vector<float> etaClusEndCap;
      vector<float> thetaClusEndCap;
      vector<float> phiClusEndCap;
      vector< vector<EcalRecHit> > RecHitsClusterEndCap;
      vector< vector<EcalRecHit> > RecHitsCluster5x5EndCap;
      vector<float> s4s9ClusEndCap;
      vector<float> s9s25ClusEndCap;


      nClusEndCap=0;
  
  
      // Make own simple clusters (3x3, 5x5 or clusPhiSize_ x clusEtaSize_)
      sort(seedsEndCap.begin(), seedsEndCap.end(), ecalRecHitLess());
  
      for (std::vector<EcalRecHit>::iterator itseed=seedsEndCap.begin(); itseed!=seedsEndCap.end(); itseed++) {
        EEDetId seed_id = itseed->id();
        std::vector<EEDetId>::const_iterator usedIds;
    
        bool seedAlreadyUsed=false;
        for(usedIds=usedXtalsEndCap.begin(); usedIds!=usedXtalsEndCap.end(); usedIds++){
          if(*usedIds==seed_id){
            seedAlreadyUsed=true;
            break; 
          }
        }

        if(seedAlreadyUsed)continue;
        std::vector<DetId> clus_v = topology_ee->getWindow(seed_id,clusEtaSize_,clusPhiSize_);      
        std::vector<std::pair<DetId,float> > clus_used;
    

        vector<EcalRecHit> RecHitsInWindow;
        vector<EcalRecHit> RecHitsInWindow5x5;
    
        float simple_energy = 0; 

        for (std::vector<DetId>::iterator det=clus_v.begin(); det!=clus_v.end(); det++) {
          EEDetId EEdet = *det;
      
          bool  HitAlreadyUsed=false;
          for(usedIds=usedXtalsEndCap.begin(); usedIds!=usedXtalsEndCap.end(); usedIds++){
            if(*usedIds==*det){
              HitAlreadyUsed=true;
              break;
            }
          }
     
          if(HitAlreadyUsed)continue;
      
          std::vector<EEDetId>::iterator itdet = find( detIdEERecHits.begin(),detIdEERecHits.end(),EEdet);
          if(itdet == detIdEERecHits.end()) continue; 
      
      
          int nn = int(itdet - detIdEERecHits.begin());
          usedXtalsEndCap.push_back(*det);
          RecHitsInWindow.push_back(EERecHits[nn]);
          clus_used.push_back(std::make_pair(*det,1));
          simple_energy = simple_energy + EERecHits[nn].energy();
      
      
        }
    
        if( simple_energy <= 0) continue;
        
        math::XYZPoint clus_pos = posCalculator_.Calculate_Location(clus_used,hitCollection_ee,geometryEE_p,geometryES_p);
    

        float theta_s = 2. * atan(exp(-clus_pos.eta()));
        float et_s = simple_energy * sin(theta_s);
        //      float p0x_s = simple_energy * sin(theta_s) * cos(clus_pos.phi());
        //float p0y_s = simple_energy * sin(theta_s) * sin(clus_pos.phi());
        //float et_s = sqrt( p0x_s*p0x_s + p0y_s*p0y_s);
    
    
        //Compute S4/S9 variable
        //We are not sure to have 9 RecHits so need to check eta and phi:
        float s4s9_tmp[4];
        for(int i=0;i<4;i++) s4s9_tmp[i]= 0; 
    
        int ixSeed = seed_id.ix();
        int iySeed = seed_id.iy();
        float e3x3 = 0; 
        float e5x5 = 0;

        for(unsigned int j=0; j<RecHitsInWindow.size();j++){
          EEDetId det_this = (EEDetId)RecHitsInWindow[j].id(); 
          int dx = ixSeed - det_this.ix();
          int dy = iySeed - det_this.iy();
      
          float en = RecHitsInWindow[j].energy(); 
      
          if(dx <= 0 && dy <=0) s4s9_tmp[0] += en; 
          if(dx >= 0 && dy <=0) s4s9_tmp[1] += en; 
          if(dx <= 0 && dy >=0) s4s9_tmp[2] += en; 
          if(dx >= 0 && dy >=0) s4s9_tmp[3] += en; 

          if( std::abs(dx)<=1 && std::abs(dy)<=1) e3x3 += en; 
          if( std::abs(dx)<=2 && std::abs(dy)<=2) e5x5 += en; 

        }

      
        if(e3x3 <= 0) continue;

        eClusEndCap.push_back(simple_energy);
        etClusEndCap.push_back(et_s);
        etaClusEndCap.push_back(clus_pos.eta());
        thetaClusEndCap.push_back(theta_s);
        phiClusEndCap.push_back(clus_pos.phi());
        s4s9ClusEndCap.push_back(*max_element( s4s9_tmp,s4s9_tmp+4)/e3x3);
        s9s25ClusEndCap.push_back(e3x3/e5x5);
        RecHitsClusterEndCap.push_back(RecHitsInWindow);
        RecHitsCluster5x5EndCap.push_back(RecHitsInWindow5x5);
        

        //      std::cout<<" EE pi0 cluster (n,nxt,e,et eta,phi,s4s9) "<<nClusEndCap<<" "<<int(RecHitsInWindow.size())<<" "<<eClusEndCap[nClusEndCap]<<" "<<" "<<etClusEndCap[nClusEndCap]<<" "<<etaClusEndCap[nClusEndCap]<<" "<<phiClusEndCap[nClusEndCap]<<" "<<s4s9ClusEndCap[nClusEndCap]<<std::endl;


        nClusEndCap++;


