CMS 3D CMS Logo

Functions

SiStripTemplateSplit Namespace Reference

Functions

int StripTempSplit (int id, float cotalpha, float cotbeta, float locBy, int speed, std::vector< float > &cluster, SiStripTemplate &templ, float &xrec1, float &xrec2, float &sigmax, float &prob2x, int &q2bin, float &prob2Q)
int StripTempSplit (int id, float cotalpha, float cotbeta, float locBy, std::vector< float > &cluster, SiStripTemplate &templ, float &xrec1, float &xrec2, float &sigmax, float &prob2x, int &q2bin, float &prob2Q)

Function Documentation

int SiStripTemplateSplit::StripTempSplit ( int  id,
float  cotalpha,
float  cotbeta,
float  locBy,
int  speed,
std::vector< float > &  cluster,
SiStripTemplate templ,
float &  xrec1,
float &  xrec2,
float &  sigmax,
float &  prob2x,
int &  q2bin,
float &  prob2Q 
)

Reconstruct the best estimate of the hit positions for pixel clusters.

Parameters:
id- (input) identifier of the template to use
cotalpha- (input) the cotangent of the alpha track angle (see CMS IN 2004/014)
cotbeta- (input) the cotangent of the beta track angle (see CMS IN 2004/014)
locBy- (input) the sign of the local B_y field to specify the Lorentz drift direction
speed- (input) switch (-1->2) trading speed vs robustness -1 totally bombproof, searches the entire ranges of template bins, calculates Q probability w/ VVIObj 0 totally bombproof, searches the entire template bin range at full density (no Qprob) 1 faster, searches same range as 0 but at 1/2 density 2 fastest, searches same range as 1 but at 1/4 density (no big pix) and 1/2 density (big pix in cluster)
cluster- (input) boost multi_array container of 7x21 array of pixel signals, origin of local coords (0,0) at center of pixel cluster[0][0].
templ- (input) the template used in the reconstruction
xrec1- (output) best estimate of first x-coordinate of hit in microns
xrec2- (output) best estimate of second x-coordinate of hit in microns
sigmax- (output) best estimate of uncertainty on xrec1 and xrec2 in microns
prob2x- (output) probability describing goodness-of-fit to a merged cluster hypothesis for x-reco
q2bin- (output) index (0-4) describing the charge of the cluster assuming a merged 2-hit cluster hypothesis [0: 1.5<Q/Qavg, 1: 1<Q/Qavg<1.5, 2: 0.85<Q/Qavg<1, 3: 0.95Qmin<Q<0.85Qavg, 4: Q<0.95Qmin]
prob2Q- (output) probability that the cluster charge is compatible with a 2-hit merging

Definition at line 75 of file SiStripTemplateSplit.cc.

References BSHX, BSXM2, BSXSIZE, SiStripTemplate::chi2xavgc2m(), SiStripTemplate::chi2xavgone(), SiStripTemplate::chi2xminone(), SiStripTemplate::cxtemp(), delta, SiStripTemplate::dxone(), ENDL, Exception, f, VVIObj::fcn(), Gamma, i, SiStripTemplate::interpolate(), j, gen::k, LOGDEBUG, LOGERROR, max(), maxpix, min, SiStripTemplate::qavg(), SiStripTemplate::qmin(), SiStripTemplate::qscale(), SiStripTemplate::s50(), SiStripTemplate::sxmax(), SiStripTemplate::sxone(), theVerboseLevel, TSXSIZE, SiStripTemplate::vavilov2_pars(), SiStripTemplate::xavgc2m(), SiStripTemplate::xrmsc2m(), SiStripTemplate::xsigma2(), SiStripTemplate::xsize(), SiStripTemplate::xtemp3d(), and SiStripTemplate::xtemp3d_int().

Referenced by TrackClusterSplitter::splitCluster(), and StripTempSplit().

