CMS 3D CMS Logo

Public Member Functions

DDI::Polyhedra Class Reference

#include <Polyhedra.h>

Inheritance diagram for DDI::Polyhedra:
DDI::Solid

List of all members.

Public Member Functions

 Polyhedra (int sides, double startPhi, double deltaPhi, const std::vector< double > &z, const std::vector< double > &rmin, const std::vector< double > &rmax)
 Polyhedra (int sides, double startPhi, double deltaPhi, const std::vector< double > &z, const std::vector< double > &r)
double volume () const

Detailed Description

Definition at line 8 of file Polyhedra.h.


Constructor & Destructor Documentation

Polyhedra::Polyhedra ( int  sides,
double  startPhi,
double  deltaPhi,
const std::vector< double > &  z,
const std::vector< double > &  rmin,
const std::vector< double > &  rmax 
)

Definition at line 12 of file Polyhedra.cc.

References Exception, i, and DDI::Solid::p_.

                                                      : Solid(ddpolyhedra_rrz)        
{
   p_.push_back(sides);
   p_.push_back(startPhi);
   p_.push_back(deltaPhi);
   if((z.size()!=rmin.size()) || (z.size()!=rmax.size()) )
   {
      throw cms::Exception("DDException") << "Polyhedra(..): std::vectors z,rmin,rmax not of same length";
   } 
   else
   {
      for(unsigned int i=0;i<z.size(); ++i)
      {
         p_.push_back(z[i]);
         p_.push_back(rmin[i]);
         p_.push_back(rmax[i]);
      }
   }
}             
Polyhedra::Polyhedra ( int  sides,
double  startPhi,
double  deltaPhi,
const std::vector< double > &  z,
const std::vector< double > &  r 
)

Definition at line 36 of file Polyhedra.cc.

References Exception, i, and DDI::Solid::p_.

                                                   : Solid(ddpolyhedra_rz)            
{
   p_.push_back(sides);
   p_.push_back(startPhi);
   p_.push_back(deltaPhi);
   if(z.size()!=r.size())
   {
      throw cms::Exception("DDException") << "Polyhedra(..): std::vectors z,rmin,rmax not of same length";
   } 
   else
   {
      for(unsigned int i=0;i<z.size(); ++i)
      {
         p_.push_back(z[i]);
         p_.push_back(r[i]);
      }
   }
}            

Member Function Documentation

double Polyhedra::volume ( void  ) const [virtual]

Reimplemented from DDI::Solid.

Definition at line 57 of file Polyhedra.cc.

References a, alpha, beta, funct::cos(), DCOUT, ddpolyhedra_rrz, HcalTopologyMode::H2, i, j, python::cmstools::loop(), m, DDI::Solid::p_, alignCSCRings::s, DDI::Solid::shape(), funct::sin(), and z.

{
   double volume=0;
   /* the following assumption is made: there are at least 3 eaqual sides if there is a complete circle (this has to be done, otherwise you can not define a polygon in a circle */
   
   /* the calculation for the volume is similar as in the case of the polycone. However, the rotation is not defined as part of a circle, but as sides in a regular polygon (specified by parameter "sides"). The sides are defined betwee startPhi and endPhi and form triangles within the circle they are defined in. First we need to determine the aread of side. let alpha |startPhi-endPhi|. the half the angle of 1 side is beta=0.5*(alph/sides). If r is the raddius of the circle in which the regular polygon is defined, the are of such a side will be 0.5*(height side)*(base side)=0.5*(cos(beta)*r)*(2*sin(beta)*r)= cos(beta)sin(beta)*r*r. r is the radius that varies if we "walk" over the boundaries of the polygon that is described by the z and r values (this yields the same integral primitive as used with the Polycone. Read Polycone documentation in code first if you do not understand this */
   
   //FIXME: rz, rrz !!
   if (shape()==ddpolyhedra_rrz) 
   {
      int loop = (p_.size()-3)/3 -1;
      double sec=0;
      double a = 0.5*fabs(p_[2]/rad / p_[0]);
      DCOUT('V',"Polyhedra::volume(), loop=" << loop << " alph[deg]=" << a/deg);
      int i=3;
      for (int j=3; j<(loop+3); ++j) 
      {
         double dz= fabs(p_[i]-p_[i+3]);
         DCOUT('v', "  dz[m] =" << dz/m);
         /*
          double ai,  aii;
          ai  = (p_[i+2]*p_[i+2] - p_[i+1]*p_[i+1]);
          aii = (p_[i+5]*p_[i+5] - p_[i+4]*p_[i+4]);
          DCOUT('v', "  rx_i[m] =" << p_[i+2]/m << " rm_i[m] =" << p_[i+1]/m);
          DCOUT('v', "  rx_ii[m]=" << p_[i+5]/m << " rm_ii[m]=" << p_[i+4]/m);
          //double s = dz/3.*(ai*bi + 0.5*(ai*bii + bi*aii) + aii*bii);
          double s = dz/3.*sin(a)*cos(a)*(ai + aii + 0.5*(ai+aii));
          */
         double z=dz/2.;
         
         double H1=(p_[i+2]-p_[i+1])*cos(a);
         double Bl1=p_[i+1]*sin(a);
         double Tl1=p_[i+2]*sin(a);
         
         double H2=(p_[i+5]-p_[i+4])*cos(a);
         double Bl2=p_[i+4]*sin(a);
         double Tl2=p_[i+5]*sin(a);
         
         double s = (2*H1*Bl1+2*H1*Tl1)*z+(H1*Bl2-2*H1*Bl1+H1*Tl2-2*H1*Tl1+H2*Bl1+H2*Tl1+H2*Tl2-H2*Tl1)*z+(2/3)*(H2*Bl2-H2*Bl1-H1*Bl2+H1*Bl1-H1*Tl2+H1*Tl1)*z; 
         s = s*p_[0];
         sec += s;
         i+=3;
      }
      volume=sec;
      return volume;
   }  
   int sides=int(p_[0]);
   //double phiFrom=p_[1]/rad;
   double phiDelta=p_[2]/rad;
   
   double zBegin=0;
   double zEnd=0;
   double rBegin=0;
   double rEnd=0;
   double z=0;
   double alpha=0;
   double beta=0;
   unsigned int i=3;
   
   alpha=fabs(phiDelta);
   beta=0.5*(alpha/sides);
   
   while(i<(p_.size()-2))
   {
      zBegin=p_[i];
      zEnd=p_[i+2];
      rBegin=p_[i+1];
      rEnd=p_[i+3];
      z=zBegin-zEnd;
      
      /* volume for 1 side (we multiplie by cos(beta)sin(beta)sides later*/
      double volume1=(rEnd*rEnd+rBegin*rBegin+rBegin*rEnd)*z/3;
      
      volume=volume+volume1;
      
      i=i+2;
   }
   
   /* last line (goes from last z/r value to first */
   
   i=p_.size()-2;
   zBegin=p_[i];
   zEnd=p_[3];
   rBegin=p_[i+1];
   rEnd=p_[4];
   z=zBegin-zEnd;
   
   double volume2=(rEnd*rEnd+rBegin*rBegin+rBegin*rEnd)*z/3;
   
   volume=volume+volume2;
   
   volume=fabs(sides*cos(beta)*sin(beta)*volume);
   
   return volume;
}