CMS 3D CMS Logo

Public Member Functions | Private Attributes

AnalyticalCurvilinearJacobian Class Reference

#include <AnalyticalCurvilinearJacobian.h>

List of all members.

Public Member Functions

 AnalyticalCurvilinearJacobian ()
 default constructor (for tests)
 AnalyticalCurvilinearJacobian (const GlobalTrajectoryParameters &globalParameters, const GlobalPoint &x, const GlobalVector &p, const double &s)
 get Field at starting state (internally)
 AnalyticalCurvilinearJacobian (const GlobalTrajectoryParameters &globalParameters, const GlobalPoint &x, const GlobalVector &p, const GlobalVector &theFieldInInverseGeV, const double &s)
 new: give Field as a parameter
void computeFullJacobian (const GlobalTrajectoryParameters &, const GlobalPoint &, const GlobalVector &, const GlobalVector &, const double &s)
 result for non-vanishing curvature
void computeInfinitesimalJacobian (const GlobalTrajectoryParameters &, const GlobalPoint &, const GlobalVector &, const GlobalVector &, const double &s)
 result for non-vanishing curvature and "small" step
void computeStraightLineJacobian (const GlobalTrajectoryParameters &, const GlobalPoint &, const GlobalVector &, const double &s)
 straight line approximation
const AlgebraicMatrix55jacobian () const

Private Attributes

AlgebraicMatrix55 theJacobian

Detailed Description

Creating Jacobian of transformation within the curvilinear frame. The basic functionality of this class is to provide the (analytical) Jacobian matrix of the transformation within the curvilinear frame from the state defined by globalParameters to the state defined by x and p. This Jacobian can then be used to yield the corresponding error propagation. The current implementation is based on the original derivations by W. Wittek. However, due to the implicit float precision, two terms ((4,1) and (5,1)) have been modified in order to make the calculations more stable in a numerical sense.

Definition at line 21 of file AnalyticalCurvilinearJacobian.h.


Constructor & Destructor Documentation

AnalyticalCurvilinearJacobian::AnalyticalCurvilinearJacobian ( ) [inline]

default constructor (for tests)

Definition at line 24 of file AnalyticalCurvilinearJacobian.h.

AnalyticalCurvilinearJacobian::AnalyticalCurvilinearJacobian ( const GlobalTrajectoryParameters globalParameters,
const GlobalPoint x,
const GlobalVector p,
const double &  s 
)

get Field at starting state (internally)

Definition at line 5 of file AnalyticalCurvilinearJacobian.cc.

References alignCSCRings::e, h, GlobalTrajectoryParameters::magneticFieldInInverseGeV(), GlobalTrajectoryParameters::position(), and GlobalTrajectoryParameters::transverseCurvature().

                  :  theJacobian(AlgebraicMatrixID())
{
  //
  // helix: calculate full jacobian
  //
  if ( s*s*fabs(globalParameters.transverseCurvature())>1.e-5 ) { 
    GlobalPoint xStart = globalParameters.position();
    GlobalVector h  = globalParameters.magneticFieldInInverseGeV(xStart);
    computeFullJacobian(globalParameters,x,p,h,s);
  }
  //
  // straight line approximation, error in RPhi about 0.1um
  //
  else
    computeStraightLineJacobian(globalParameters,x,p,s);
   //dbg::dbg_trace(1,"ACJ1", globalParameters.vector(),x,p,s,theJacobian);
}
AnalyticalCurvilinearJacobian::AnalyticalCurvilinearJacobian ( const GlobalTrajectoryParameters globalParameters,
const GlobalPoint x,
const GlobalVector p,
const GlobalVector theFieldInInverseGeV,
const double &  s 
)

new: give Field as a parameter

Definition at line 28 of file AnalyticalCurvilinearJacobian.cc.

References alignCSCRings::e, and GlobalTrajectoryParameters::transverseCurvature().

