#include <EcalLaserAnalyzer.h>
Public Types | |
enum | VarCol { iBlue, iRed, nColor } |
Public Member Functions | |
virtual void | analyze (const edm::Event &e, const edm::EventSetup &c) |
virtual void | beginJob () |
EcalLaserAnalyzer (const edm::ParameterSet &iConfig) | |
virtual void | endJob () |
void | setGeomEB (int etaG, int phiG, int module, int tower, int strip, int xtal, int apdRefTT, int channel, int lmr) |
void | setGeomEE (int etaG, int phiG, int iX, int iY, int iZ, int module, int tower, int ch, int apdRefTT, int channel, int lmr) |
~EcalLaserAnalyzer () | |
Private Attributes | |
double | _alpha |
double | _beta |
double | _chi2cut |
int | _debug |
bool | _docorpn |
std::string | _ecalPart |
int | _fedid |
unsigned int | _firstsample |
unsigned int | _firstsamplePN |
bool | _fitab |
unsigned int | _lastsample |
unsigned int | _lastsamplePN |
unsigned int | _nevtmax |
unsigned int | _niter |
double | _noise |
unsigned int | _nsamples |
unsigned int | _nsamplesPN |
unsigned int | _presample |
double | _presamplecut |
unsigned int | _presamplePN |
double | _qualpercent |
double | _ratiomaxcutlow |
double | _ratiomincuthigh |
double | _ratiomincutlow |
bool | _saveallevents |
unsigned int | _timingcuthigh |
unsigned int | _timingcutlow |
unsigned int | _timingqualhigh |
unsigned int | _timingquallow |
double | adc [10] |
TFile * | ADCFile |
std::string | ADCfile |
int | adcG [10] |
double * | adcNoPed |
TTree * | ADCtrees [NCRYSEB] |
std::string | alphafile |
std::string | alphainitfile |
double | APD [6] |
double | apdAmpl |
double | apdAmplA |
double | apdAmplB |
TAPD * | APDAnal [NCRYSEB][nColor] |
TFile * | APDFile |
std::string | APDfile |
TAPD * | APDFirstAnal [NCRYSEB][nColor] |
double | APDoAPDA [6] |
double | APDoAPDB [6] |
double | APDoPN [6] |
double | APDoPNA [6] |
double | APDoPNB [6] |
TAPDPulse * | APDPulse |
std::map< int, unsigned int > | apdRefMap [2] |
double | apdTime |
TTree * | APDtrees [NCRYSEB] |
int | channelID |
int | channelIteratorEE |
std::map< unsigned int, unsigned int > | channelMapEE |
int | color |
int | colorref |
std::vector< int > | colors |
int | dccID |
TMom * | Delta01 |
TMom * | Delta12 |
std::string | digiCollection_ |
std::string | digiPNCollection_ |
std::string | digiProducer_ |
bool | doesABTreeExist |
int | eta |
int | event |
std::string | eventHeaderCollection_ |
std::string | eventHeaderProducer_ |
int | eventref |
int | fedID |
unsigned int | firstChanMod [NMODEE] |
int | flag |
int | flagAB |
int | iChannelID [NCRYSEB] |
int | idccID [NCRYSEB] |
int | iEta [NCRYSEB] |
int | iEvent |
unsigned int | iModule [NCRYSEB] |
int | iPhi [NCRYSEB] |
unsigned int | isFirstChanModFilled [NMODEE] |
bool | isGainOK |
int | iside [NCRYSEB] |
int | IsThereDataADC [NCRYSEB][nColor] |
bool | isTimingOK |
int | iTowerID [NCRYSEB] |
int | iZ |
int | laserEvents |
int | lightside |
TMem * | Mem |
int | moduleID |
std::vector< int > | modules |
unsigned int | nCrys |
unsigned int | nevtAB [NCRYSEB] |
int | nEvtBadGain [NCRYSEB] |
int | nEvtBadTiming [NCRYSEB] |
int | nEvtTot [NCRYSEB] |
unsigned int | nMod |
unsigned int | nPNPerMod |
unsigned int | nRefChan |
unsigned int | nRefTrees |
unsigned int | nSides |
int | phi |
double | pn [50] |
double | PN [6] |
double | pn0 |
double | pn1 |
double | pnAmpl |
TPN * | PNAnal [NMODEE][NPNPERMOD][nColor] |
std::string | pncorfile_ |
TPNCor * | pnCorrector |
TPN * | PNFirstAnal [NMODEE][NPNPERMOD][nColor] |
int | pnG [50] |
int | pnID |
double * | pnNoPed |
double | PNoPN [6] |
double | PNoPNA [6] |
double | PNoPNB [6] |
TPNPulse * | PNPulse |
TTree * | RefAPDtrees [NREFCHAN][NMODEE] |
std::string | resdir_ |
TFile * | resFile |
std::string | resfile |
TTree * | respntrees [nColor] |
TTree * | restrees [nColor] |
int | runNum |
int | runType |
TShapeAnalysis * | shapana |
int | side |
double | Time [6] |
int | towerID |
bool | wasABCalcOK [NCRYSEB] |
bool | wasGainOK [NCRYSEB] |
bool | wasTimingOK [NCRYSEB] |
Definition at line 47 of file EcalLaserAnalyzer.h.
Definition at line 64 of file EcalLaserAnalyzer.h.
EcalLaserAnalyzer::EcalLaserAnalyzer | ( | const edm::ParameterSet & | iConfig | ) | [explicit] |
Definition at line 58 of file EcalLaserAnalyzer.cc.
References _ecalPart, _fedid, _firstsample, _lastsample, _nsamples, _nsamplesPN, _presample, _presamplePN, _ratiomaxcutlow, _ratiomincuthigh, _ratiomincutlow, _timingcuthigh, _timingcutlow, _timingqualhigh, _timingquallow, APDPulse, Delta01, Delta12, digiCollection_, digiPNCollection_, digiProducer_, eventHeaderCollection_, eventHeaderProducer_, firstChanMod, edm::ParameterSet::getParameter(), edm::ParameterSet::getUntrackedParameter(), iChannelID, idccID, iEta, iModule, iPhi, isFirstChanModFilled, isGainOK, iside, isTimingOK, iTowerID, iZ, j, ME::lmmodFromDcc(), Mem, modules, nCrys, NCRYSEB, NCRYSEE, nMod, nRefChan, NREFCHAN, pncorfile_, pnCorrector, PNPulse, resdir_, wasGainOK, and wasTimingOK.
: iEvent(0), // Framework parameters with default values _nsamples( iConfig.getUntrackedParameter< unsigned int >( "nSamples", 10 ) ), _presample( iConfig.getUntrackedParameter< unsigned int >( "nPresamples", 2 ) ), _firstsample( iConfig.getUntrackedParameter< unsigned int >( "firstSample", 1 ) ), _lastsample( iConfig.getUntrackedParameter< unsigned int >( "lastSample", 2 ) ), _nsamplesPN( iConfig.getUntrackedParameter< unsigned int >( "nSamplesPN", 50 ) ), _presamplePN( iConfig.getUntrackedParameter< unsigned int >( "nPresamplesPN", 6 ) ), _firstsamplePN( iConfig.getUntrackedParameter< unsigned int >( "firstSamplePN", 7 ) ), _lastsamplePN( iConfig.getUntrackedParameter< unsigned int >( "lastSamplePN", 8 ) ), _timingcutlow( iConfig.getUntrackedParameter< unsigned int >( "timingCutLow", 2 ) ), _timingcuthigh( iConfig.getUntrackedParameter< unsigned int >( "timingCutHigh", 9 ) ), _timingquallow( iConfig.getUntrackedParameter< unsigned int >( "timingQualLow", 3 ) ), _timingqualhigh( iConfig.getUntrackedParameter< unsigned int >( "timingQualHigh", 8 ) ), _ratiomincutlow( iConfig.getUntrackedParameter< double >( "ratioMinCutLow", 0.4 ) ), _ratiomincuthigh( iConfig.getUntrackedParameter< double >( "ratioMinCutHigh", 0.95 ) ), _ratiomaxcutlow( iConfig.getUntrackedParameter< double >( "ratioMaxCutLow", 0.8 ) ), _presamplecut( iConfig.getUntrackedParameter< double >( "presampleCut", 5.0 ) ), _niter( iConfig.getUntrackedParameter< unsigned int >( "nIter", 3 ) ), _fitab( iConfig.getUntrackedParameter< bool >( "fitAB", false ) ), _alpha( iConfig.getUntrackedParameter< double >( "alpha", 1.5076494 ) ), _beta( iConfig.getUntrackedParameter< double >( "beta", 1.5136036 ) ), _nevtmax( iConfig.getUntrackedParameter< unsigned int >( "nEvtMax", 200 ) ), _noise( iConfig.getUntrackedParameter< double >( "noise", 2.0 ) ), _chi2cut( iConfig.getUntrackedParameter< double >( "chi2cut", 10.0 ) ), _ecalPart( iConfig.getUntrackedParameter< std::string >( "ecalPart", "EB" ) ), _docorpn( iConfig.getUntrackedParameter< bool >( "doCorPN", false ) ), _fedid( iConfig.getUntrackedParameter< int >( "fedID", -999 ) ), _saveallevents( iConfig.getUntrackedParameter< bool >( "saveAllEvents", false ) ), _qualpercent( iConfig.getUntrackedParameter< double >( "qualPercent", 0.2 ) ), _debug( iConfig.getUntrackedParameter< int >( "debug", 0 ) ), nCrys( NCRYSEB), nPNPerMod( NPNPERMOD), nMod( NMODEE), nSides( NSIDES), runType(-1), runNum(0), fedID(-1), dccID(-1), side(2), lightside(2), iZ(1), phi(-1), eta(-1), event(0), color(-1),pn0(0), pn1(0), apdAmpl(0), apdAmplA(0), apdAmplB(0),apdTime(0),pnAmpl(0), pnID(-1), moduleID(-1), channelIteratorEE(0) //======================================================================== { // Initialization from cfg file resdir_ = iConfig.getUntrackedParameter<std::string>("resDir"); pncorfile_ = iConfig.getUntrackedParameter<std::string>("pnCorFile"); digiCollection_ = iConfig.getParameter<std::string>("digiCollection"); digiPNCollection_ = iConfig.getParameter<std::string>("digiPNCollection"); digiProducer_ = iConfig.getParameter<std::string>("digiProducer"); eventHeaderCollection_ = iConfig.getParameter<std::string>("eventHeaderCollection"); eventHeaderProducer_ = iConfig.getParameter<std::string>("eventHeaderProducer"); // Geometrical constants initialization if (_ecalPart == "EB") { nCrys = NCRYSEB; } else { nCrys = NCRYSEE; } iZ = 1; if(_fedid <= 609 ) iZ = -1; modules = ME::lmmodFromDcc(_fedid); nMod = modules.size(); nRefChan = NREFCHAN; for(unsigned int j=0;j<nCrys;j++){ iEta[j]=-1; iPhi[j]=-1; iModule[j]=10; iTowerID[j]=-1; iChannelID[j]=-1; idccID[j]=-1; iside[j]=-1; wasTimingOK[j]=true; wasGainOK[j]=true; } for(unsigned int j=0;j<nMod;j++){ int ii= modules[j]; firstChanMod[ii-1]=0; isFirstChanModFilled[ii-1]=0; } // Quality check flags isGainOK=true; isTimingOK=true; // PN linearity corrector pnCorrector = new TPNCor(pncorfile_.c_str()); // Objects dealing with pulses APDPulse = new TAPDPulse(_nsamples, _presample, _firstsample, _lastsample, _timingcutlow, _timingcuthigh, _timingquallow, _timingqualhigh, _ratiomincutlow,_ratiomincuthigh, _ratiomaxcutlow); PNPulse = new TPNPulse(_nsamplesPN, _presamplePN); // Object dealing with MEM numbering Mem = new TMem(_fedid); // Objects needed for npresample calculation Delta01=new TMom(); Delta12=new TMom(); }
EcalLaserAnalyzer::~EcalLaserAnalyzer | ( | ) |
Definition at line 184 of file EcalLaserAnalyzer.cc.