{
    // Local variables 
        int i, j, k, binq, binqerr, midpix;
        int fxpix, nxpix, lxpix, logxpx, shiftx;
        int nclusx;
        int nxbin, xcbin, minbinj, minbink;
        int deltaj, jmin, jmax, kmin, kmax, km, fxbin, lxbin, djx;
        float sxthr, delta, sigma, pseudopix, xsize, qscale;
        float ss2, ssa, sa2, rat, fq, qtotal, qavg;
        float originx, bias, maxpix;
        double chi2x, meanx, chi2xmin, chi21max;
        double hchi2, hndof;
        double prvav, mpv, sigmaQ, kappa, xvav, beta2;
        float xsum[BSXSIZE];
        float xsig2[BSXSIZE];
        float xw2[BSXSIZE], xsw[BSXSIZE];
        const float sqrt2x={2.00000};
        const float sqrt12={3.4641};
        const float probmin={1.110223e-16};
        const float prob2Qmin={1.e-5};
        
//      bool SiStripTemplateSplit::SimpleTemplate2D(float cotalpha, float cotbeta, float xhit, float yhit, float thick, float lorxwidth, float lorywidth, 
//                                                float qavg, std::vector<bool> ydouble, std::vector<bool> xdouble, float template2d[BSXM2][BYM2]);
        
// The minimum chi2 for a valid one pixel cluster = pseudopixel contribution only

        const double mean1pix={0.100}, chi21min={0.160};
                      
// First, interpolate the template needed to analyze this cluster     
// check to see of the track direction is in the physical range of the loaded template

        if(!templ.interpolate(id, cotalpha, cotbeta, locBy)) {
           LOGDEBUG("SiStripTemplateReco") << "input cluster direction cot(alpha) = " << cotalpha << ", cot(beta) = " << cotbeta 
           << " is not within the acceptance of template ID = " << id << ", no reconstruction performed" << ENDL;       
           return 20;
        }
                      
        // Get pixel dimensions from the template (to allow multiple detectors in the future)
        
        xsize = templ.xsize();
   
        // Define size of pseudopixel
        
        pseudopix = templ.s50();
        
        // Get charge scaling factor
        
        qscale = templ.qscale();
        
        // enforce maximum size 
        
        nclusx = (int)cluster.size();
        
        if(nclusx > TSXSIZE) {nclusx = TSXSIZE;}
        
        // First, rescale all strip charges, sum them and trunate the strip charges      
        
        qtotal = 0.f;
        for(i=0; i<BSXSIZE; ++i) {xsum[i] = 0.f;}
        maxpix = 2.f*templ.sxmax();
        for(j=0; j<nclusx; ++j) {
                xsum[j] = qscale*cluster[j];
                qtotal += xsum[j];
           if(xsum[j] > maxpix) {xsum[j] = maxpix;}
   }
        
        // next, identify the x-cluster ends, count total pixels, nxpix, and logical pixels, logxpx   
        
        fxpix = -1;
        nxpix=0;
        lxpix=0;
        logxpx=0;
        for(i=0; i<BSXSIZE; ++i) {
           if(xsum[i] > 0.f) {
              if(fxpix == -1) {fxpix = i;}
                        ++logxpx;
                        ++nxpix;
                        lxpix = i;
                }
        }
        
        
        //      dlengthx = (float)nxpix - templ.clslenx();
        