      }



      // Selection, based on Simple clustering
      //pi0 candidates
      int npi0_se=0;


      for(Int_t i=0 ; i<nClusEndCap ; i++){
        for(Int_t j=i+1 ; j<nClusEndCap ; j++){
      
          if( etClusEndCap[i]>selePtGammaEndCap_ && etClusEndCap[j]>selePtGammaEndCap_ && s4s9ClusEndCap[i]>seleS4S9GammaEndCap_ && s4s9ClusEndCap[j]>seleS4S9GammaEndCap_){

          float p0x = etClusEndCap[i] * cos(phiClusEndCap[i]);
          float p1x = etClusEndCap[j] * cos(phiClusEndCap[j]);
          float p0y = etClusEndCap[i] * sin(phiClusEndCap[i]);
          float p1y = etClusEndCap[j] * sin(phiClusEndCap[j]);
          float p0z = eClusEndCap[i] * cos(thetaClusEndCap[i]);
          float p1z = eClusEndCap[j] * cos(thetaClusEndCap[j]);

        
            float pt_pair = sqrt( (p0x+p1x)*(p0x+p1x) + (p0y+p1y)*(p0y+p1y));
            if (pt_pair < selePtPi0EndCap_)continue;
            float m_inv = sqrt ( (eClusEndCap[i] + eClusEndCap[j])*(eClusEndCap[i] + eClusEndCap[j]) - (p0x+p1x)*(p0x+p1x) - (p0y+p1y)*(p0y+p1y) - (p0z+p1z)*(p0z+p1z) );  
 

            if ( (m_inv<seleMinvMaxPi0EndCap_) && (m_inv>seleMinvMinPi0EndCap_) ){
          

              //New Loop on cluster to measure isolation:
              vector<int> IsoClus;
              IsoClus.clear();
              float Iso = 0;
              TVector3 pairVect = TVector3((p0x+p1x), (p0y+p1y), (p0z+p1z));
              for(Int_t k=0 ; k<nClusEndCap ; k++){

                if(etClusEndCap[k] < ptMinForIsolationEndCap_) continue; 
            
            
                if(k==i || k==j)continue;
            
            
              TVector3 clusVect = TVector3(etClusEndCap[k] * cos(phiClusEndCap[k]), etClusEndCap[k] * sin(phiClusEndCap[k]) , eClusEndCap[k] * cos(thetaClusEndCap[k]) ) ;
              float dretacl = fabs(etaClusEndCap[k] - pairVect.Eta());
              float drcl = clusVect.DeltaR(pairVect);
              
              if(drcl < selePi0BeltDREndCap_ && dretacl < selePi0BeltDetaEndCap_ ){
                Iso = Iso + etClusEndCap[k];
                IsoClus.push_back(k);
              }
            }

          
              if(Iso/pt_pair<selePi0IsoEndCap_){
                //cout <<"  EE Simple Clustering: pi0 Candidate pt, eta, phi, Iso, m_inv, i, j :   "<<pt_pair<<" "<<pairVect.Eta()<<" "<<pairVect.Phi()<<" "<<Iso<<" "<<m_inv<<" "<<i<<" "<<j<<" "<<endl;  

                hMinvPi0EE_->Fill(m_inv);
                hPt1Pi0EE_->Fill(etClusEndCap[i]);
                hPt2Pi0EE_->Fill(etClusEndCap[j]);
                hPtPi0EE_->Fill(pt_pair);
                hIsoPi0EE_->Fill(Iso/pt_pair);
                hS4S91Pi0EE_->Fill(s4s9ClusEndCap[i]);
                hS4S92Pi0EE_->Fill(s4s9ClusEndCap[j]);

                npi0_se++;
              }
          
            }
          }
        } // End of the "j" loop over Simple Clusters
      } // End of the "i" loop over Simple Clusters

      //      cout<<"  (Simple Clustering) EE Pi0 candidates #: "<<npi0_se<<endl;

        } //rhEEpi0
      } //isMonEEpi0

      //================End of Pi0 endcap=======================//


      //================ Eta in EE===============================//

      // fill pi0 EE histos
      if(isMonEEeta_){
        if (rhEEeta.isValid() && (rhEEeta->size() > 0)){

          const EcalRecHitCollection *hitCollection_ee = rhEEeta.product();
          float etot =0;

      detIdEERecHits.clear(); 
      EERecHits.clear();  


      std::vector<EcalRecHit> seedsEndCap;
      seedsEndCap.clear();

      vector<EEDetId> usedXtalsEndCap;
      usedXtalsEndCap.clear();


      EERecHitCollection::const_iterator ite;
      for (ite=rhEEeta->begin(); ite!=rhEEeta->end(); ite++) {
        double energy = ite->energy();
        if( energy < seleXtalMinEnergyEndCap_) continue; 
    
        EEDetId det = ite->id();
        EEDetId id(ite->id());

    
        detIdEERecHits.push_back(det);
        EERecHits.push_back(*ite);
    
        hiXDistrEEeta_->Fill(id.ix());
        hiYDistrEEeta_->Fill(id.iy());
        hRechitEnergyEEeta_->Fill(ite->energy());

        if (energy > clusSeedThrEndCap_) seedsEndCap.push_back(*ite);
        
        etot+= ite->energy();    
      } // EE rechits
      
      hNRecHitsEEeta_->Fill(rhEEeta->size());
      hMeanRecHitEnergyEEeta_->Fill(etot/rhEEeta->size());
      hEventEnergyEEeta_->Fill(etot);

      //      cout << " EE RH Eta collection: #, mean rh_e, event E "<<rhEEeta->size()<<" "<<etot/rhEEeta->size()<<" "<<etot<<endl;   
  
      int nClusEndCap;
      vector<float> eClusEndCap;
      vector<float> etClusEndCap;
      vector<float> etaClusEndCap;
      vector<float> thetaClusEndCap;
      vector<float> phiClusEndCap;
      vector< vector<EcalRecHit> > RecHitsClusterEndCap;
      vector< vector<EcalRecHit> > RecHitsCluster5x5EndCap;
      vector<float> s4s9ClusEndCap;
      vector<float> s9s25ClusEndCap;


      nClusEndCap=0;
  