{ //======================================================================== // do anything here that needs to be done at destruction time // (e.g. close files, deallocate resources etc.) }
void EcalLaserAnalyzer::analyze | ( | const edm::Event & | e, |
const edm::EventSetup & | c | ||
) | [virtual] |
Implements edm::EDAnalyzer.
Definition at line 310 of file EcalLaserAnalyzer.cc.
References _debug, _docorpn, _ecalPart, _fedid, _firstsamplePN, _fitab, _lastsamplePN, _nevtmax, _nsamplesPN, adc, adcG, ADCtrees, TMom::addEntry(), APDPulse, MEEBGeom::apdRefTower(), MEEEGeom::apdRefTower(), edm::DataFrameContainer::begin(), edm::SortedCollection< T, SORT >::begin(), dtNoiseDBValidation_cfg::cerr, channelID, EcalElectronicsId::channelId(), channelIteratorEE, channelMapEE, color, colors, corr, gather_cfg::cout, dccID, MEEEGeom::dee(), Delta01, Delta12, digiCollection_, digiPNCollection_, digiProducer_, doesABTreeExist, MEEBGeom::electronic_channel(), edm::DataFrameContainer::end(), edm::SortedCollection< T, SORT >::end(), eta, eventHeaderCollection_, eventHeaderProducer_, exception, fedID, spr::find(), edm::EventSetup::get(), TPNPulse::getAdcWithoutPedestal(), edm::Event::getByLabel(), TAPDPulse::getDelta(), EcalElectronicsMapping::getElectronicsId(), TPNPulse::getMaxSample(), TPNCor::getPNCorrectionFactor(), ecalpyutils::hashedIndex(), i, EcalPnDiodeDetId::iDCCId(), iEvent, init, EcalPnDiodeDetId::iPnId(), TMem::isMemRelevant(), TAPDPulse::isPulseOK(), TAPDPulse::isTimingQualOK(), iZ, EcalDCCHeaderBlock::LASER_DELAY_SCAN, EcalDCCHeaderBlock::LASER_GAP, EcalDCCHeaderBlock::LASER_POWER_SCAN, EcalDCCHeaderBlock::LASER_STD, laserEvents, lightside, MEEEGeom::lmmod(), MEEBGeom::lmmod(), MEEEGeom::lmr(), MEEBGeom::lmr(), MEEBGeom::localCoord(), siStripFEDMonitor_P5_cff::Max, TMem::Mem(), Mem, modules, nCrys, nevtAB, nEvtBadGain, nEvtBadTiming, nEvtTot, phi, pn, pn0, pn1, pnAmpl, pnCorrector, pnG, pnNoPed, PNPulse, edm::ESHandle< T >::product(), edm::Handle< T >::product(), runNum, runType, setGeomEB(), setGeomEE(), TAPDPulse::setPulse(), TPNPulse::setPulse(), shapana, side, findQualityFiles::size, strip(), EcalElectronicsId::stripId(), towerID, EcalElectronicsId::towerId(), EcalDCCHeaderBlock::EcalDCCEventSettings::wavelength, and EcalElectronicsId::xtalId().
{ //======================================================================== ++iEvent; // retrieving DCC header edm::Handle<EcalRawDataCollection> pDCCHeader; const EcalRawDataCollection* DCCHeader=0; try { e.getByLabel(eventHeaderProducer_,eventHeaderCollection_, pDCCHeader); DCCHeader=pDCCHeader.product(); }catch ( std::exception& ex ) { std::cerr << "Error! can't get the product retrieving DCC header" << eventHeaderCollection_.c_str() <<" "<< eventHeaderProducer_.c_str() << std::endl; } //retrieving crystal data from Event edm::Handle<EBDigiCollection> pEBDigi; const EBDigiCollection* EBDigi=0; edm::Handle<EEDigiCollection> pEEDigi; const EEDigiCollection* EEDigi=0; if (_ecalPart == "EB") { try { e.getByLabel(digiProducer_,digiCollection_, pEBDigi); EBDigi=pEBDigi.product(); }catch ( std::exception& ex ) { std::cerr << "Error! can't get the product retrieving EB crystal data " << digiCollection_.c_str() << std::endl; } } else if (_ecalPart == "EE") { try { e.getByLabel(digiProducer_,digiCollection_, pEEDigi); EEDigi=pEEDigi.product(); }catch ( std::exception& ex ) { std::cerr << "Error! can't get the product retrieving EE crystal data " << digiCollection_.c_str() << std::endl; } } else { std::cout <<" Wrong ecalPart in cfg file " << std::endl; return; } // retrieving crystal PN diodes from Event edm::Handle<EcalPnDiodeDigiCollection> pPNDigi; const EcalPnDiodeDigiCollection* PNDigi=0; try { e.getByLabel(digiProducer_, pPNDigi); PNDigi=pPNDigi.product(); }catch ( std::exception& ex ) { std::cerr << "Error! can't get the product " << digiPNCollection_.c_str() << std::endl; } // retrieving electronics mapping edm::ESHandle< EcalElectronicsMapping > ecalmapping; const EcalElectronicsMapping* TheMapping=0; try{ c.get< EcalMappingRcd >().get(ecalmapping); TheMapping = ecalmapping.product(); }catch ( std::exception& ex ) { std::cerr << "Error! can't get the product EcalMappingRcd"<< std::endl; } // ============================ // Decode DCCHeader Information // ============================ for ( EcalRawDataCollection::const_iterator headerItr= DCCHeader->begin(); headerItr != DCCHeader->end(); ++headerItr ) { // Get run type and run number int fed = headerItr->fedId(); if(fed!=_fedid && _fedid!=-999) continue; runType=headerItr->getRunType(); runNum=headerItr->getRunNumber(); event=headerItr->getLV1(); dccID=headerItr->getDccInTCCCommand(); fedID=headerItr->fedId(); lightside=headerItr->getRtHalf(); // Check fed corresponds to the DCC in TCC if( 600+dccID != fedID ) continue; // Cut on runType if( runType!=EcalDCCHeaderBlock::LASER_STD && runType!=EcalDCCHeaderBlock::LASER_GAP && runType!=EcalDCCHeaderBlock::LASER_POWER_SCAN && runType!=EcalDCCHeaderBlock::LASER_DELAY_SCAN ) return; // Retrieve laser color and event number EcalDCCHeaderBlock::EcalDCCEventSettings settings = headerItr->getEventSettings(); color = settings.wavelength; if( color<0 ) return; std::vector<int>::iterator iter = find( colors.begin(), colors.end(), color ); if( iter==colors.end() ){ colors.push_back( color ); std::cout <<" new color found "<< color<<" "<< colors.size()<< std::endl; } } // Cut on fedID if(fedID!=_fedid && _fedid!=-999) return; // Count laser events laserEvents++; // ====================== // Decode PN Information // ====================== TPNFit * pnfit = new TPNFit(); pnfit -> init(_nsamplesPN,_firstsamplePN, _lastsamplePN); double chi2pn=0; unsigned int samplemax=0; int pnGain=0; std::map <int, std::vector<double> > allPNAmpl; std::map <int, std::vector<double> > allPNGain; // Loop on PNs digis for ( EcalPnDiodeDigiCollection::const_iterator pnItr = PNDigi->begin(); pnItr != PNDigi->end(); ++pnItr ) { EcalPnDiodeDetId pnDetId = EcalPnDiodeDetId((*pnItr).id()); if (_debug==1) std::cout <<"-- debug -- Inside PNDigi - pnID=" << pnDetId.iPnId()<<", dccID="<< pnDetId.iDCCId()<< std::endl; // Skip MEM DCC without relevant data bool isMemRelevant=Mem->isMemRelevant(pnDetId.iDCCId()); if(!isMemRelevant) continue; // Loop on PN samples for ( int samId=0; samId < (*pnItr).size() ; samId++ ) { pn[samId]=(*pnItr).sample(samId).adc(); pnG[samId]=(*pnItr).sample(samId).gainId(); if (samId==0) pnGain=pnG[samId]; if (samId>0) pnGain=int(TMath::Max(pnG[samId],pnGain)); } if( pnGain!=1 ) std::cout << "PN gain different from 1"<< std::endl; // Calculate amplitude from pulse PNPulse->setPulse(pn); pnNoPed=PNPulse->getAdcWithoutPedestal(); samplemax=PNPulse->getMaxSample(); chi2pn = pnfit -> doFit(samplemax,&pnNoPed[0]); if(chi2pn == 101 || chi2pn == 102 || chi2pn == 103) pnAmpl=0.; else pnAmpl= pnfit -> getAmpl(); // Apply linearity correction double corr=1.0; if( _docorpn ) corr=pnCorrector->getPNCorrectionFactor(pnAmpl, pnGain); pnAmpl*=corr; // Fill PN ampl vector allPNAmpl[pnDetId.iDCCId()].push_back(pnAmpl); if (_debug==1) std::cout <<"-- debug -- Inside PNDigi - PNampl=" << pnAmpl<<", PNgain="<< pnGain<<std::endl; } // =========================== // Decode EBDigis Information // =========================== int adcGain=0; if (EBDigi){ // Loop on crystals //=================== for ( EBDigiCollection::const_iterator digiItr= EBDigi->begin(); digiItr != EBDigi->end(); ++digiItr ) { // Retrieve geometry //=================== EBDetId id_crystal(digiItr->id()) ; EBDataFrame df( *digiItr ); EcalElectronicsId elecid_crystal = TheMapping->getElectronicsId(id_crystal); int etaG = id_crystal.ieta() ; // global int phiG = id_crystal.iphi() ; // global std::pair<int, int> LocalCoord=MEEBGeom::localCoord( etaG , phiG ); int etaL=LocalCoord.first ; // local int phiL=LocalCoord.second ;// local int strip=elecid_crystal.stripId(); int xtal=elecid_crystal.xtalId(); int module= MEEBGeom::lmmod(etaG, phiG); int tower=elecid_crystal.towerId(); int apdRefTT=MEEBGeom::apdRefTower(module); std::pair<int,int> pnpair=MEEBGeom::pn(module); unsigned int MyPn0=pnpair.first; unsigned int MyPn1=pnpair.second; int lmr=MEEBGeom::lmr( etaG,phiG ); unsigned int channel=MEEBGeom::electronic_channel( etaL, phiL ); assert( channel < nCrys ); setGeomEB(etaG, phiG, module, tower, strip, xtal, apdRefTT, channel, lmr); if (_debug==1) std::cout << "-- debug -- Inside EBDigi - towerID:"<< towerID<< " channelID:" <<channelID<<" module:"<< module<< " modules:"<<modules.size()<< std::endl; // APD Pulse //=========== // Loop on adc samples for (unsigned int i=0; i< (*digiItr).size() ; ++i ) { EcalMGPASample samp_crystal(df.sample(i)); adc[i]=samp_crystal.adc() ; adcG[i]=samp_crystal.gainId(); adc[i]*=adcG[i]; if (i==0) adcGain=adcG[i]; if (i>0) adcGain=TMath::Max(adcG[i],adcGain); } APDPulse->setPulse(adc); // Quality checks //================ if(adcGain!