                  :  theJacobian(AlgebraicMatrixID())
{
  //
  // helix: calculate full jacobian
  //
  if ( s*s*fabs(globalParameters.transverseCurvature())>1.e-5 )
    computeFullJacobian(globalParameters,x,p,h,s);
  //
  // straight line approximation, error in RPhi about 0.1um
  //
  else
    computeStraightLineJacobian(globalParameters,x,p,s);
  
  //dbg::dbg_trace(1,"ACJ2", globalParameters.vector(),x,p,s,theJacobian);
}

Member Function Documentation

void AnalyticalCurvilinearJacobian::computeFullJacobian ( const GlobalTrajectoryParameters globalParameters,
const GlobalPoint x,
const GlobalVector p,
const GlobalVector h,
const double &  s 
)

result for non-vanishing curvature

Definition at line 55 of file AnalyticalCurvilinearJacobian.cc.

References funct::cos(), prof2calltree::cost, MessageLogger_cff::limit, PV3DBase< T, PVType, FrameType >::mag(), GlobalTrajectoryParameters::momentum(), p1, p2, PV3DBase< T, PVType, FrameType >::perp(), GlobalTrajectoryParameters::position(), createTree::pp, lumiQueryAPI::q, alignCSCRings::s, indexGen::s2, GlobalTrajectoryParameters::signedInverseMomentum(), funct::sin(), mathSSE::sqrt(), theta(), Vector3DBase< T, FrameTag >::unit(), PV3DBase< T, PVType, FrameType >::x(), x, PV3DBase< T, PVType, FrameType >::y(), and PV3DBase< T, PVType, FrameType >::z().

{    
  //GlobalVector p1 = fts.momentum().unit();
  GlobalVector p1 = globalParameters.momentum().unit();
  GlobalVector p2 = p.unit();
  //GlobalPoint xStart = fts.position();
  GlobalPoint xStart = globalParameters.position();
  GlobalVector dx = xStart - x;
  //GlobalVector h  = MagneticField::inInverseGeV(xStart);
  // Martijn: field is now given as parameter.. GlobalVector h  = globalParameters.magneticFieldInInverseGeV(xStart);

  //double qbp = fts.signedInverseMomentum();
  double qbp = globalParameters.signedInverseMomentum();
  double absS = s;
  
  // calculate transport matrix
  // Origin: TRPRFN
  double t11 = p1.x(); double t12 = p1.y(); double t13 = p1.z();
  double t21 = p2.x(); double t22 = p2.y(); double t23 = p2.z();
  double cosl0 = p1.perp(); double cosl1 = 1./p2.perp();
  //AlgebraicMatrix a(5,5,1);
  // define average magnetic field and gradient 
  // at initial point - inlike TRPRFN
  GlobalVector hn = h.unit();
  double qp = -h.mag();
//   double q = -h.mag()*qbp;
  double q = qp*qbp;
  double theta = q*absS; double sint = sin(theta); double cost = cos(theta);
  double hn1 = hn.x(); double hn2 = hn.y(); double hn3 = hn.z();
  double dx1 = dx.x(); double dx2 = dx.y(); double dx3 = dx.z();
  double gamma = hn1*t21 + hn2*t22 + hn3*t23;
  double an1 = hn2*t23 - hn3*t22;
  double an2 = hn3*t21 - hn1*t23;
  double an3 = hn1*t22 - hn2*t21;
  double au = 1./sqrt(t11*t11 + t12*t12);
  double u11 = -au*t12; double u12 = au*t11;
  double v11 = -t13*u12; double v12 = t13*u11; double v13 = t11*u12 - t12*u11;
  au = 1./sqrt(t21*t21 + t22*t22);
  double u21 = -au*t22; double u22 = au*t21;
  double v21 = -t23*u22; double v22 = t23*u21; double v23 = t21*u22 - t22*u21;
  // now prepare the transport matrix
  // pp only needed in high-p case (WA)
//   double pp = 1./qbp;
// moved up (where -h.mag() is needed()
//   double qp = q*pp;
  double anv = -(hn1*u21 + hn2*u22          );
  double anu =  (hn1*v21 + hn2*v22 + hn3*v23);
  double omcost = 1. - cost; double tmsint = theta - sint;
  