  
      // Make own simple clusters (3x3, 5x5 or clusPhiSize_ x clusEtaSize_)
      sort(seedsEndCap.begin(), seedsEndCap.end(), ecalRecHitLess());
  
      for (std::vector<EcalRecHit>::iterator itseed=seedsEndCap.begin(); itseed!=seedsEndCap.end(); itseed++) {
        EEDetId seed_id = itseed->id();
        std::vector<EEDetId>::const_iterator usedIds;
    
        bool seedAlreadyUsed=false;
        for(usedIds=usedXtalsEndCap.begin(); usedIds!=usedXtalsEndCap.end(); usedIds++){
          if(*usedIds==seed_id){
            seedAlreadyUsed=true;
            break; 
          }
        }

        if(seedAlreadyUsed)continue;
        std::vector<DetId> clus_v = topology_ee->getWindow(seed_id,clusEtaSize_,clusPhiSize_);      
        std::vector<std::pair<DetId,float> > clus_used;
    

        vector<EcalRecHit> RecHitsInWindow;
        vector<EcalRecHit> RecHitsInWindow5x5;
    
        float simple_energy = 0; 

        for (std::vector<DetId>::iterator det=clus_v.begin(); det!=clus_v.end(); det++) {
          EEDetId EEdet = *det;
      
          bool  HitAlreadyUsed=false;
          for(usedIds=usedXtalsEndCap.begin(); usedIds!=usedXtalsEndCap.end(); usedIds++){
            if(*usedIds==*det){
              HitAlreadyUsed=true;
              break;
            }
          }
     
          if(HitAlreadyUsed)continue;
      
          std::vector<EEDetId>::iterator itdet = find( detIdEERecHits.begin(),detIdEERecHits.end(),EEdet);
          if(itdet == detIdEERecHits.end()) continue; 
      
      
          int nn = int(itdet - detIdEERecHits.begin());
          usedXtalsEndCap.push_back(*det);
          RecHitsInWindow.push_back(EERecHits[nn]);
          clus_used.push_back(std::make_pair(*det,1));
          simple_energy = simple_energy + EERecHits[nn].energy();
      
      
        }
    
        if( simple_energy <= 0) continue;
        
        math::XYZPoint clus_pos = posCalculator_.Calculate_Location(clus_used,hitCollection_ee,geometryEE_p,geometryES_p);
    

        float theta_s = 2. * atan(exp(-clus_pos.eta()));
        float et_s = simple_energy * sin(theta_s);
        //      float p0x_s = simple_energy * sin(theta_s) * cos(clus_pos.phi());
        //float p0y_s = simple_energy * sin(theta_s) * sin(clus_pos.phi());
        //float et_s = sqrt( p0x_s*p0x_s + p0y_s*p0y_s);
    
    
        //Compute S4/S9 variable
        //We are not sure to have 9 RecHits so need to check eta and phi:
        float s4s9_tmp[4];
        for(int i=0;i<4;i++) s4s9_tmp[i]= 0; 
    
        int ixSeed = seed_id.ix();
        int iySeed = seed_id.iy();
        float e3x3 = 0; 
        float e5x5 = 0;

        for(unsigned int j=0; j<RecHitsInWindow.size();j++){
          EEDetId det_this = (EEDetId)RecHitsInWindow[j].id(); 
          int dx = ixSeed - det_this.ix();
          int dy = iySeed - det_this.iy();
      
          float en = RecHitsInWindow[j].energy(); 
      
          if(dx <= 0 && dy <=0) s4s9_tmp[0] += en; 
          if(dx >= 0 && dy <=0) s4s9_tmp[1] += en; 
          if(dx <= 0 && dy >=0) s4s9_tmp[2] += en; 
          if(dx >= 0 && dy >=0) s4s9_tmp[3] += en; 

          if( std::abs(dx)<=1 && std::abs(dy)<=1) e3x3 += en; 
          if( std::abs(dx)<=2 && std::abs(dy)<=2) e5x5 += en; 

        }

      
        if(e3x3 <= 0) continue;

        eClusEndCap.push_back(simple_energy);
        etClusEndCap.push_back(et_s);
        etaClusEndCap.push_back(clus_pos.eta());
        thetaClusEndCap.push_back(theta_s);
        phiClusEndCap.push_back(clus_pos.phi());
        s4s9ClusEndCap.push_back(*max_element( s4s9_tmp,s4s9_tmp+4)/e3x3);
        s9s25ClusEndCap.push_back(e3x3/e5x5);
        RecHitsClusterEndCap.push_back(RecHitsInWindow);
        RecHitsCluster5x5EndCap.push_back(RecHitsInWindow5x5);
        
        //      std::cout<<" EE Eta cluster (n,nxt,e,et eta,phi,s4s9) "<<nClusEndCap<<" "<<int(RecHitsInWindow.size())<<" "<<eClusEndCap[nClusEndCap]<<" "<<" "<<etClusEndCap[nClusEndCap]<<" "<<etaClusEndCap[nClusEndCap]<<" "<<phiClusEndCap[nClusEndCap]<<" "<<s4s9ClusEndCap[nClusEndCap]<<std::endl;

        nClusEndCap++;