=1) nEvtBadGain[channel]++; if(!APDPulse->isTimingQualOK()) nEvtBadTiming[channel]++; nEvtTot[channel]++; // Associate PN ampl //=================== int mem0=Mem->Mem(lmr,0); int mem1=Mem->Mem(lmr,1); if(allPNAmpl[mem0].size()>MyPn0) pn0=allPNAmpl[mem0][MyPn0]; else pn0=0; if(allPNAmpl[mem1].size()>MyPn1) pn1=allPNAmpl[mem1][MyPn1]; else pn1=0; // Fill if Pulse is fine //======================= if( APDPulse->isPulseOK() && lightside==side){ ADCtrees[channel]->Fill(); Delta01->addEntry(APDPulse->getDelta(0,1)); Delta12->addEntry(APDPulse->getDelta(1,2)); if( nevtAB[channel] < _nevtmax && _fitab ){ if(doesABTreeExist) shapana -> putAllVals(channel, adc, eta, phi); else shapana -> putAllVals(channel, adc, eta, phi, dccID, side, towerID, channelID); nevtAB[channel]++ ; } } } } else if (EEDigi) { // Loop on crystals //=================== for ( EEDigiCollection::const_iterator digiItr= EEDigi->begin(); digiItr != EEDigi->end(); ++digiItr ) { // Retrieve geometry //=================== EEDetId id_crystal(digiItr->id()) ; EEDataFrame df( *digiItr ); EcalElectronicsId elecid_crystal = TheMapping->getElectronicsId(id_crystal); int etaG = id_crystal.iy() ; int phiG = id_crystal.ix() ; int iX = (phiG-1)/5+1; int iY = (etaG-1)/5+1; int tower=elecid_crystal.towerId(); int ch=elecid_crystal.channelId()-1; int module=MEEEGeom::lmmod( iX, iY ); if( module>=18 && side==1 ) module+=2; int lmr=MEEEGeom::lmr( iX, iY ,iZ); int dee=MEEEGeom::dee(lmr); int apdRefTT=MEEEGeom::apdRefTower(lmr, module); std::pair<int,int> pnpair=MEEEGeom::pn( dee, module ) ; unsigned int MyPn0=pnpair.first; unsigned int MyPn1=pnpair.second; int hashedIndex=100000*eta+phi; if( channelMapEE.count(hashedIndex) == 0 ){ channelMapEE[hashedIndex]=channelIteratorEE; channelIteratorEE++; } unsigned int channel=channelMapEE[hashedIndex]; assert ( channel < nCrys ); setGeomEE(etaG, phiG, iX, iY, iZ, module, tower, ch, apdRefTT, channel, lmr); if (_debug==1) std::cout << "-- debug -- Inside EEDigi - towerID:"<< towerID<< " channelID:" <<channelID<<" module:"<< module<< " modules:"<<modules.size()<< std::endl; // APD Pulse //=========== if( (*digiItr).size()>10) std::cout <<"SAMPLES SIZE > 10!" << (*digiItr).size()<< std::endl; // Loop on adc samples for (unsigned int i=0; i< (*digiItr).size() ; ++i ) { EcalMGPASample samp_crystal(df.sample(i)); adc[i]=samp_crystal.adc() ; adcG[i]=samp_crystal.gainId(); adc[i]*=adcG[i]; if (i==0) adcGain=adcG[i]; if (i>0) adcGain=TMath::Max(adcG[i],adcGain); } APDPulse->setPulse(adc); // Quality checks //================ if(adcGain!=1) nEvtBadGain[channel]++; if(!APDPulse->isTimingQualOK()) nEvtBadTiming[channel]++; nEvtTot[channel]++; // Associate PN ampl //=================== int mem0=Mem->Mem(lmr,0); int mem1=Mem->Mem(lmr,1); if(allPNAmpl[mem0].size()>MyPn0) pn0=allPNAmpl[mem0][MyPn0]; else pn0=0; if(allPNAmpl[mem1].size()>MyPn1) pn1=allPNAmpl[mem1][MyPn1]; else pn1=0; // Fill if Pulse is fine //======================= if( APDPulse->isPulseOK() && lightside==side){ ADCtrees[channel]->Fill(); Delta01->addEntry(APDPulse->getDelta(0,1)); Delta12->addEntry(APDPulse->getDelta(1,2)); if( nevtAB[channel] < _nevtmax && _fitab ){ if(doesABTreeExist) shapana -> putAllVals(channel, adc, eta, phi); else shapana -> putAllVals(channel, adc, eta, phi, dccID, side, towerID, channelID); nevtAB[channel]++ ; } } } } }
void EcalLaserAnalyzer::beginJob | ( | void | ) | [virtual] |
Reimplemented from edm::EDAnalyzer.
Definition at line 196 of file EcalLaserAnalyzer.cc.
References _alpha, _beta, _chi2cut, _firstsample, _fitab, _lastsample, _nevtmax, _noise, _nsamples, _presample, adc, ADCfile, ADCFile, ADCtrees, alphafile, alphainitfile, APDfile, channelID, color, dccID, doesABTreeExist, eta, event, i, laserEvents, mergeVDriftHistosByStation::name, nCrys, nevtAB, NULL, phi, pn0, pn1, resdir_, resfile, shapana, side, run_regression::test, and towerID.
{ //======================================================================== // Create temporary files and trees to save adc samples //====================================================== ADCfile=resdir_; ADCfile+="/APDSamplesLaser.root"; APDfile=resdir_; APDfile+="/APDPNLaserAllEvents.root"; ADCFile = new TFile(ADCfile.c_str(),"RECREATE"); for (unsigned int i=0;i<nCrys;i++){ std::stringstream name; name << "ADCTree" <<i+1; ADCtrees[i]= new TTree(name.str().c_str(),name.str().c_str()); ADCtrees[i]->Branch( "ieta", &eta, "eta/I" ); ADCtrees[i]->Branch( "iphi", &phi, "phi/I" ); ADCtrees[i]->Branch( "side", &side, "side/I" ); ADCtrees[i]->Branch( "dccID", &dccID, "dccID/I" ); ADCtrees[i]->Branch( "towerID", &towerID, "towerID/I" ); ADCtrees[i]->Branch( "channelID", &channelID, "channelID/I" ); ADCtrees[i]->Branch( "event", &event, "event/I" ); ADCtrees[i]->Branch( "color", &color, "color/I" ); ADCtrees[i]->Branch( "adc", &adc , "adc[10]/D" ); ADCtrees[i]->Branch( "pn0", &pn0 , "pn0/D" ); ADCtrees[i]->Branch( "pn1", &pn1 , "pn1/D" ); ADCtrees[i]->SetBranchAddress( "ieta", &eta ); ADCtrees[i]->SetBranchAddress( "iphi", &phi ); ADCtrees[i]->SetBranchAddress( "side", &side ); ADCtrees[i]->SetBranchAddress( "dccID", &dccID ); ADCtrees[i]->SetBranchAddress( "towerID", &towerID ); ADCtrees[i]->SetBranchAddress( "channelID", &channelID ); ADCtrees[i]->SetBranchAddress( "event", &event ); ADCtrees[i]->SetBranchAddress( "color", &color ); ADCtrees[i]->SetBranchAddress( "adc", adc ); ADCtrees[i]->SetBranchAddress( "pn0", &pn0 ); ADCtrees[i]->SetBranchAddress( "pn1", &pn1 ); nevtAB[i]=0 ; } // Define output results filenames and shape analyzer object (alpha,beta) //===================================================================== // 1) AlphaBeta files doesABTreeExist=true; std::stringstream nameabinitfile; nameabinitfile << resdir_ <<"/ABInit.root"; alphainitfile=nameabinitfile.str(); std::stringstream nameabfile; nameabfile << resdir_ <<"/AB.root"; alphafile=nameabfile.str(); FILE *test; if(_fitab) test = fopen(alphainitfile.c_str(),"r"); else test = fopen(alphafile.c_str(),"r"); if(test == NULL) { doesABTreeExist=false; _fitab=true; }; delete test; TFile *fAB=0; TTree *ABInit=0; if(doesABTreeExist){ fAB=new TFile(nameabinitfile.str().c_str()); } if(doesABTreeExist && fAB){ ABInit = (TTree*) fAB->Get("ABCol0"); } // 2) Shape analyzer if(doesABTreeExist && fAB && ABInit && ABInit->GetEntries()!=0){ shapana= new TShapeAnalysis(ABInit, _alpha, _beta, 5.5, 1.0); doesABTreeExist=true; }else{ shapana= new TShapeAnalysis(_alpha, _beta, 5.5, 1.0); doesABTreeExist=false; _fitab=true; } shapana -> set_const(_nsamples,_firstsample,_lastsample, _presample, _nevtmax, _noise, _chi2cut); if(doesABTreeExist && fAB ) fAB->Close(); // 2) APD file std::stringstream nameapdfile; nameapdfile << resdir_ <<"/APDPN_LASER.root"; resfile=nameapdfile.str(); // Laser events counter laserEvents=0; }
void EcalLaserAnalyzer::endJob | ( | void | ) | [virtual] |
Reimplemented from edm::EDAnalyzer.