  double hu1 =         - hn3*u12;
  double hu2 = hn3*u11;
  double hu3 = hn1*u12 - hn2*u11;
  
  double hv1 = hn2*v13 - hn3*v12;
  double hv2 = hn3*v11 - hn1*v13;
  double hv3 = hn1*v12 - hn2*v11;
  
  //   1/p - doesn't change since |p1| = |p2|
  
  //   lambda
  
  theJacobian(1,0) = -qp*anv*(t21*dx1 + t22*dx2 + t23*dx3);
  
  theJacobian(1,1) = cost*(v11*v21 + v12*v22 + v13*v23) +
                      sint*(hv1*v21 + hv2*v22 + hv3*v23) +
                    omcost*(hn1*v11 + hn2*v12 + hn3*v13) *
                           (hn1*v21 + hn2*v22 + hn3*v23) +
                anv*(-sint*(v11*t21 + v12*t22 + v13*t23) +
                    omcost*(v11*an1 + v12*an2 + v13*an3) -
              tmsint*gamma*(hn1*v11 + hn2*v12 + hn3*v13) );

  theJacobian(1,2) = cost*(u11*v21 + u12*v22          ) +
                      sint*(hu1*v21 + hu2*v22 + hu3*v23) +
                    omcost*(hn1*u11 + hn2*u12          ) *
                           (hn1*v21 + hn2*v22 + hn3*v23) +
                anv*(-sint*(u11*t21 + u12*t22          ) +
                    omcost*(u11*an1 + u12*an2          ) -
              tmsint*gamma*(hn1*u11 + hn2*u12          ) );
  theJacobian(1,2) *= cosl0;

  theJacobian(1,3) = -q*anv*(u11*t21 + u12*t22          );

  theJacobian(1,4) = -q*anv*(v11*t21 + v12*t22 + v13*t23);

  //   phi

  theJacobian(2,0) = -qp*anu*(t21*dx1 + t22*dx2 + t23*dx3)*cosl1;

  theJacobian(2,1) = cost*(v11*u21 + v12*u22          ) +
                      sint*(hv1*u21 + hv2*u22          ) +
                    omcost*(hn1*v11 + hn2*v12 + hn3*v13) *
                           (hn1*u21 + hn2*u22          ) +
                anu*(-sint*(v11*t21 + v12*t22 + v13*t23) +
                    omcost*(v11*an1 + v12*an2 + v13*an3) -
              tmsint*gamma*(hn1*v11 + hn2*v12 + hn3*v13) );
  theJacobian(2,1) *= cosl1;

  theJacobian(2,2) = cost*(u11*u21 + u12*u22          ) +
                      sint*(hu1*u21 + hu2*u22          ) +
                    omcost*(hn1*u11 + hn2*u12          ) *
                           (hn1*u21 + hn2*u22          ) +
                anu*(-sint*(u11*t21 + u12*t22          ) +
                    omcost*(u11*an1 + u12*an2          ) -
              tmsint*gamma*(hn1*u11 + hn2*u12          ) );
  theJacobian(2,2) *= cosl1*cosl0;

  theJacobian(2,3) = -q*anu*(u11*t21 + u12*t22          )*cosl1;

  theJacobian(2,4) = -q*anu*(v11*t21 + v12*t22 + v13*t23)*cosl1;