      }



      // Selection, based on Simple clustering
      //pi0 candidates
      int npi0_se=0;


      for(Int_t i=0 ; i<nClusEndCap ; i++){
        for(Int_t j=i+1 ; j<nClusEndCap ; j++){
      
          if( etClusEndCap[i]>selePtGammaEtaEndCap_ && etClusEndCap[j]>selePtGammaEtaEndCap_ && s4s9ClusEndCap[i]>seleS4S9GammaEtaEndCap_ && s4s9ClusEndCap[j]>seleS4S9GammaEtaEndCap_){

          float p0x = etClusEndCap[i] * cos(phiClusEndCap[i]);
          float p1x = etClusEndCap[j] * cos(phiClusEndCap[j]);
          float p0y = etClusEndCap[i] * sin(phiClusEndCap[i]);
          float p1y = etClusEndCap[j] * sin(phiClusEndCap[j]);
          float p0z = eClusEndCap[i] * cos(thetaClusEndCap[i]);
          float p1z = eClusEndCap[j] * cos(thetaClusEndCap[j]);

        
            float pt_pair = sqrt( (p0x+p1x)*(p0x+p1x) + (p0y+p1y)*(p0y+p1y));
            if (pt_pair < selePtEtaEndCap_)continue;
            float m_inv = sqrt ( (eClusEndCap[i] + eClusEndCap[j])*(eClusEndCap[i] + eClusEndCap[j]) - (p0x+p1x)*(p0x+p1x) - (p0y+p1y)*(p0y+p1y) - (p0z+p1z)*(p0z+p1z) );  
 

            if ( (m_inv<seleMinvMaxEtaEndCap_) && (m_inv>seleMinvMinEtaEndCap_) ){
          

              //New Loop on cluster to measure isolation:
              vector<int> IsoClus;
              IsoClus.clear();
              float Iso = 0;
              TVector3 pairVect = TVector3((p0x+p1x), (p0y+p1y), (p0z+p1z));
              for(Int_t k=0 ; k<nClusEndCap ; k++){

                if(etClusEndCap[k] < ptMinForIsolationEtaEndCap_) continue; 
            
            
                if(k==i || k==j)continue;
            
            
              TVector3 clusVect = TVector3(etClusEndCap[k] * cos(phiClusEndCap[k]), etClusEndCap[k] * sin(phiClusEndCap[k]) , eClusEndCap[k] * cos(thetaClusEndCap[k]) ) ;
              float dretacl = fabs(etaClusEndCap[k] - pairVect.Eta());
              float drcl = clusVect.DeltaR(pairVect);
              
              if(drcl < seleEtaBeltDREndCap_ && dretacl < seleEtaBeltDetaEndCap_ ){
                Iso = Iso + etClusEndCap[k];
                IsoClus.push_back(k);
              }
            }

          
              if(Iso/pt_pair<seleEtaIsoEndCap_){
                //      cout <<"  EE Simple Clustering: Eta Candidate pt, eta, phi, Iso, m_inv, i, j :   "<<pt_pair<<" "<<pairVect.Eta()<<" "<<pairVect.Phi()<<" "<<Iso<<" "<<m_inv<<" "<<i<<" "<<j<<" "<<endl;  

                hMinvEtaEE_->Fill(m_inv);
                hPt1EtaEE_->Fill(etClusEndCap[i]);
                hPt2EtaEE_->Fill(etClusEndCap[j]);
                hPtEtaEE_->Fill(pt_pair);
                hIsoEtaEE_->Fill(Iso/pt_pair);
                hS4S91EtaEE_->Fill(s4s9ClusEndCap[i]);
                hS4S92EtaEE_->Fill(s4s9ClusEndCap[j]);

                npi0_se++;
              }
          
            }
          }
        } // End of the "j" loop over Simple Clusters
      } // End of the "i" loop over Simple Clusters

      //      cout<<"  (Simple Clustering) EE Eta candidates #: "<<npi0_se<<endl;

        } //rhEEeta
      } //isMonEEeta

      //================End of Pi0 endcap=======================//






} 
void DQMSourcePi0::beginJob ( void  ) [protected, virtual]

Reimplemented from edm::EDAnalyzer.

Definition at line 146 of file DQMSourcePi0.cc.

References DQMStore::book1D(), dbe_, folderName_, hEventEnergyEBeta_, hEventEnergyEBpi0_, hEventEnergyEEeta_, hEventEnergyEEpi0_, hiEtaDistrEBeta_, hiEtaDistrEBpi0_, hiPhiDistrEBeta_, hiPhiDistrEBpi0_, hIsoEtaEB_, hIsoEtaEE_, hIsoPi0EB_, hIsoPi0EE_, hiXDistrEEeta_, hiXDistrEEpi0_, hiYDistrEEeta_, hiYDistrEEpi0_, hMeanRecHitEnergyEBeta_, hMeanRecHitEnergyEBpi0_, hMeanRecHitEnergyEEeta_, hMeanRecHitEnergyEEpi0_, hMinvEtaEB_, hMinvEtaEE_, hMinvPi0EB_, hMinvPi0EE_, hNRecHitsEBeta_, hNRecHitsEBpi0_, hNRecHitsEEeta_, hNRecHitsEEpi0_, hPt1EtaEB_, hPt1EtaEE_, hPt1Pi0EB_, hPt1Pi0EE_, hPt2EtaEB_, hPt2EtaEE_, hPt2Pi0EB_, hPt2Pi0EE_, hPtEtaEB_, hPtEtaEE_, hPtPi0EB_, hPtPi0EE_, hRechitEnergyEBeta_, hRechitEnergyEBpi0_, hRechitEnergyEEeta_, hRechitEnergyEEpi0_, hS4S91EtaEB_, hS4S91EtaEE_, hS4S91Pi0EB_, hS4S91Pi0EE_, hS4S92EtaEB_, hS4S92EtaEE_, hS4S92Pi0EB_, hS4S92Pi0EE_, MonitorElement::setAxisTitle(), and DQMStore::setCurrentFolder().