Definition at line 711 of file EcalLaserAnalyzer.cc.
References _debug, _ecalPart, _firstsample, _fitab, _lastsample, _niter, _nsamples, _presample, _presamplecut, _qualpercent, _saveallevents, adc, ADCfile, ADCFile, adcNoPed, ADCtrees, TPN::addEntry(), TAPD::addEntry(), alpha, alphafile, alphainitfile, APD, apdAmpl, apdAmplA, apdAmplB, APDAnal, APDfile, APDFile, APDFirstAnal, APDoAPDA, APDoAPDB, APDoPN, APDoPNA, APDoPNB, APDPulse, apdRefMap, apdTime, APDtrees, asciidump::at, beta, channelID, channelMapEE, color, colorref, colors, TShapeAnalysis::computeShape(), gather_cfg::cout, GOODCOLL_filter_cfg::cut, dccID, Delta01, Delta12, doesABTreeExist, event, eventref, firstChanMod, flag, flagAB, TAPDPulse::getAdcWithoutPedestal(), TAPD::getAPD(), TAPD::getAPDoAPD0(), TAPD::getAPDoAPD1(), TAPD::getAPDoPN(), TAPD::getAPDoPN0(), TAPD::getAPDoPN1(), TMom::getMean(), TPN::getPN(), TPN::getPNoPN(), TPN::getPNoPN0(), TPN::getPNoPN1(), TAPD::getTime(), edm::service::getTime(), TShapeAnalysis::getVals(), i, iChannelID, idccID, iEta, iModule, init, iPhi, isGainOK, iside, TAPDPulse::isPulseOK(), IsThereDataADC, isTimingOK, iTowerID, laserEvents, moduleID, modules, mergeVDriftHistosByStation::name, nColor, nCrys, nEvtBadGain, nEvtBadTiming, nEvtTot, nMod, nPNPerMod, nRefChan, PN, pn0, pn1, PNAnal, PNFirstAnal, pnID, PNoPN, PNoPNA, PNoPNB, RefAPDtrees, resFile, resfile, respntrees, restrees, TAPD::set2DAPDoAPD0Cut(), TAPD::set2DAPDoAPD1Cut(), TShapeAnalysis::set_nch(), TShapeAnalysis::set_presample(), TAPD::setAPDCut(), TAPD::setAPDoPN0Cut(), TAPD::setAPDoPN1Cut(), TAPD::setAPDoPNCut(), TPN::setPNCut(), TAPDPulse::setPresamples(), TAPDPulse::setPulse(), TAPD::setTimeCut(), shapana, side, Time, towerID, wasGainOK, and wasTimingOK.
{ //======================================================================== // Adjust channel numbers for EE //=============================== if( _ecalPart == "EE" ) { nCrys=channelMapEE.size(); shapana->set_nch(nCrys); } // Set presamples number //====================== double delta01=Delta01->getMean(); double delta12=Delta12->getMean(); if(delta12>_presamplecut) { _presample=2; if(delta01>_presamplecut) _presample=1; } APDPulse->setPresamples(_presample); shapana->set_presample(_presample); // Get alpha and beta //====================== if(_fitab){ std::cout << "\n\t+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+" << std::endl; std::cout << "\t+=+ Analyzing data: getting (alpha, beta) +=+" << std::endl; TFile *fAB=0; TTree *ABInit=0; if(doesABTreeExist){ fAB=new TFile(alphainitfile.c_str()); } if(doesABTreeExist && fAB){ ABInit = (TTree*) fAB->Get("ABCol0"); } shapana->computeShape(alphafile, ABInit); std::cout << "\t+=+ .................................... done +=+" << std::endl; std::cout << "\t+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+" << std::endl; } // Don't do anything if there is no events //========================================= if( laserEvents == 0 ){ ADCFile->Close(); std::stringstream del; del << "rm " <<ADCfile; system(del.str().c_str()); std::cout << " No Laser Events "<< std::endl; return; } // Set quality flags for gains and timing //========================================= double BadGainEvtPercentage=0.0; double BadTimingEvtPercentage=0.0; int nChanBadGain=0; int nChanBadTiming=0; for (unsigned int i=0;i<nCrys;i++){ if(nEvtTot[i]!=0){ BadGainEvtPercentage=double(nEvtBadGain[i])/double(nEvtTot[i]); BadTimingEvtPercentage=double(nEvtBadTiming[i])/double(nEvtTot[i]); } if(BadGainEvtPercentage>_qualpercent) { wasGainOK[i]=false; nChanBadGain++; } if(BadTimingEvtPercentage>_qualpercent){ wasTimingOK[i]=false; nChanBadTiming++; } } double BadGainChanPercentage=double(nChanBadGain)/double(nCrys); double BadTimingChanPercentage=double(nChanBadTiming)/double(nCrys); if(BadGainChanPercentage>_qualpercent) isGainOK = false; if(BadTimingChanPercentage>_qualpercent) isTimingOK = false; // Analyze adc samples to get amplitudes //======================================= std::cout << "\n\t+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+" << std::endl; std::cout << "\t+=+ Analyzing laser data: getting APD, PN, APD/PN, PN/PN +=+" << std::endl; if( !isGainOK ) std::cout << "\t+=+ ............................ WARNING! APD GAIN WAS NOT 1 +=+" << std::endl; if( !isTimingOK ) std::cout << "\t+=+ ............................ WARNING! TIMING WAS BAD +=+" << std::endl; APDFile = new TFile(APDfile.c_str(),"RECREATE"); int ieta, iphi, channelID, towerID, flag; for (unsigned int i=0;i<nCrys;i++){ std::stringstream name; name << "APDTree" <<i+1; APDtrees[i]= new TTree(name.str().c_str(),name.str().c_str()); //List of branches APDtrees[i]->Branch( "event", &event, "event/I" ); APDtrees[i]->Branch( "color", &color, "color/I" ); APDtrees[i]->Branch( "iphi", &iphi, "iphi/I" ); APDtrees[i]->Branch( "ieta", &ieta, "ieta/I" ); APDtrees[i]->Branch( "side", &side, "side/I" ); APDtrees[i]->Branch( "dccID", &dccID, "dccID/I" ); APDtrees[i]->Branch( "towerID", &towerID, "towerID/I" ); APDtrees[i]->Branch( "channelID", &channelID, "channelID/I" ); APDtrees[i]->Branch( "apdAmpl", &apdAmpl, "apdAmpl/D" ); APDtrees[i]->Branch( "apdTime", &apdTime, "apdTime/D" ); if(_saveallevents) APDtrees[i]->Branch( "adc", &adc ,"adc[10]/D" ); APDtrees[i]->Branch( "flag", &flag, "flag/I" ); APDtrees[i]->Branch( "flagAB", &flagAB, "flagAB/I" ); APDtrees[i]->Branch( "pn0", &pn0, "pn0/D" ); APDtrees[i]->Branch( "pn1", &pn1, "pn1/D" ); APDtrees[i]->SetBranchAddress( "event", &event ); APDtrees[i]->SetBranchAddress( "color", &color ); APDtrees[i]->SetBranchAddress( "iphi", &iphi ); APDtrees[i]->SetBranchAddress( "ieta", &ieta ); APDtrees[i]->SetBranchAddress( "side", &side ); APDtrees[i]->SetBranchAddress( "dccID", &dccID ); APDtrees[i]->SetBranchAddress( "towerID", &towerID ); APDtrees[i]->SetBranchAddress( "channelID", &channelID ); APDtrees[i]->SetBranchAddress( "apdAmpl", &apdAmpl ); APDtrees[i]->SetBranchAddress( "apdTime", &apdTime ); if(_saveallevents)APDtrees[i]->SetBranchAddress( "adc", adc ); APDtrees[i]->SetBranchAddress( "flag", &flag ); APDtrees[i]->SetBranchAddress( "flagAB", &flagAB ); APDtrees[i]->SetBranchAddress( "pn0", &pn0 ); APDtrees[i]->SetBranchAddress( "pn1", &pn1 ); } for (unsigned int iref=0;iref<nRefChan;iref++){ for (unsigned int imod=0;imod<nMod;imod++){ int jmod=modules[imod]; std::stringstream nameref; nameref << "refAPDTree" <<imod<<"_"<<iref; RefAPDtrees[iref][jmod]= new TTree(nameref.str().c_str(),nameref.str().c_str()); RefAPDtrees[iref][jmod]->Branch( "eventref", &eventref, "eventref/I" ); RefAPDtrees[iref][jmod]->Branch( "colorref", &colorref, "colorref/I" ); if(iref==0) RefAPDtrees[iref][jmod]->Branch( "apdAmplA", &apdAmplA, "apdAmplA/D" ); if(iref==1) RefAPDtrees[iref][jmod]->Branch( "apdAmplB", &apdAmplB, "apdAmplB/D" ); RefAPDtrees[iref][jmod]->SetBranchAddress( "eventref", &eventref ); RefAPDtrees[iref][jmod]->SetBranchAddress( "colorref", &colorref ); if(iref==0)RefAPDtrees[iref][jmod]->SetBranchAddress( "apdAmplA", &apdAmplA ); if(iref==1)RefAPDtrees[iref][jmod]->SetBranchAddress( "apdAmplB", &apdAmplB ); } } assert( colors.size()<= nColor ); unsigned int nCol=colors.size(); // Declare PN stuff //=================== for (unsigned int iM=0;iM<nMod;iM++){ unsigned int iMod=modules[iM]-1; for (unsigned int ich=0;ich<nPNPerMod;ich++){ for (unsigned int icol=0;icol<nCol;icol++){ PNFirstAnal[iMod][ich][icol]=new TPN(ich); PNAnal[iMod][ich][icol]=new TPN(ich); } } } // Declare function for APD ampl fit //=================================== PulseFitWithFunction * pslsfit = new PulseFitWithFunction(); double