  //   yt

  //double cutCriterion = abs(s/fts.momentum().mag());
  double cutCriterion = fabs(s/globalParameters.momentum().mag());
  const double limit = 5.; // valid for propagations with effectively float precision

  if (cutCriterion > limit) {
    double pp = 1./qbp;
    theJacobian(3,0) = pp*(u21*dx1 + u22*dx2            );
    theJacobian(4,0) = pp*(v21*dx1 + v22*dx2 + v23*dx3);
  }
  else {
    double hp11 = hn2*t13 - hn3*t12;
    double hp12 = hn3*t11 - hn1*t13;
    double hp13 = hn1*t12 - hn2*t11;
    double temp1 = hp11*u21 + hp12*u22;
    double s2 = s*s;
    double secondOrder41 = 0.5 * qp * temp1 * s2;
    double ghnmp1 = gamma*hn1 - t11;
    double ghnmp2 = gamma*hn2 - t12;
    double ghnmp3 = gamma*hn3 - t13;
    double temp2 = ghnmp1*u21 + ghnmp2*u22;
    double s3 = s2 * s;
    double s4 = s3 * s;
    double h1 = h.mag();
    double h2 = h1 * h1;
    double h3 = h2 * h1;
    double qbp2 = qbp * qbp;
    //                           s*qp*s* (qp*s *qbp)
    double thirdOrder41 = 1./3 * h2 * s3 * qbp * temp2;
    //                           -qp * s * qbp  * above
    double fourthOrder41 = 1./8 * h3 * s4 * qbp2 * temp1;
    theJacobian(3,0) = secondOrder41 + (thirdOrder41 + fourthOrder41);

    double temp3 = hp11*v21 + hp12*v22 + hp13*v23;
    double secondOrder51 = 0.5 * qp * temp3 * s2;
    double temp4 = ghnmp1*v21 + ghnmp2*v22 + ghnmp3*v23;
    double thirdOrder51 = 1./3 * h2 * s3 * qbp * temp4;
    double fourthOrder51 = 1./8 * h3 * s4 * qbp2 * temp3;
    theJacobian(4,0) = secondOrder51 + (thirdOrder51 + fourthOrder51);
  }

  theJacobian(3,1) = (sint*(v11*u21 + v12*u22          ) +
                     omcost*(hv1*u21 + hv2*u22          ) +
                     tmsint*(hn1*u21 + hn2*u22          ) *
                            (hn1*v11 + hn2*v12 + hn3*v13))/q;

  theJacobian(3,2) = (sint*(u11*u21 + u12*u22          ) +
                     omcost*(hu1*u21 + hu2*u22          ) +
                     tmsint*(hn1*u21 + hn2*u22          ) *
                            (hn1*u11 + hn2*u12          ))*cosl0/q;

  theJacobian(3,3) = (u11*u21 + u12*u22          );
  
  theJacobian(3,4) = (v11*u21 + v12*u22          );

  //   zt

  theJacobian(4,1) = (sint*(v11*v21 + v12*v22 + v13*v23) +
                     omcost*(hv1*v21 + hv2*v22 + hv3*v23) +
                     tmsint*(hn1*v21 + hn2*v22 + hn3*v23) *
                            (hn1*v11 + hn2*v12 + hn3*v13))/q;

  theJacobian(4,2) = (sint*(u11*v21 + u12*v22          ) +
                     omcost*(hu1*v21 + hu2*v22 + hu3*v23) +
                     tmsint*(hn1*v21 + hn2*v22 + hn3*v23) *
                            (hn1*u11 + hn2*u12          ))*cosl0/q;

  theJacobian(4,3) = (u11*v21 + u12*v22          );

  theJacobian(4,4) = (v11*v21 + v12*v22 + v13*v23);
  // end of TRPRFN
}
void AnalyticalCurvilinearJacobian::computeInfinitesimalJacobian ( const GlobalTrajectoryParameters globalParameters,
const GlobalPoint ,
const GlobalVector p,
const GlobalVector h,
const double &  s 
)

result for non-vanishing curvature and "small" step

Definition at line 247 of file AnalyticalCurvilinearJacobian.cc.