                           {


  // create and cd into new folder
  dbe_->setCurrentFolder(folderName_);

  // book some histograms 1D

  hiPhiDistrEBpi0_ = dbe_->book1D("iphiDistributionEBpi0", "RechitEB pi0 iphi", 361, 1,361);
  hiPhiDistrEBpi0_->setAxisTitle("i#phi ", 1);
  hiPhiDistrEBpi0_->setAxisTitle("# rechits", 2);

  hiXDistrEEpi0_ = dbe_->book1D("iXDistributionEEpi0", "RechitEE pi0 ix", 100, 0,100);
  hiXDistrEEpi0_->setAxisTitle("ix ", 1);
  hiXDistrEEpi0_->setAxisTitle("# rechits", 2);

  hiPhiDistrEBeta_ = dbe_->book1D("iphiDistributionEBeta", "RechitEB eta iphi", 361, 1,361);
  hiPhiDistrEBeta_->setAxisTitle("i#phi ", 1);
  hiPhiDistrEBeta_->setAxisTitle("# rechits", 2);

  hiXDistrEEeta_ = dbe_->book1D("iXDistributionEEeta", "RechitEE eta ix", 100, 0,100);
  hiXDistrEEeta_->setAxisTitle("ix ", 1);
  hiXDistrEEeta_->setAxisTitle("# rechits", 2);


  hiEtaDistrEBpi0_ = dbe_->book1D("iEtaDistributionEBpi0", "RechitEB pi0 ieta", 171, -85, 86);
  hiEtaDistrEBpi0_->setAxisTitle("i#eta", 1);
  hiEtaDistrEBpi0_->setAxisTitle("#rechits", 2);

  hiYDistrEEpi0_ = dbe_->book1D("iYDistributionEEpi0", "RechitEE pi0 iY", 100, 0, 100);
  hiYDistrEEpi0_->setAxisTitle("iy", 1);
  hiYDistrEEpi0_->setAxisTitle("#rechits", 2);

  hiEtaDistrEBeta_ = dbe_->book1D("iEtaDistributionEBeta", "RechitEB eta ieta", 171, -85, 86);
  hiEtaDistrEBeta_->setAxisTitle("i#eta", 1);
  hiEtaDistrEBeta_->setAxisTitle("#rechits", 2);

  hiYDistrEEeta_ = dbe_->book1D("iYDistributionEEeta", "RechitEE eta iY", 100, 0, 100);
  hiYDistrEEeta_->setAxisTitle("iy", 1);
  hiYDistrEEeta_->setAxisTitle("#rechits", 2);


  hRechitEnergyEBpi0_ = dbe_->book1D("rhEnergyEBpi0","Pi0 rechits energy EB",160,0.,2.0);
  hRechitEnergyEBpi0_->setAxisTitle("energy (GeV) ",1);
  hRechitEnergyEBpi0_->setAxisTitle("#rechits",2);

  hRechitEnergyEEpi0_ = dbe_->book1D("rhEnergyEEpi0","Pi0 rechits energy EE",160,0.,3.0);
  hRechitEnergyEEpi0_->setAxisTitle("energy (GeV) ",1);
  hRechitEnergyEEpi0_->setAxisTitle("#rechits",2);

  hRechitEnergyEBeta_ = dbe_->book1D("rhEnergyEBeta","Eta rechits energy EB",160,0.,2.0);
  hRechitEnergyEBeta_->setAxisTitle("energy (GeV) ",1);
  hRechitEnergyEBeta_->setAxisTitle("#rechits",2);

  hRechitEnergyEEeta_ = dbe_->book1D("rhEnergyEEeta","Eta rechits energy EE",160,0.,3.0);
  hRechitEnergyEEeta_->setAxisTitle("energy (GeV) ",1);
  hRechitEnergyEEeta_->setAxisTitle("#rechits",2);

  hEventEnergyEBpi0_ = dbe_->book1D("eventEnergyEBpi0","Pi0 event energy EB",100,0.,20.0);
  hEventEnergyEBpi0_->setAxisTitle("energy (GeV) ",1);

  hEventEnergyEEpi0_ = dbe_->book1D("eventEnergyEEpi0","Pi0 event energy EE",100,0.,50.0);
  hEventEnergyEEpi0_->setAxisTitle("energy (GeV) ",1);

  hEventEnergyEBeta_ = dbe_->book1D("eventEnergyEBeta","Eta event energy EB",100,0.,20.0);
  hEventEnergyEBeta_->setAxisTitle("energy (GeV) ",1);

  hEventEnergyEEeta_ = dbe_->book1D("eventEnergyEEeta","Eta event energy EE",100,0.,50.0);
  hEventEnergyEEeta_->setAxisTitle("energy (GeV) ",1);

  hNRecHitsEBpi0_ = dbe_->book1D("nRechitsEBpi0","#rechits in pi0 collection EB",100,0.,250.);
  hNRecHitsEBpi0_->setAxisTitle("rechits ",1);
  
  hNRecHitsEEpi0_ = dbe_->book1D("nRechitsEEpi0","#rechits in pi0 collection EE",100,0.,250.);
  hNRecHitsEEpi0_->setAxisTitle("rechits ",1);
  
  hNRecHitsEBeta_ = dbe_->book1D("nRechitsEBeta","#rechits in eta collection EB",100,0.,250.);
  hNRecHitsEBeta_->setAxisTitle("rechits ",1);
  
  hNRecHitsEEeta_ = dbe_->book1D("nRechitsEEeta","#rechits in eta collection EE",100,0.,250.);
  hNRecHitsEEeta_->setAxisTitle("rechits ",1);
  
  hMeanRecHitEnergyEBpi0_ = dbe_->book1D("meanEnergyEBpi0","Mean rechit energy in pi0 collection EB",50,0.,2.);
  hMeanRecHitEnergyEBpi0_->setAxisTitle("Mean Energy [GeV] ",1);
  