chi2; for (unsigned int iCry=0;iCry<nCrys;iCry++){ for (unsigned int icol=0;icol<nCol;icol++){ // Declare APD stuff //=================== APDFirstAnal[iCry][icol] = new TAPD(); IsThereDataADC[iCry][icol]=1; std::stringstream cut; cut <<"color=="<<colors[icol]; if(ADCtrees[iCry]->GetEntries(cut.str().c_str())<10) IsThereDataADC[iCry][icol]=0; } unsigned int iMod=iModule[iCry]-1; double alpha, beta; // Loop on events //================ Long64_t nbytes = 0, nb = 0; for (Long64_t jentry=0; jentry< ADCtrees[iCry]->GetEntriesFast();jentry++){ nb = ADCtrees[iCry]->GetEntry(jentry); nbytes += nb; // Get back color unsigned int iCol=0; for(unsigned int i=0;i<nCol;i++){ if(color==colors[i]) { iCol=i; i=colors.size(); } } // Retreive alpha and beta std::vector<double> abvals=shapana->getVals(iCry); alpha=abvals[0]; beta=abvals[1]; flagAB=int(abvals[4]); iphi=iPhi[iCry]; ieta=iEta[iCry]; towerID=iTowerID[iCry]; channelID=iChannelID[iCry]; // Amplitude calculation APDPulse->setPulse(adc); adcNoPed=APDPulse->getAdcWithoutPedestal(); apdAmpl=0; apdAmplA=0; apdAmplB=0; apdTime=0; if( APDPulse->isPulseOK()){ pslsfit -> init(_nsamples,_firstsample,_lastsample,_niter, alpha, beta); chi2 = pslsfit -> doFit(&adcNoPed[0]); if( chi2 < 0. || chi2 == 102 || chi2 == 101 ) { apdAmpl=0; apdTime=0; flag=0; }else{ apdAmpl = pslsfit -> getAmpl(); apdTime = pslsfit -> getTime(); flag=1; } }else { chi2=0.0; apdAmpl=0; apdTime=0; flag=0; } if (_debug==1) std::cout <<"-- debug test -- apdAmpl="<<apdAmpl<< ", apdTime="<< apdTime<< std::endl; double pnmean; if (pn0<10 && pn1>10) { pnmean=pn1; }else if (pn1<10 && pn0>10){ pnmean=pn0; }else pnmean=0.5*(pn0+pn1); if (_debug==1) std::cout <<"-- debug test -- pn0="<<pn0<<", pn1="<<pn1<< std::endl; // Fill PN stuff //=============== if( firstChanMod[iMod]==iCry && IsThereDataADC[iCry][iCol]==1 ){ for (unsigned int ichan=0;ichan<nPNPerMod;ichan++){ PNFirstAnal[iMod][ichan][iCol]->addEntry(pnmean,pn0,pn1); } } // Fill APD stuff //================ if( APDPulse->isPulseOK() ){ APDFirstAnal[iCry][iCol]->addEntry(apdAmpl,pnmean, pn0, pn1, apdTime); APDtrees[iCry]->Fill(); // Fill reference trees //===================== if( apdRefMap[0][iMod+1]==iCry || apdRefMap[1][iMod+1]==iCry ) { apdAmplA=0.0; apdAmplB=0.0; eventref=event; colorref=color; for(unsigned int ir=0;ir<nRefChan;ir++){ if(apdRefMap[ir][iMod+1]==iCry) { if (ir==0) apdAmplA=apdAmpl; else if(ir==1) apdAmplB=apdAmpl; RefAPDtrees[ir][iMod+1]->Fill(); } } } } } } delete pslsfit; ADCFile->Close(); // Remove temporary file //======================= std::stringstream del; del << "rm " <<ADCfile; system(del.str().c_str()); // Create output trees //===================== resFile = new TFile(resfile.c_str(),"RECREATE"); for (unsigned int iColor=0;iColor<nCol;iColor++){ std::stringstream nametree; nametree <<"APDCol"<<colors[iColor]; std::stringstream nametree2; nametree2 <<"PNCol"<<colors[iColor]; restrees[iColor]= new TTree(nametree.str().c_str(),nametree.str().c_str()); respntrees[iColor]= new TTree(nametree2.str().c_str(),nametree2.str().c_str()); restrees[iColor]->Branch( "iphi", &iphi, "iphi/I" ); restrees[iColor]->Branch( "ieta", &ieta, "ieta/I" ); restrees[iColor]->Branch( "side", &side, "side/I" ); restrees[iColor]->Branch( "dccID", &dccID, "dccID/I" ); restrees[iColor]->Branch( "moduleID", &moduleID, "moduleID/I" ); restrees[iColor]->Branch( "towerID", &towerID, "towerID/I" ); restrees[iColor]->Branch( "channelID", &channelID, "channelID/I" ); restrees[iColor]->Branch( "APD", &APD, "APD[6]/D" ); restrees[iColor]->Branch( "Time", &Time, "Time[6]/D" ); restrees[iColor]->Branch( "APDoPN", &APDoPN, "APDoPN[6]/D" ); restrees[iColor]->Branch( "APDoPNA", &APDoPNA, "APDoPNA[6]/D" ); restrees[iColor]->Branch( "APDoPNB", &APDoPNB, "APDoPNB[6]/D" ); restrees[iColor]->Branch( "APDoAPDA", &APDoAPDA, "APDoAPDA[6]/D" ); restrees[iColor]->Branch( "APDoAPDB", &APDoAPDB, "APDoAPDB[6]/D" ); restrees[iColor]->Branch( "flag", &flag, "flag/I" ); respntrees[iColor]->Branch( "side", &side, "side/I" ); respntrees[iColor]->Branch( "moduleID", &moduleID, "moduleID/I" ); respntrees[iColor]->Branch( "pnID", &pnID, "pnID/I" ); respntrees[iColor]->Branch( "PN", &PN, "PN[6]/D" ); respntrees[iColor]->Branch( "PNoPN", &PNoPN, "PNoPN[6]/D" ); respntrees[iColor]->Branch( "PNoPNA", &PNoPNA, "PNoPNA[6]/D" ); respntrees[iColor]->Branch( "PNoPNB", &PNoPNB, "PNoPNB[6]/D" ); restrees[iColor]->SetBranchAddress( "iphi", &iphi ); restrees[iColor]->SetBranchAddress( "ieta", &ieta ); restrees[iColor]->SetBranchAddress( "side", &side ); restrees[iColor]->SetBranchAddress( "dccID", &dccID ); restrees[iColor]->SetBranchAddress( "moduleID", &moduleID ); restrees[iColor]->SetBranchAddress( "towerID", &towerID ); restrees[iColor]->SetBranchAddress( "channelID", &channelID ); restrees[iColor]->SetBranchAddress( "APD", APD ); restrees[iColor]->SetBranchAddress( "Time", Time ); restrees[iColor]->SetBranchAddress( "APDoPN", APDoPN ); restrees[iColor]->SetBranchAddress( "APDoPNA", APDoPNA ); restrees[iColor]->SetBranchAddress( "APDoPNB", APDoPNB ); restrees[iColor]->SetBranchAddress( "APDoAPDA", APDoAPDA ); restrees[iColor]->SetBranchAddress( "APDoAPDB", APDoAPDB ); restrees[iColor]->SetBranchAddress( "flag", &flag ); respntrees[iColor]->SetBranchAddress( "side", &side ); respntrees[iColor]->SetBranchAddress( "moduleID", &moduleID ); respntrees[iColor]->SetBranchAddress( "pnID", &pnID ); respntrees[iColor]->SetBranchAddress( "PN", PN ); respntrees[iColor]->SetBranchAddress( "PNoPN", PNoPN ); respntrees[iColor]->SetBranchAddress( "PNoPNA", PNoPNA ); respntrees[iColor]->SetBranchAddress( "PNoPNB", PNoPNB ); } // Set Cuts for PN stuff //======================= for (unsigned int iM=0;iM<nMod;iM++){ unsigned int iMod=modules[iM]-1; for (unsigned int ich=0;ich<nPNPerMod;ich++){ for (unsigned int icol=0;icol<nCol;icol++){ PNAnal[iMod][ich][icol]->setPNCut(PNFirstAnal[iMod][ich][icol]->getPN().at(0), PNFirstAnal[iMod][ich][icol]->getPN().at(1)); } } } // Build ref trees indexes //======================== for(unsigned int imod=0;imod<nMod;imod++){ int jmod=modules[imod]; if( RefAPDtrees[0][jmod]->GetEntries()!=0 && RefAPDtrees[1][jmod]->GetEntries()!=0 ){ RefAPDtrees[0][jmod]->BuildIndex("eventref"); RefAPDtrees[1][jmod]->BuildIndex("eventref"); } } // Final loop on crystals //======================= for (unsigned int iCry=0;iCry<nCrys;iCry++){ unsigned int iMod=iModule[iCry]-1; // Set cuts on APD stuff //======================= for(unsigned int iCol=0;iCol<nCol;iCol++){ std::vector<double> lowcut; std::vector<double> highcut; double cutMin; double cutMax; cutMin=APDFirstAnal[iCry][iCol]->getAPD().at(0)-2.0*APDFirstAnal[iCry][iCol]->getAPD().at(1); if(cutMin<0) cutMin=0; cutMax=APDFirstAnal[iCry][iCol]->getAPD().at(0)+2.0*APDFirstAnal[iCry][iCol]->getAPD().at(1); lowcut.push_back(cutMin); highcut.push_back(cutMax); cutMin=APDFirstAnal[iCry][iCol]->getTime().at(0)-2.0*APDFirstAnal[iCry][iCol]->getTime().at(1); cutMax=APDFirstAnal[iCry][iCol]->getTime().at(0)+2.0*APDFirstAnal[iCry][iCol]->getTime().at(1); lowcut.push_back(cutMin); highcut.push_back(cutMax); APDAnal[iCry][iCol]=new TAPD(); APDAnal[iCry][iCol]->setAPDCut(APDFirstAnal[iCry][iCol]->getAPD().at(0),APDFirstAnal[iCry][iCol]->getAPD().at(1)); APDAnal[iCry][iCol]->setAPDoPNCut(APDFirstAnal[iCry][iCol]->getAPDoPN().at(0),APDFirstAnal[iCry][iCol]->getAPDoPN().at(1)); APDAnal[iCry][iCol]->setAPDoPN0Cut(APDFirstAnal[iCry][iCol]->getAPDoPN0().at(0),APDFirstAnal[iCry][iCol]->getAPDoPN0().at(1)); APDAnal[iCry][iCol]->setAPDoPN1Cut(APDFirstAnal[iCry][iCol]->getAPDoPN1().at(0),APDFirstAnal[iCry][iCol]->getAPDoPN1().at(1)); APDAnal[iCry][iCol]->setTimeCut(APDFirstAnal[iCry][iCol]->getTime().at(0),APDFirstAnal[iCry][iCol]->getTime().at(1)); APDAnal[iCry][iCol]->set2DAPDoAPD0Cut(lowcut,highcut); APDAnal[iCry][iCol]->set2DAPDoAPD1Cut(lowcut,highcut); } // Final