        // Make sure cluster is continuous
        
        if((lxpix-fxpix+1) != nxpix) { 
                
           LOGDEBUG("SiStripTemplateReco") << "x-length of pixel cluster doesn't agree with number of pixels above threshold" << ENDL;
           if (theVerboseLevel > 2) {
                        LOGDEBUG("SiStripTemplateReco") << "xsum[] = ";
                        for(i=0; i<BSXSIZE-1; ++i) {LOGDEBUG("SiStripTemplateReco") << xsum[i] << ", ";}           
                        LOGDEBUG("SiStripTemplateReco") << ENDL;
                }
                
           return 2; 
        }
        
        // If cluster is longer than max template size, technique fails
        
        if(nxpix > TSXSIZE) { 
                
           LOGDEBUG("SiStripTemplateReco") << "x-length of pixel cluster is larger than maximum template size" << ENDL;
           if (theVerboseLevel > 2) {
                        LOGDEBUG("SiStripTemplateReco") << "xsum[] = ";
                        for(i=0; i<BSXSIZE-1; ++i) {LOGDEBUG("SiStripTemplateReco") << xsum[i] << ", ";}           
                        LOGDEBUG("SiStripTemplateReco") << ENDL;
                }
                
           return 7; 
        }
        
        // next, center the cluster on template center if necessary   
        
        midpix = (fxpix+lxpix)/2;
        shiftx = templ.cxtemp() - midpix;
        if(shiftx > 0) {
           for(i=lxpix; i>=fxpix; --i) {
                   xsum[i+shiftx] = xsum[i];
                   xsum[i] = 0.f;
           }
        } else if (shiftx < 0) {
           for(i=fxpix; i<=lxpix; ++i) {
              xsum[i+shiftx] = xsum[i];
                   xsum[i] = 0.f;
           }
        }
        lxpix +=shiftx;
        fxpix +=shiftx;
        
        // If the cluster boundaries are OK, add pesudopixels, otherwise quit
        
        if(fxpix > 1 && fxpix <BSXM2) {
           xsum[fxpix-1] = pseudopix;
           xsum[fxpix-2] = 0.2f*pseudopix;
        } else {return 9;}
        if(lxpix > 1 && lxpix < BSXM2) {
           xsum[lxpix+1] = pseudopix;
           xsum[lxpix+2] = 0.2f*pseudopix;
        } else {return 9;}
        
        // finally, determine if pixel[0] is a double pixel and make an origin correction if it is   
        
        originx = 0.f;
                
// uncertainty and final corrections depend upon total charge bin          
           
        qavg = templ.qavg();
        fq = qtotal/qavg;
        if(fq > 3.0f) {
           binq=0;
        } else {
           if(fq > 2.0f) {
              binq=1;
           } else {
                  if(fq > 1.70f) {
                         binq=2;
                  } else {
                         binq=3;
                  }
           }
        }
        
        // Return the charge bin via the parameter list unless the charge is too small (then flag it)
        
        q2bin = binq;
        if(qtotal < 1.9f*templ.qmin()) {q2bin = 5;} else {
                if(qtotal < 1.9f*templ.qmin(1)) {q2bin = 4;}
        }
        if (theVerboseLevel > 9) {
                LOGDEBUG("SiStripTemplateReco") <<
                "ID = " << id <<  
                " cot(alpha) = " << cotalpha << " cot(beta) = " << cotbeta << 
                " nclusx = " << nclusx << ENDL;
        }
        
// binqerr is the charge bin for error estimation
        
        binqerr = binq;
        if(binqerr > 2) binqerr = 2;    
                
// Calculate the Vavilov probability that the cluster charge is consistent with a merged cluster
                
        if(speed < 0) {
           templ.vavilov2_pars(mpv, sigmaQ, kappa);
#ifndef SI_PIXEL_TEMPLATE_STANDALONE
           if((sigmaQ <=0.) || (mpv <= 0.) || (kappa < 0.01) || (kappa > 9.9)) {
                        throw cms::Exception("DataCorrupt") << "SiStripTemplateSplit::Vavilov parameters mpv/sigmaQ/kappa = " << mpv << "/" << sigmaQ << "/" << kappa << std::endl;
           }
#else
           assert((sigmaQ > 0.) && (mpv > 0.) && (kappa > 0.01) && (kappa < 10.));
#endif
           xvav = ((double)qtotal-mpv)/sigmaQ;
           beta2 = 1.;
//  VVIObj is a private port of CERNLIB VVIDIS
           VVIObj vvidist(kappa, beta2, 1);
           prvav = vvidist.fcn(xvav);                   
           prob2Q = 1. - prvav;
           if(prob2Q < prob2Qmin) {prob2Q = prob2Qmin;}
        } else {
                prob2Q = -1.f;
        }
        