References GlobalTrajectoryParameters::momentum(), AlCaHLTBitMon_ParallelJobs::p, alignCSCRings::s, GlobalTrajectoryParameters::signedInverseMomentum(), mathSSE::sqrt(), csvLumiCalc::unit, PV3DBase< T, PVType, FrameType >::x(), PV3DBase< T, PVType, FrameType >::y(), and PV3DBase< T, PVType, FrameType >::z().

                  {
  /*
   * origin  TRPROP
   *
   C *** ERROR PROPAGATION ALONG A PARTICLE TRAJECTORY IN A MAGNETIC FIELD
   C     ROUTINE ASSUMES THAT IN THE INTERVAL (X1,X2) THE QUANTITIES 1/P
   C     AND (HX,HY,HZ) ARE RATHER CONSTANT. DELTA(PHI) MUST NOT BE TOO LARGE
   C
   C     Authors: A. Haas and W. Wittek
   C
   
  */
  
  
  double qbp = globalParameters.signedInverseMomentum();
  double absS = s;
  
  // average momentum
  GlobalVector tn = (globalParameters.momentum()+p).unit(); 
  double sinl = tn.z(); 
  double cosl = std::sqrt(1.-sinl*sinl); 
  double cosl1 = 1./cosl;
  double tgl=sinl*cosl1;
  double sinp = tn.y()*cosl1;
  double cosp = tn.x()*cosl1;

  // define average magnetic field and gradient 
  // at initial point - inlike TRPROP
  double b0= h.x()*cosp+h.y()*sinp;
  double b2=-h.x()*sinp+h.y()*cosp;
  double b3=-b0*sinl+h.z()*cosl;

  theJacobian(3,2)=absS*cosl;
  theJacobian(4,1)=absS;


  theJacobian(1,0) =  absS*b2;
  //if ( qbp<0) theJacobian(1,0) = -theJacobian(1,0);
  theJacobian(1,2) = -b0*(absS*qbp);
  theJacobian(1,3) =  b3*(b2*qbp*(absS*qbp));
  theJacobian(1,4) = -b2*(b2*qbp*(absS*qbp));
  
  theJacobian(2,0) = -absS*b3*cosl1;
  // if ( qbp<0) theJacobian(2,0) = -theJacobian(2,0);
  theJacobian(2,1) = b0*(absS*qbp)*cosl1*cosl1;
  theJacobian(2,2) = 1.+tgl*b2*(absS*qbp);
  theJacobian(2,3) = -b3*(b3*qbp*(absS*qbp)*cosl1);
  theJacobian(2,4) =  b2*(b3*qbp*(absS*qbp)*cosl1);
  
  theJacobian(3,4) = -b3*tgl*(absS*qbp);
  theJacobian(4,3) =  b3*tgl*(absS*qbp);


}
void AnalyticalCurvilinearJacobian::computeStraightLineJacobian ( const GlobalTrajectoryParameters globalParameters,
const GlobalPoint x,
const GlobalVector p,
const double &  s 
)

straight line approximation

Definition at line 308 of file AnalyticalCurvilinearJacobian.cc.

References GlobalTrajectoryParameters::momentum(), p1, PV3DBase< T, PVType, FrameType >::perp(), alignCSCRings::s, and Vector3DBase< T, FrameTag >::unit().

{
  //
  // matrix: elements =1 on diagonal and =0 are already set
  // in initialisation
  //
  GlobalVector p1 = globalParameters.momentum().unit();
  double cosl0 = p1.perp();
  theJacobian(3,2) = cosl0 * s;
  theJacobian(4,1) = s;
}
const AlgebraicMatrix55& AnalyticalCurvilinearJacobian::jacobian ( ) const [inline]

Member Data Documentation

Definition at line 59 of file AnalyticalCurvilinearJacobian.h.

Referenced by jacobian().