loop on events //======================= Long64_t nbytes = 0, nb = 0; for (Long64_t jentry=0; jentry< APDtrees[iCry]->GetEntriesFast();jentry++) { nb = APDtrees[iCry]->GetEntry(jentry); nbytes += nb; double pnmean; if (pn0<10 && pn1>10) { pnmean=pn1; }else if (pn1<10 && pn0>10){ pnmean=pn0; }else pnmean=0.5*(pn0+pn1); // Get back color //================ unsigned int iCol=0; for(unsigned int i=0;i<nCol;i++){ if(color==colors[i]) { iCol=i; i=colors.size(); } } // Fill PN stuff //=============== if( firstChanMod[iMod]==iCry && IsThereDataADC[iCry][iCol]==1 ){ for (unsigned int ichan=0;ichan<nPNPerMod;ichan++){ PNAnal[iMod][ichan][iCol]->addEntry(pnmean,pn0,pn1); } } // Get ref amplitudes //=================== if (_debug==1) std::cout <<"-- debug test -- Last Loop event:"<<event<<" apdAmpl:"<< apdAmpl<< std::endl; apdAmplA = 0.0; apdAmplB = 0.0; for (unsigned int iRef=0;iRef<nRefChan;iRef++){ RefAPDtrees[iRef][iMod+1]->GetEntryWithIndex(event); } if (_debug==1 ) std::cout <<"-- debug test -- Last Loop apdAmplA:"<<apdAmplA<< " apdAmplB:"<< apdAmplB<<", event:"<< event<<", eventref:"<< eventref<< std::endl; // Fill APD stuff //=============== APDAnal[iCry][iCol]->addEntry(apdAmpl, pnmean, pn0, pn1, apdTime, apdAmplA, apdAmplB); } moduleID=iMod+1; if( moduleID>=20 ) moduleID-=2; // Trick to fix endcap specificity // Get final results for APD //=========================== for(unsigned int iColor=0;iColor<nCol;iColor++){ std::vector<double> apdvec = APDAnal[iCry][iColor]->getAPD(); std::vector<double> apdpnvec = APDAnal[iCry][iColor]->getAPDoPN(); std::vector<double> apdpn0vec = APDAnal[iCry][iColor]->getAPDoPN0(); std::vector<double> apdpn1vec = APDAnal[iCry][iColor]->getAPDoPN1(); std::vector<double> timevec = APDAnal[iCry][iColor]->getTime(); std::vector<double> apdapd0vec = APDAnal[iCry][iColor]->getAPDoAPD0(); std::vector<double> apdapd1vec = APDAnal[iCry][iColor]->getAPDoAPD1(); for(unsigned int i=0;i<apdvec.size();i++){ APD[i]=apdvec.at(i); APDoPN[i]=apdpnvec.at(i); APDoPNA[i]=apdpn0vec.at(i); APDoPNB[i]=apdpn1vec.at(i); APDoAPDA[i]=apdapd0vec.at(i); APDoAPDB[i]=apdapd1vec.at(i); Time[i]=timevec.at(i); } // Fill APD results trees //======================== iphi=iPhi[iCry]; ieta=iEta[iCry]; dccID=idccID[iCry]; side=iside[iCry]; towerID=iTowerID[iCry]; channelID=iChannelID[iCry]; if( !wasGainOK[iCry] || !wasTimingOK[iCry] || IsThereDataADC[iCry][iColor]==0 ){ flag=0; }else flag=1; restrees[iColor]->Fill(); } } // Get final results for PN //========================== for (unsigned int iM=0;iM<nMod;iM++){ unsigned int iMod=modules[iM]-1; side=iside[firstChanMod[iMod]]; for (unsigned int ch=0;ch<nPNPerMod;ch++){ pnID=ch; moduleID=iMod+1; if( moduleID>=20 ) moduleID-=2; // Trick to fix endcap specificity for(unsigned int iColor=0;iColor<nCol;iColor++){ std::vector<double> pnvec = PNAnal[iMod][ch][iColor]->getPN(); std::vector<double> pnopnvec = PNAnal[iMod][ch][iColor]->getPNoPN(); std::vector<double> pnopn0vec = PNAnal[iMod][ch][iColor]->getPNoPN0(); std::vector<double> pnopn1vec = PNAnal[iMod][ch][iColor]->getPNoPN1(); for(unsigned int i=0;i<pnvec.size();i++){ PN[i]=pnvec.at(i); PNoPN[i]=pnopnvec.at(i); PNoPNA[i]=pnopn0vec.at(i); PNoPNB[i]=pnopn1vec.at(i); } // Fill PN results trees //======================== respntrees[iColor]->Fill(); } } } // Remove temporary files //======================== if(!_saveallevents){ APDFile->Close(); std::stringstream del2; del2 << "rm " <<APDfile; system(del2.str().c_str()); }else { APDFile->cd(); APDtrees[0]->Write(); APDFile->Close(); resFile->cd(); } // Save results //=============== for (unsigned int i=0;i<nCol;i++){ restrees[i]->Write(); respntrees[i]->Write(); } resFile->Close(); std::cout << "\t+=+ .................................................. done +=+" << std::endl; std::cout << "\t+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+" << std::endl; }
void EcalLaserAnalyzer::setGeomEB | ( | int | etaG, |
int | phiG, | ||
int | module, | ||
int | tower, | ||
int | strip, | ||
int | xtal, | ||
int | apdRefTT, | ||
int | channel, | ||
int | lmr | ||
) |
Definition at line 1348 of file EcalLaserAnalyzer.cc.
References ME::apdRefChannels(), apdRefMap, channelID, prof2calltree::count, dccID, eta, firstChanMod, iChannelID, idccID, iEta, iModule, iPhi, isFirstChanModFilled, iside, iTowerID, python::rootplot::argparse::module, modules, nRefChan, phi, side, and towerID.
Referenced by analyze().
{ side=MEEBGeom::side(etaG,phiG); assert( module>=*min_element(modules.begin(),modules.end()) && module<=*max_element(modules.begin(),modules.end()) ); eta = etaG; phi = phiG; channelID=5*(strip-1) + xtal-1; towerID=tower; std::vector<int> apdRefChan=ME::apdRefChannels(module, lmr); for (unsigned int iref=0;iref<nRefChan;iref++){ if(channelID==apdRefChan[iref] && towerID==apdRefTT && apdRefMap[iref].count(module)==0){ apdRefMap[iref][module]=channel; } } if(isFirstChanModFilled[module-1]==0) { firstChanMod[module-1]=channel; isFirstChanModFilled[module-1]=1; } iEta[channel]=eta; iPhi[channel]=phi; iModule[channel]= module ; iTowerID[channel]=towerID; iChannelID[channel]=channelID; idccID[channel]=dccID; iside[channel]=side; }
void EcalLaserAnalyzer::setGeomEE | ( | int | etaG, |
int | phiG, | ||
int | iX, | ||
int | iY, | ||
int | iZ, | ||
int | module, | ||
int | tower, | ||
int | ch, | ||
int | apdRefTT, | ||
int | channel, | ||
int | lmr | ||
) |
Definition at line 1383 of file EcalLaserAnalyzer.cc.
References ME::apdRefChannels(), apdRefMap, channelID, prof2calltree::count, dccID, eta, firstChanMod, iChannelID, idccID, iEta, iModule, iPhi, isFirstChanModFilled, iside, iTowerID, python::rootplot::argparse::module, modules, nRefChan, phi, side, and towerID.
Referenced by analyze().
{ side=MEEEGeom::side(iX, iY, iZ); assert( module>=*min_element(modules.begin(),modules.end()) && module<=*max_element(modules.begin(),modules.end()) ); eta = etaG; phi = phiG; channelID=ch; towerID=tower; std::vector<int> apdRefChan=ME::apdRefChannels(module, lmr); for (unsigned int iref=0;iref<nRefChan;iref++){ if(channelID==apdRefChan[iref] && towerID==apdRefTT && apdRefMap[iref].count(module)==0){ apdRefMap[iref][module]=channel; } } if(isFirstChanModFilled[module-1]==0) { firstChanMod[module-1]=channel; isFirstChanModFilled[module-1]=1; } iEta[channel]=eta; iPhi[channel]=phi; iModule[channel]= module ; iTowerID[channel]=towerID; iChannelID[channel]=channelID; idccID[channel]=dccID; iside[channel]=side; }
double EcalLaserAnalyzer::_alpha [private] |
Definition at line 91 of file EcalLaserAnalyzer.h.
Referenced by beginJob().
double EcalLaserAnalyzer::_beta [private] |
Definition at line 92 of file EcalLaserAnalyzer.h.
Referenced by beginJob().
double EcalLaserAnalyzer::_chi2cut [private] |
Definition at line 95 of file EcalLaserAnalyzer.h.
Referenced by beginJob().
int EcalLaserAnalyzer::_debug [private] |
Definition at line 101 of file EcalLaserAnalyzer.h.
bool EcalLaserAnalyzer::_docorpn [private] |
Definition at line 97 of file EcalLaserAnalyzer.h.
Referenced by analyze().
std::string EcalLaserAnalyzer::_ecalPart [private] |
Definition at line 96 of file EcalLaserAnalyzer.h.
Referenced by analyze(), EcalLaserAnalyzer(), and endJob().
int EcalLaserAnalyzer::_fedid [private] |
Definition at line 98 of file EcalLaserAnalyzer.h.