        
// Next, generate the 3d x-template
   
        templ.xtemp3d_int(nxpix, nxbin);
        
// retrieve the number of x-bins 
        
        xcbin = nxbin/2;
        
// Next, decide on chi^2 min search parameters
        
#ifndef SI_PIXEL_TEMPLATE_STANDALONE
        if(speed < -1 || speed > 2) {
                throw cms::Exception("DataCorrupt") << "SiStripTemplateReco::PixelTempReco2D called with illegal speed = " << speed << std::endl;
        }
#else
        assert(speed >= -1 && speed < 3);
#endif
        fxbin = 0; lxbin = nxbin-1; djx = 1;
        if(speed > 0) {
        djx = 2;
        if(speed > 1) {djx = 4;}
        }
                                                          
// Define the maximum signal to allow before de-weighting a pixel 

        sxthr = 1.1f*maxpix;
                                   
// Evaluate pixel-by-pixel uncertainties (weights) for the templ analysis 

//      for(i=0; i<BYSIZE; ++i) { xsig2[i] = 0.; }
        templ.xsigma2(fxpix, lxpix, sxthr, xsum, xsig2);
                          
// Find the template bin that minimizes the Chi^2 

        chi2xmin = 1.e15;
        ss2 = 0.f;
        for(i=fxpix-2; i<=lxpix+2; ++i) {
                xw2[i] = 1.f/xsig2[i];
                xsw[i] = xsum[i]*xw2[i];
                ss2 += xsum[i]*xsw[i];
        }
        minbinj = -1; 
        minbink = -1;
        deltaj = djx;
        jmin = fxbin;
        jmax = lxbin;
        kmin = fxbin;
        kmax = lxbin;
    std::vector<float> xtemp(BSXSIZE);
        while(deltaj > 0) {
        for(j=jmin; j<jmax; j+=deltaj) {
                        km = std::min(kmax, j);
            for(k=kmin; k<=km; k+=deltaj) {
                
                // Get the template for this set of indices
                
                templ.xtemp3d(j, k, xtemp);
                
                ssa = 0.f;
                sa2 = 0.f;
                for(i=fxpix-2; i<=lxpix+2; ++i) {
                    ssa += xsw[i]*xtemp[i];
                    sa2 += xtemp[i]*xtemp[i]*xw2[i];
                }
                rat=ssa/ss2;
                if(rat <= 0.f) {LOGERROR("SiStripTemplateSplit") << "illegal chi2xmin normalization = " << rat << ENDL; rat = 1.;}
                chi2x=ss2-2.f*ssa/rat+sa2/(rat*rat);
                if(chi2x < chi2xmin) {
                    chi2xmin = chi2x;
                    minbinj = j;
                    minbink = k;
                                }
            }
        } 
        deltaj /= 2;
        if(minbinj > fxbin) {jmin = minbinj - deltaj;} else {jmin = fxbin;}
        if(minbinj < lxbin) {jmax = minbinj + deltaj;} else {jmax = lxbin;}
        if(minbink > fxbin) {kmin = minbink - deltaj;} else {kmin = fxbin;}
        if(minbink < lxbin) {kmax = minbink + deltaj;} else {kmax = lxbin;}             
        }
        
        if (theVerboseLevel > 9) {
                LOGDEBUG("SiStripTemplateReco") <<
                "minbinj/minbink " << minbinj<< "/" << minbink << " chi2xmin = " << chi2xmin << ENDL;
        }