  hMeanRecHitEnergyEEpi0_ = dbe_->book1D("meanEnergyEEpi0","Mean rechit energy in pi0 collection EE",100,0.,5.);
  hMeanRecHitEnergyEEpi0_->setAxisTitle("Mean Energy [GeV] ",1);
  
  hMeanRecHitEnergyEBeta_ = dbe_->book1D("meanEnergyEBeta","Mean rechit energy in eta collection EB",50,0.,2.);
  hMeanRecHitEnergyEBeta_->setAxisTitle("Mean Energy [GeV] ",1);
  
  hMeanRecHitEnergyEEeta_ = dbe_->book1D("meanEnergyEEeta","Mean rechit energy in eta collection EE",100,0.,5.);
  hMeanRecHitEnergyEEeta_->setAxisTitle("Mean Energy [GeV] ",1);
  
  hMinvPi0EB_ = dbe_->book1D("Pi0InvmassEB","Pi0 Invariant Mass in EB",100,0.,0.5);
  hMinvPi0EB_->setAxisTitle("Inv Mass [GeV] ",1);

  hMinvPi0EE_ = dbe_->book1D("Pi0InvmassEE","Pi0 Invariant Mass in EE",100,0.,0.5);
  hMinvPi0EE_->setAxisTitle("Inv Mass [GeV] ",1);
  
  hMinvEtaEB_ = dbe_->book1D("EtaInvmassEB","Eta Invariant Mass in EB",100,0.,0.85);
  hMinvEtaEB_->setAxisTitle("Inv Mass [GeV] ",1);

  hMinvEtaEE_ = dbe_->book1D("EtaInvmassEE","Eta Invariant Mass in EE",100,0.,0.85);
  hMinvEtaEE_->setAxisTitle("Inv Mass [GeV] ",1);

  
  hPt1Pi0EB_ = dbe_->book1D("Pt1Pi0EB","Pt 1st most energetic Pi0 photon in EB",100,0.,20.);
  hPt1Pi0EB_->setAxisTitle("1st photon Pt [GeV] ",1);
  
  hPt1Pi0EE_ = dbe_->book1D("Pt1Pi0EE","Pt 1st most energetic Pi0 photon in EE",100,0.,20.);
  hPt1Pi0EE_->setAxisTitle("1st photon Pt [GeV] ",1);

  hPt1EtaEB_ = dbe_->book1D("Pt1EtaEB","Pt 1st most energetic Eta photon in EB",100,0.,20.);
  hPt1EtaEB_->setAxisTitle("1st photon Pt [GeV] ",1);
  
  hPt1EtaEE_ = dbe_->book1D("Pt1EtaEE","Pt 1st most energetic Eta photon in EE",100,0.,20.);
  hPt1EtaEE_->setAxisTitle("1st photon Pt [GeV] ",1);
  
  hPt2Pi0EB_ = dbe_->book1D("Pt2Pi0EB","Pt 2nd most energetic Pi0 photon in EB",100,0.,20.);
  hPt2Pi0EB_->setAxisTitle("2nd photon Pt [GeV] ",1);

  hPt2Pi0EE_ = dbe_->book1D("Pt2Pi0EE","Pt 2nd most energetic Pi0 photon in EE",100,0.,20.);
  hPt2Pi0EE_->setAxisTitle("2nd photon Pt [GeV] ",1);

  hPt2EtaEB_ = dbe_->book1D("Pt2EtaEB","Pt 2nd most energetic Eta photon in EB",100,0.,20.);
  hPt2EtaEB_->setAxisTitle("2nd photon Pt [GeV] ",1);

  hPt2EtaEE_ = dbe_->book1D("Pt2EtaEE","Pt 2nd most energetic Eta photon in EE",100,0.,20.);
  hPt2EtaEE_->setAxisTitle("2nd photon Pt [GeV] ",1);

  
  hPtPi0EB_ = dbe_->book1D("PtPi0EB","Pi0 Pt in EB",100,0.,20.);
  hPtPi0EB_->setAxisTitle("Pi0 Pt [GeV] ",1);

  hPtPi0EE_ = dbe_->book1D("PtPi0EE","Pi0 Pt in EE",100,0.,20.);
  hPtPi0EE_->setAxisTitle("Pi0 Pt [GeV] ",1);

  hPtEtaEB_ = dbe_->book1D("PtEtaEB","Eta Pt in EB",100,0.,20.);
  hPtEtaEB_->setAxisTitle("Eta Pt [GeV] ",1);

  hPtEtaEE_ = dbe_->book1D("PtEtaEE","Eta Pt in EE",100,0.,20.);
  hPtEtaEE_->setAxisTitle("Eta Pt [GeV] ",1);

  hIsoPi0EB_ = dbe_->book1D("IsoPi0EB","Pi0 Iso in EB",50,0.,1.);
  hIsoPi0EB_->setAxisTitle("Pi0 Iso",1);

  hIsoPi0EE_ = dbe_->book1D("IsoPi0EE","Pi0 Iso in EE",50,0.,1.);
  hIsoPi0EE_->setAxisTitle("Pi0 Iso",1);

  hIsoEtaEB_ = dbe_->book1D("IsoEtaEB","Eta Iso in EB",50,0.,1.);
  hIsoEtaEB_->setAxisTitle("Eta Iso",1);

  hIsoEtaEE_ = dbe_->book1D("IsoEtaEE","Eta Iso in EE",50,0.,1.);
  hIsoEtaEE_->setAxisTitle("Eta Iso",1);

  hS4S91Pi0EB_ = dbe_->book1D("S4S91Pi0EB","S4S9 1st most energetic Pi0 photon in EB",50,0.,1.);
  hS4S91Pi0EB_->setAxisTitle("S4S9 of the 1st Pi0 Photon ",1);