Referenced by analyze(), and EcalLaserAnalyzer().
unsigned int EcalLaserAnalyzer::_firstsample [private] |
Definition at line 75 of file EcalLaserAnalyzer.h.
Referenced by beginJob(), EcalLaserAnalyzer(), and endJob().
unsigned int EcalLaserAnalyzer::_firstsamplePN [private] |
Definition at line 79 of file EcalLaserAnalyzer.h.
Referenced by analyze().
bool EcalLaserAnalyzer::_fitab [private] |
Definition at line 90 of file EcalLaserAnalyzer.h.
Referenced by analyze(), beginJob(), and endJob().
unsigned int EcalLaserAnalyzer::_lastsample [private] |
Definition at line 76 of file EcalLaserAnalyzer.h.
Referenced by beginJob(), EcalLaserAnalyzer(), and endJob().
unsigned int EcalLaserAnalyzer::_lastsamplePN [private] |
Definition at line 80 of file EcalLaserAnalyzer.h.
Referenced by analyze().
unsigned int EcalLaserAnalyzer::_nevtmax [private] |
Definition at line 93 of file EcalLaserAnalyzer.h.
Referenced by analyze(), and beginJob().
unsigned int EcalLaserAnalyzer::_niter [private] |
Definition at line 89 of file EcalLaserAnalyzer.h.
Referenced by endJob().
double EcalLaserAnalyzer::_noise [private] |
Definition at line 94 of file EcalLaserAnalyzer.h.
Referenced by beginJob().
unsigned int EcalLaserAnalyzer::_nsamples [private] |
Definition at line 73 of file EcalLaserAnalyzer.h.
Referenced by beginJob(), EcalLaserAnalyzer(), and endJob().
unsigned int EcalLaserAnalyzer::_nsamplesPN [private] |
Definition at line 77 of file EcalLaserAnalyzer.h.
Referenced by analyze(), and EcalLaserAnalyzer().
unsigned int EcalLaserAnalyzer::_presample [private] |
Definition at line 74 of file EcalLaserAnalyzer.h.
Referenced by beginJob(), EcalLaserAnalyzer(), and endJob().
double EcalLaserAnalyzer::_presamplecut [private] |
Definition at line 88 of file EcalLaserAnalyzer.h.
Referenced by endJob().
unsigned int EcalLaserAnalyzer::_presamplePN [private] |
Definition at line 78 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer().
double EcalLaserAnalyzer::_qualpercent [private] |
Definition at line 100 of file EcalLaserAnalyzer.h.
Referenced by endJob().
double EcalLaserAnalyzer::_ratiomaxcutlow [private] |
Definition at line 87 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer().
double EcalLaserAnalyzer::_ratiomincuthigh [private] |
Definition at line 86 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer().
double EcalLaserAnalyzer::_ratiomincutlow [private] |
Definition at line 85 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer().
bool EcalLaserAnalyzer::_saveallevents [private] |
Definition at line 99 of file EcalLaserAnalyzer.h.
Referenced by endJob().
unsigned int EcalLaserAnalyzer::_timingcuthigh [private] |
Definition at line 82 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer().
unsigned int EcalLaserAnalyzer::_timingcutlow [private] |
Definition at line 81 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer().
unsigned int EcalLaserAnalyzer::_timingqualhigh [private] |
Definition at line 84 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer().
unsigned int EcalLaserAnalyzer::_timingquallow [private] |
Definition at line 83 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer().
double EcalLaserAnalyzer::adc[10] [private] |
Definition at line 186 of file EcalLaserAnalyzer.h.
Referenced by analyze(), beginJob(), and endJob().
TFile* EcalLaserAnalyzer::ADCFile [private] |
Definition at line 164 of file EcalLaserAnalyzer.h.
Referenced by beginJob(), and endJob().
std::string EcalLaserAnalyzer::ADCfile [private] |
Definition at line 123 of file EcalLaserAnalyzer.h.
Referenced by beginJob(), and endJob().
int EcalLaserAnalyzer::adcG[10] [private] |
Definition at line 187 of file EcalLaserAnalyzer.h.
Referenced by analyze().
double* EcalLaserAnalyzer::adcNoPed [private] |
Definition at line 200 of file EcalLaserAnalyzer.h.
Referenced by endJob().
TTree* EcalLaserAnalyzer::ADCtrees[NCRYSEB] [private] |
Definition at line 165 of file EcalLaserAnalyzer.h.
Referenced by analyze(), beginJob(), and endJob().
std::string EcalLaserAnalyzer::alphafile [private] |
Definition at line 121 of file EcalLaserAnalyzer.h.
Referenced by beginJob(), and endJob().
std::string EcalLaserAnalyzer::alphainitfile [private] |
Definition at line 122 of file EcalLaserAnalyzer.h.
Referenced by beginJob(), and endJob().
double EcalLaserAnalyzer::APD[6] [private] |
Definition at line 218 of file EcalLaserAnalyzer.h.
Referenced by endJob().
double EcalLaserAnalyzer::apdAmpl [private] |
Definition at line 191 of file EcalLaserAnalyzer.h.
Referenced by endJob().
double EcalLaserAnalyzer::apdAmplA [private] |
Definition at line 192 of file EcalLaserAnalyzer.h.
Referenced by endJob().
double EcalLaserAnalyzer::apdAmplB [private] |
Definition at line 193 of file EcalLaserAnalyzer.h.
Referenced by endJob().
TAPD* EcalLaserAnalyzer::APDAnal[NCRYSEB][nColor] [private] |
Definition at line 209 of file EcalLaserAnalyzer.h.
Referenced by endJob().
TFile* EcalLaserAnalyzer::APDFile [private] |
Definition at line 167 of file EcalLaserAnalyzer.h.
Referenced by endJob().
std::string EcalLaserAnalyzer::APDfile [private] |
Definition at line 124 of file EcalLaserAnalyzer.h.
Referenced by beginJob(), and endJob().
TAPD* EcalLaserAnalyzer::APDFirstAnal[NCRYSEB][nColor] [private] |
Definition at line 208 of file EcalLaserAnalyzer.h.
Referenced by endJob().
double EcalLaserAnalyzer::APDoAPDA[6] [private] |
Definition at line 218 of file EcalLaserAnalyzer.h.
Referenced by endJob().
double EcalLaserAnalyzer::APDoAPDB[6] [private] |
Definition at line 218 of file EcalLaserAnalyzer.h.
Referenced by endJob().
double EcalLaserAnalyzer::APDoPN[6] [private] |
Definition at line 218 of file EcalLaserAnalyzer.h.
Referenced by endJob().
double EcalLaserAnalyzer::APDoPNA[6] [private] |
Definition at line 218 of file EcalLaserAnalyzer.h.
Referenced by endJob().
double EcalLaserAnalyzer::APDoPNB[6] [private] |
Definition at line 218 of file EcalLaserAnalyzer.h.
Referenced by endJob().
TAPDPulse* EcalLaserAnalyzer::APDPulse [private] |
Definition at line 103 of file EcalLaserAnalyzer.h.
Referenced by analyze(), EcalLaserAnalyzer(), and endJob().
std::map<int, unsigned int> EcalLaserAnalyzer::apdRefMap[2] [private] |
Definition at line 178 of file EcalLaserAnalyzer.h.
Referenced by endJob(), setGeomEB(), and setGeomEE().
double EcalLaserAnalyzer::apdTime [private] |
Definition at line 194 of file EcalLaserAnalyzer.h.
Referenced by endJob().
TTree* EcalLaserAnalyzer::APDtrees[NCRYSEB] [private] |
Definition at line 168 of file EcalLaserAnalyzer.h.
Referenced by endJob().
int EcalLaserAnalyzer::channelID [private] |
Definition at line 148 of file EcalLaserAnalyzer.h.
Referenced by analyze(), beginJob(), endJob(), setGeomEB(), and setGeomEE().
int EcalLaserAnalyzer::channelIteratorEE [private] |
Definition at line 216 of file EcalLaserAnalyzer.h.
Referenced by analyze().
std::map<unsigned int, unsigned int> EcalLaserAnalyzer::channelMapEE [private] |
Definition at line 176 of file EcalLaserAnalyzer.h.
int EcalLaserAnalyzer::color [private] |
Definition at line 185 of file EcalLaserAnalyzer.h.
Referenced by analyze(), beginJob(), and endJob().
int EcalLaserAnalyzer::colorref [private] |
Definition at line 198 of file EcalLaserAnalyzer.h.
Referenced by endJob().
std::vector<int> EcalLaserAnalyzer::colors [private] |
Definition at line 175 of file EcalLaserAnalyzer.h.
int EcalLaserAnalyzer::dccID [private] |
Definition at line 150 of file EcalLaserAnalyzer.h.
Referenced by analyze(), beginJob(), endJob(), setGeomEB(), and setGeomEE().
TMom* EcalLaserAnalyzer::Delta01 [private] |
Definition at line 106 of file EcalLaserAnalyzer.h.
Referenced by analyze(), EcalLaserAnalyzer(), and endJob().
TMom* EcalLaserAnalyzer::Delta12 [private] |
Definition at line 107 of file EcalLaserAnalyzer.h.
Referenced by analyze(), EcalLaserAnalyzer(), and endJob().
std::string EcalLaserAnalyzer::digiCollection_ [private] |
Definition at line 113 of file EcalLaserAnalyzer.h.
Referenced by analyze(), and EcalLaserAnalyzer().
std::string EcalLaserAnalyzer::digiPNCollection_ [private] |
Definition at line 114 of file EcalLaserAnalyzer.h.
Referenced by analyze(), and EcalLaserAnalyzer().
std::string EcalLaserAnalyzer::digiProducer_ [private] |
Definition at line 115 of file EcalLaserAnalyzer.h.
Referenced by analyze(), and EcalLaserAnalyzer().
bool EcalLaserAnalyzer::doesABTreeExist [private] |
Definition at line 109 of file EcalLaserAnalyzer.h.
Referenced by analyze(), beginJob(), and endJob().
int EcalLaserAnalyzer::eta [private] |
Definition at line 183 of file EcalLaserAnalyzer.h.
Referenced by analyze(), beginJob(), setGeomEB(), and setGeomEE().
int EcalLaserAnalyzer::event [private] |
Definition at line 184 of file EcalLaserAnalyzer.h.