// Do not apply final template pass to 1-pixel clusters (use calibrated offset)
        
        if(logxpx == 1) {
        
                delta = templ.dxone();
                sigma = templ.sxone();
                xrec1 = 0.5f*(fxpix+lxpix-2*shiftx+2.f*originx)*xsize-delta;
           xrec2 = xrec1;
           if(sigma <= 0.f) {
              sigmax = xsize/sqrt12;
           } else {
          sigmax = sigma;
           }
           
// Do probability calculation for one-pixel clusters

                chi21max = fmax(chi21min, (double)templ.chi2xminone());
                chi2xmin -=chi21max;
                if(chi2xmin < 0.) {chi2xmin = 0.;}
                meanx = fmax(mean1pix, (double)templ.chi2xavgone());
                hchi2 = chi2xmin/2.; hndof = meanx/2.;
                prob2x = 1. - TMath::Gamma(hndof, hchi2);
           
        } else {
           
                        
// uncertainty and final correction depend upon charge bin         
           
                bias = templ.xavgc2m(binq);
                k = std::min(minbink, minbinj);
                j = std::max(minbink, minbinj);
                xrec1 = (0.125f*(minbink-xcbin)+BSHX-(float)shiftx+originx)*xsize - bias;
                xrec2 = (0.125f*(minbinj-xcbin)+BSHX-(float)shiftx+originx)*xsize - bias;
                sigmax = sqrt2x*templ.xrmsc2m(binqerr);
                        
           
// Do goodness of fit test in y  
           
           if(chi2xmin < 0.0) {chi2xmin = 0.0;}
           meanx = templ.chi2xavgc2m(binq);
           if(meanx < 0.01) {meanx = 0.01;}
       hchi2 = chi2xmin/2.; hndof = meanx/2.;
           prob2x = 1. - TMath::Gamma(hndof, hchi2);
   }
        
        //  Don't return exact zeros for the probability
        
        if(prob2x < probmin) {prob2x = probmin;}
        
        
    return 0;
} // StripTempSplit 
int SiStripTemplateSplit::StripTempSplit ( int  id,
float  cotalpha,
float  cotbeta,
float  locBy,
std::vector< float > &  cluster,
SiStripTemplate templ,
float &  xrec1,
float &  xrec2,
float &  sigmax,
float &  prob2x,
int &  q2bin,
float &  prob2Q 
)

Reconstruct the best estimate of the hit positions for pixel clusters.

Parameters:
id- (input) identifier of the template to use
cotalpha- (input) the cotangent of the alpha track angle (see CMS IN 2004/014)
cotbeta- (input) the cotangent of the beta track angle (see CMS IN 2004/014)
locBy- (input) the sign of the local B_y field to specify the Lorentz drift direction
cluster- (input) boost multi_array container of 7x21 array of pixel signals, origin of local coords (0,0) at center of pixel cluster[0][0].
templ- (input) the template used in the reconstruction
xrec1- (output) best estimate of first x-coordinate of hit in microns
xrec2- (output) best estimate of second x-coordinate of hit in microns
sigmax- (output) best estimate of uncertainty on xrec1 and xrec2 in microns
prob2x- (output) probability describing goodness-of-fit to a merged cluster hypothesis for x-reco
q2bin- (output) index (0-4) describing the charge of the cluster assuming a merged 2-hit cluster hypothesis [0: 1.5<Q/Qavg, 1: 1<Q/Qavg<1.5, 2: 0.85<Q/Qavg<1, 3: 0.95Qmin<Q<0.85Qavg, 4: Q<0.95Qmin]
prob2Q- (output) probability that the cluster charge is compatible with a 2-hit merging

Definition at line 440 of file SiStripTemplateSplit.cc.

References StripTempSplit().

{
    // Local variables 
        const int speed = 1;

    return SiStripTemplateSplit::StripTempSplit(id, cotalpha, cotbeta, locBy, speed, cluster, templ, xrec1, xrec2, sigmax, prob2x, q2bin, prob2Q);
} // StripTempSplit