  hS4S91Pi0EE_ = dbe_->book1D("S4S91Pi0EE","S4S9 1st most energetic Pi0 photon in EE",50,0.,1.);
  hS4S91Pi0EE_->setAxisTitle("S4S9 of the 1st Pi0 Photon ",1);

  hS4S91EtaEB_ = dbe_->book1D("S4S91EtaEB","S4S9 1st most energetic Eta photon in EB",50,0.,1.);
  hS4S91EtaEB_->setAxisTitle("S4S9 of the 1st Eta Photon ",1);

  hS4S91EtaEE_ = dbe_->book1D("S4S91EtaEE","S4S9 1st most energetic Eta photon in EE",50,0.,1.);
  hS4S91EtaEE_->setAxisTitle("S4S9 of the 1st Eta Photon ",1);

  hS4S92Pi0EB_ = dbe_->book1D("S4S92Pi0EB","S4S9 2nd most energetic Pi0 photon in EB",50,0.,1.);
  hS4S92Pi0EB_->setAxisTitle("S4S9 of the 2nd Pi0 Photon",1);

  hS4S92Pi0EE_ = dbe_->book1D("S4S92Pi0EE","S4S9 2nd most energetic Pi0 photon in EE",50,0.,1.);
  hS4S92Pi0EE_->setAxisTitle("S4S9 of the 2nd Pi0 Photon",1);

  hS4S92EtaEB_ = dbe_->book1D("S4S92EtaEB","S4S9 2nd most energetic Pi0 photon in EB",50,0.,1.);
  hS4S92EtaEB_->setAxisTitle("S4S9 of the 2nd Eta Photon",1);

  hS4S92EtaEE_ = dbe_->book1D("S4S92EtaEE","S4S9 2nd most energetic Pi0 photon in EE",50,0.,1.);
  hS4S92EtaEE_->setAxisTitle("S4S9 of the 2nd Eta Photon",1);

  


}
void DQMSourcePi0::beginLuminosityBlock ( const edm::LuminosityBlock lumiSeg,
const edm::EventSetup context 
) [protected, virtual]

Reimplemented from edm::EDAnalyzer.

Definition at line 337 of file DQMSourcePi0.cc.

                                {
  
}
void DQMSourcePi0::beginRun ( const edm::Run r,
const edm::EventSetup c 
) [protected, virtual]

Reimplemented from edm::EDAnalyzer.

Definition at line 332 of file DQMSourcePi0.cc.

                                                                      {

}
void DQMSourcePi0::convxtalid ( int &  ,
int &   
) [protected]

Referenced by analyze().

int DQMSourcePi0::diff_neta_s ( int  ,
int   
) [protected]

Referenced by analyze().

int DQMSourcePi0::diff_nphi_s ( int  ,
int   
) [protected]

Referenced by analyze().

void DQMSourcePi0::endJob ( void  ) [protected, virtual]

Reimplemented from edm::EDAnalyzer.

Definition at line 1523 of file DQMSourcePi0.cc.

References dbe_, fileName_, DQMStore::save(), and saveToFile_.

                         {

  if(dbe_) {  
    if (saveToFile_) {
      dbe_->save(fileName_);
    }
  }
}
void DQMSourcePi0::endLuminosityBlock ( const edm::LuminosityBlock lumiSeg,
const edm::EventSetup c 
) [protected, virtual]

Reimplemented from edm::EDAnalyzer.

Definition at line 1515 of file DQMSourcePi0.cc.

                                                                     {
}
void DQMSourcePi0::endRun ( const edm::Run r,
const edm::EventSetup c 
) [protected, virtual]

Reimplemented from edm::EDAnalyzer.

Definition at line 1519 of file DQMSourcePi0.cc.

                                                                {

}

Member Data Documentation

Definition at line 256 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 257 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

double DQMSourcePi0::clusSeedThr_ [private]

Definition at line 255 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 259 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 76 of file DQMSourcePi0.h.

Referenced by beginJob(), DQMSourcePi0(), and endJob().

std::vector<EBDetId> DQMSourcePi0::detIdEBRecHits [private]

Definition at line 317 of file DQMSourcePi0.h.

Referenced by analyze().

std::vector<EEDetId> DQMSourcePi0::detIdEERecHits [private]

Definition at line 321 of file DQMSourcePi0.h.

Referenced by analyze().

std::vector<EcalRecHit> DQMSourcePi0::EBRecHits [private]

Definition at line 318 of file DQMSourcePi0.h.

Referenced by analyze().

std::vector<EcalRecHit> DQMSourcePi0::EERecHits [private]

Definition at line 322 of file DQMSourcePi0.h.

Referenced by analyze().

Definition at line 77 of file DQMSourcePi0.h.

Referenced by analyze().

std::string DQMSourcePi0::fileName_ [private]

Output file name if required.

Definition at line 342 of file DQMSourcePi0.h.

Referenced by DQMSourcePi0(), and endJob().

std::string DQMSourcePi0::folderName_ [private]

DQM folder name.

Definition at line 330 of file DQMSourcePi0.h.

Referenced by beginJob(), and DQMSourcePi0().

Definition at line 249 of file DQMSourcePi0.h.

Definition at line 250 of file DQMSourcePi0.h.

Distribution of total event energy EB (eta)

Definition at line 123 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of total event energy EB (pi0)

Definition at line 117 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of total event energy EE (eta)

Definition at line 126 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of total event energy EE (pi0)

Definition at line 120 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of rechits in iEta (eta)

Definition at line 99 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of rechits in iEta (pi0)

Definition at line 93 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of rechits in iPhi (eta)

Definition at line 87 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of rechits in iPhi (pi0)

Definition at line 81 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Eta Iso EB.