Referenced by beginJob(), and endJob().
std::string EcalLaserAnalyzer::eventHeaderCollection_ [private] |
Definition at line 116 of file EcalLaserAnalyzer.h.
Referenced by analyze(), and EcalLaserAnalyzer().
std::string EcalLaserAnalyzer::eventHeaderProducer_ [private] |
Definition at line 117 of file EcalLaserAnalyzer.h.
Referenced by analyze(), and EcalLaserAnalyzer().
int EcalLaserAnalyzer::eventref [private] |
Definition at line 197 of file EcalLaserAnalyzer.h.
Referenced by endJob().
int EcalLaserAnalyzer::fedID [private] |
Definition at line 149 of file EcalLaserAnalyzer.h.
Referenced by analyze().
unsigned int EcalLaserAnalyzer::firstChanMod[NMODEE] [private] |
Definition at line 227 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().
int EcalLaserAnalyzer::flag [private] |
Definition at line 215 of file EcalLaserAnalyzer.h.
Referenced by endJob().
int EcalLaserAnalyzer::flagAB [private] |
Definition at line 215 of file EcalLaserAnalyzer.h.
Referenced by endJob().
int EcalLaserAnalyzer::iChannelID[NCRYSEB] [private] |
Definition at line 226 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().
int EcalLaserAnalyzer::idccID[NCRYSEB] [private] |
Definition at line 226 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().
int EcalLaserAnalyzer::iEta[NCRYSEB] [private] |
Definition at line 224 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().
int EcalLaserAnalyzer::iEvent [private] |
Definition at line 68 of file EcalLaserAnalyzer.h.
Referenced by analyze().
unsigned int EcalLaserAnalyzer::iModule[NCRYSEB] [private] |
Definition at line 225 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().
int EcalLaserAnalyzer::iPhi[NCRYSEB] [private] |
Definition at line 224 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().
unsigned int EcalLaserAnalyzer::isFirstChanModFilled[NMODEE] [private] |
Definition at line 228 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer(), setGeomEB(), and setGeomEE().
bool EcalLaserAnalyzer::isGainOK [private] |
Definition at line 240 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer(), and endJob().
int EcalLaserAnalyzer::iside[NCRYSEB] [private] |
Definition at line 226 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().
int EcalLaserAnalyzer::IsThereDataADC[NCRYSEB][nColor] [private] |
Definition at line 211 of file EcalLaserAnalyzer.h.
Referenced by endJob().
bool EcalLaserAnalyzer::isTimingOK [private] |
Definition at line 241 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer(), and endJob().
int EcalLaserAnalyzer::iTowerID[NCRYSEB] [private] |
Definition at line 226 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().
int EcalLaserAnalyzer::iZ [private] |
Definition at line 153 of file EcalLaserAnalyzer.h.
Referenced by analyze(), and EcalLaserAnalyzer().
int EcalLaserAnalyzer::laserEvents [private] |
Definition at line 156 of file EcalLaserAnalyzer.h.
Referenced by analyze(), beginJob(), and endJob().
int EcalLaserAnalyzer::lightside [private] |
Definition at line 152 of file EcalLaserAnalyzer.h.
Referenced by analyze().
TMem* EcalLaserAnalyzer::Mem [private] |
Definition at line 105 of file EcalLaserAnalyzer.h.
Referenced by analyze(), and EcalLaserAnalyzer().
int EcalLaserAnalyzer::moduleID [private] |
Definition at line 215 of file EcalLaserAnalyzer.h.
Referenced by endJob().
std::vector<int> EcalLaserAnalyzer::modules [private] |
Definition at line 177 of file EcalLaserAnalyzer.h.
Referenced by analyze(), EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().
unsigned int EcalLaserAnalyzer::nCrys [private] |
Definition at line 133 of file EcalLaserAnalyzer.h.
Referenced by analyze(), beginJob(), EcalLaserAnalyzer(), and endJob().
unsigned int EcalLaserAnalyzer::nevtAB[NCRYSEB] [private] |
Definition at line 129 of file EcalLaserAnalyzer.h.
Referenced by analyze(), and beginJob().
int EcalLaserAnalyzer::nEvtBadGain[NCRYSEB] [private] |
Definition at line 232 of file EcalLaserAnalyzer.h.
int EcalLaserAnalyzer::nEvtBadTiming[NCRYSEB] [private] |
Definition at line 233 of file EcalLaserAnalyzer.h.
int EcalLaserAnalyzer::nEvtTot[NCRYSEB] [private] |
Definition at line 234 of file EcalLaserAnalyzer.h.
unsigned int EcalLaserAnalyzer::nMod [private] |
Definition at line 137 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer(), and endJob().
unsigned int EcalLaserAnalyzer::nPNPerMod [private] |
Definition at line 134 of file EcalLaserAnalyzer.h.
Referenced by endJob().
unsigned int EcalLaserAnalyzer::nRefChan [private] |
Definition at line 135 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().
unsigned int EcalLaserAnalyzer::nRefTrees [private] |
Definition at line 136 of file EcalLaserAnalyzer.h.
unsigned int EcalLaserAnalyzer::nSides [private] |
Definition at line 138 of file EcalLaserAnalyzer.h.
int EcalLaserAnalyzer::phi [private] |
Definition at line 183 of file EcalLaserAnalyzer.h.
Referenced by analyze(), beginJob(), setGeomEB(), and setGeomEE().
double EcalLaserAnalyzer::pn[50] [private] |
Definition at line 189 of file EcalLaserAnalyzer.h.
Referenced by analyze().
double EcalLaserAnalyzer::PN[6] [private] |
Definition at line 218 of file EcalLaserAnalyzer.h.
Referenced by endJob().
double EcalLaserAnalyzer::pn0 [private] |
Definition at line 188 of file EcalLaserAnalyzer.h.
Referenced by analyze(), beginJob(), and endJob().
double EcalLaserAnalyzer::pn1 [private] |
Definition at line 188 of file EcalLaserAnalyzer.h.
Referenced by analyze(), beginJob(), and endJob().
double EcalLaserAnalyzer::pnAmpl [private] |
Definition at line 195 of file EcalLaserAnalyzer.h.
Referenced by analyze().
TPN* EcalLaserAnalyzer::PNAnal[NMODEE][NPNPERMOD][nColor] [private] |
Definition at line 205 of file EcalLaserAnalyzer.h.
Referenced by endJob().
std::string EcalLaserAnalyzer::pncorfile_ [private] |
Definition at line 112 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer().
TPNCor* EcalLaserAnalyzer::pnCorrector [private] |
Definition at line 160 of file EcalLaserAnalyzer.h.
Referenced by analyze(), and EcalLaserAnalyzer().
TPN* EcalLaserAnalyzer::PNFirstAnal[NMODEE][NPNPERMOD][nColor] [private] |
Definition at line 204 of file EcalLaserAnalyzer.h.
Referenced by endJob().
int EcalLaserAnalyzer::pnG[50] [private] |
Definition at line 190 of file EcalLaserAnalyzer.h.
Referenced by analyze().
int EcalLaserAnalyzer::pnID [private] |
Definition at line 215 of file EcalLaserAnalyzer.h.
Referenced by endJob().
double* EcalLaserAnalyzer::pnNoPed [private] |
Definition at line 201 of file EcalLaserAnalyzer.h.
Referenced by analyze().
double EcalLaserAnalyzer::PNoPN[6] [private] |
Definition at line 218 of file EcalLaserAnalyzer.h.
Referenced by endJob().
double EcalLaserAnalyzer::PNoPNA[6] [private] |
Definition at line 218 of file EcalLaserAnalyzer.h.
Referenced by endJob().
double EcalLaserAnalyzer::PNoPNB[6] [private] |
Definition at line 218 of file EcalLaserAnalyzer.h.
Referenced by endJob().
TPNPulse* EcalLaserAnalyzer::PNPulse [private] |
Definition at line 104 of file EcalLaserAnalyzer.h.
Referenced by analyze(), and EcalLaserAnalyzer().
TTree* EcalLaserAnalyzer::RefAPDtrees[NREFCHAN][NMODEE] [private] |
Definition at line 169 of file EcalLaserAnalyzer.h.
Referenced by endJob().
std::string EcalLaserAnalyzer::resdir_ [private] |
Definition at line 111 of file EcalLaserAnalyzer.h.
Referenced by beginJob(), and EcalLaserAnalyzer().
TFile* EcalLaserAnalyzer::resFile [private] |
Definition at line 171 of file EcalLaserAnalyzer.h.
Referenced by endJob().
std::string EcalLaserAnalyzer::resfile [private] |
Definition at line 125 of file EcalLaserAnalyzer.h.
Referenced by beginJob(), and endJob().
TTree* EcalLaserAnalyzer::respntrees[nColor] [private] |
Definition at line 173 of file EcalLaserAnalyzer.h.
Referenced by endJob().
TTree* EcalLaserAnalyzer::restrees[nColor] [private] |
Definition at line 172 of file EcalLaserAnalyzer.h.
Referenced by endJob().
int EcalLaserAnalyzer::runNum [private] |
Definition at line 143 of file EcalLaserAnalyzer.h.
Referenced by analyze().
int EcalLaserAnalyzer::runType [private] |
Definition at line 142 of file EcalLaserAnalyzer.h.
Referenced by analyze().
TShapeAnalysis* EcalLaserAnalyzer::shapana [private] |
Definition at line 128 of file EcalLaserAnalyzer.h.
Referenced by analyze(), beginJob(), and endJob().
int EcalLaserAnalyzer::side [private] |
Definition at line 151 of file EcalLaserAnalyzer.h.
Referenced by analyze(), beginJob(), endJob(), setGeomEB(), and setGeomEE().
double EcalLaserAnalyzer::Time[6] [private] |
Definition at line 218 of file EcalLaserAnalyzer.h.
Referenced by endJob().
int EcalLaserAnalyzer::towerID [private] |
Definition at line 147 of file EcalLaserAnalyzer.h.
Referenced by analyze(), beginJob(), endJob(), setGeomEB(), and setGeomEE().
bool EcalLaserAnalyzer::wasABCalcOK[NCRYSEB] [private] |
Definition at line 238 of file EcalLaserAnalyzer.h.
bool EcalLaserAnalyzer::wasGainOK[NCRYSEB] [private] |
Definition at line 236 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer(), and endJob().
bool EcalLaserAnalyzer::wasTimingOK[NCRYSEB] [private] |
Definition at line 237 of file EcalLaserAnalyzer.h.
Referenced by EcalLaserAnalyzer(), and endJob().