Definition at line 209 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Eta Iso EE.

Definition at line 212 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Pi0 Iso EB.

Definition at line 203 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Pi0 Iso EE.

Definition at line 206 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of rechits in ix EE (eta)

Definition at line 90 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of rechits in ix EE (pi0)

Definition at line 84 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of rechits in iy EE (eta)

Definition at line 102 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of rechits in iy EE (pi0)

Definition at line 96 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of Mean energy per rechit EB (eta)

Definition at line 147 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of Mean energy per rechit EB (pi0)

Definition at line 141 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of Mean energy per rechit EE (eta)

Definition at line 150 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of Mean energy per rechit EE (pi0)

Definition at line 144 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Eta invariant mass in EB.

Definition at line 159 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Eta invariant mass in EE.

Definition at line 162 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Pi0 invariant mass in EB.

Definition at line 153 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Pi0 invariant mass in EE.

Definition at line 156 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of number of RecHits EB (eta)

Definition at line 135 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of number of RecHits EB (pi0)

Definition at line 129 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of number of RecHits EE (eta)

Definition at line 138 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Distribution of number of RecHits EE (pi0)

Definition at line 132 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Pt of the 1st most energetic Eta photon in EB.

Definition at line 171 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Pt of the 1st most energetic Eta photon in EE.

Definition at line 174 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Pt of the 1st most energetic Pi0 photon in EB.

Definition at line 165 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Pt of the 1st most energetic Pi0 photon in EE.

Definition at line 168 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Pt of the 2nd most energetic Eta photon in EB.

Definition at line 184 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Pt of the 2nd most energetic Eta photon in EE.

Definition at line 187 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Pt of the 2nd most energetic Pi0 photon in EB.

Definition at line 178 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Pt of the 2nd most energetic Pi0 photon in EE.

Definition at line 181 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Eta Pt in EB.

Definition at line 197 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Eta Pt in EE.

Definition at line 200 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Pi0 Pt in EB.

Definition at line 191 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Pi0 Pt in EE.

Definition at line 194 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Energy Distribution of rechits EB (eta)

Definition at line 111 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Energy Distribution of rechits EB (pi0)

Definition at line 105 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Energy Distribution of rechits EE (eta)

Definition at line 114 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

Energy Distribution of rechits EE (pi0)

Definition at line 108 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

S4S9 of the 1st most energetic eta photon.

Definition at line 221 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

S4S9 of the 1st most energetic eta photon EE.

Definition at line 224 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

S4S9 of the 1st most energetic pi0 photon.

Definition at line 215 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

S4S9 of the 1st most energetic pi0 photon EE.

Definition at line 218 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

S4S9 of the 2nd most energetic eta photon.

Definition at line 233 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

S4S9 of the 2nd most energetic eta photon EE.

Definition at line 236 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

S4S9 of the 2nd most energetic pi0 photon.

Definition at line 227 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

S4S9 of the 2nd most energetic pi0 photon EE.

Definition at line 230 of file DQMSourcePi0.h.

Referenced by analyze(), and beginJob().

bool DQMSourcePi0::isMonEBeta_ [private]

Definition at line 337 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

bool DQMSourcePi0::isMonEBpi0_ [private]

which subdet will be monitored

Definition at line 336 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

bool DQMSourcePi0::isMonEEeta_ [private]

Definition at line 339 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

bool DQMSourcePi0::isMonEEpi0_ [private]

Definition at line 338 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 308 of file DQMSourcePi0.h.

Definition at line 310 of file DQMSourcePi0.h.

Definition at line 311 of file DQMSourcePi0.h.

Definition at line 312 of file DQMSourcePi0.h.

double DQMSourcePi0::ParameterW0_ [private]

Definition at line 313 of file DQMSourcePi0.h.

double DQMSourcePi0::ParameterX0_ [private]

Definition at line 309 of file DQMSourcePi0.h.

Definition at line 78 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

unsigned int DQMSourcePi0::prescaleFactor_ [private]

Monitor every prescaleFactor_ events.

Definition at line 327 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 243 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

object to monitor

Definition at line 242 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 247 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

object to monitor

Definition at line 246 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 270 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 281 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 290 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 302 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

bool DQMSourcePi0::saveToFile_ [private]

Write to file.

Definition at line 333 of file DQMSourcePi0.h.

Referenced by DQMSourcePi0(), and endJob().

Definition at line 293 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 305 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

double DQMSourcePi0::seleEtaBeltDR_ [private]

Definition at line 292 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 304 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

double DQMSourcePi0::seleEtaIso_ [private]

Definition at line 291 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 303 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 288 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 300 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 264 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 275 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 289 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 301 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 265 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 276 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 268 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 280 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

double DQMSourcePi0::selePi0BeltDR_ [private]

Definition at line 267 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 279 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

double DQMSourcePi0::selePi0Iso_ [private]

Definition at line 269 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 278 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

double DQMSourcePi0::selePtEta_ [private]

Definition at line 285 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 299 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

double DQMSourcePi0::selePtGamma_ [private]

Definition at line 262 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

for pi0->gg endcap

Definition at line 273 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

for eta->gg barrel

Definition at line 284 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

for eta->gg endcap

Definition at line 296 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

double DQMSourcePi0::selePtPi0_ [private]

Definition at line 263 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 274 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

double DQMSourcePi0::seleS4S9Gamma_ [private]

Definition at line 266 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 277 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 286 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 297 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 287 of file DQMSourcePi0.h.

Referenced by DQMSourcePi0().

Definition at line 298 of file DQMSourcePi0.h.

Referenced by DQMSourcePi0().

Definition at line 252 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().

Definition at line 253 of file DQMSourcePi0.h.

Referenced by analyze(), and DQMSourcePi0().