CMS 3D CMS Logo

Public Types | Public Member Functions | Private Attributes

EcalLaserAnalyzer Class Reference

#include <EcalLaserAnalyzer.h>

Inheritance diagram for EcalLaserAnalyzer:
edm::EDAnalyzer

List of all members.

Public Types

enum  VarCol { iBlue, iRed, nColor }

Public Member Functions

virtual void analyze (const edm::Event &e, const edm::EventSetup &c)
virtual void beginJob ()
 EcalLaserAnalyzer (const edm::ParameterSet &iConfig)
virtual void endJob ()
void setGeomEB (int etaG, int phiG, int module, int tower, int strip, int xtal, int apdRefTT, int channel, int lmr)
void setGeomEE (int etaG, int phiG, int iX, int iY, int iZ, int module, int tower, int ch, int apdRefTT, int channel, int lmr)
 ~EcalLaserAnalyzer ()

Private Attributes

double _alpha
double _beta
double _chi2cut
int _debug
bool _docorpn
std::string _ecalPart
int _fedid
unsigned int _firstsample
unsigned int _firstsamplePN
bool _fitab
unsigned int _lastsample
unsigned int _lastsamplePN
unsigned int _nevtmax
unsigned int _niter
double _noise
unsigned int _nsamples
unsigned int _nsamplesPN
unsigned int _presample
double _presamplecut
unsigned int _presamplePN
double _qualpercent
double _ratiomaxcutlow
double _ratiomincuthigh
double _ratiomincutlow
bool _saveallevents
unsigned int _timingcuthigh
unsigned int _timingcutlow
unsigned int _timingqualhigh
unsigned int _timingquallow
double adc [10]
TFile * ADCFile
std::string ADCfile
int adcG [10]
double * adcNoPed
TTree * ADCtrees [NCRYSEB]
std::string alphafile
std::string alphainitfile
double APD [6]
double apdAmpl
double apdAmplA
double apdAmplB
TAPDAPDAnal [NCRYSEB][nColor]
TFile * APDFile
std::string APDfile
TAPDAPDFirstAnal [NCRYSEB][nColor]
double APDoAPDA [6]
double APDoAPDB [6]
double APDoPN [6]
double APDoPNA [6]
double APDoPNB [6]
TAPDPulseAPDPulse
std::map< int, unsigned int > apdRefMap [2]
double apdTime
TTree * APDtrees [NCRYSEB]
int channelID
int channelIteratorEE
std::map< unsigned int,
unsigned int > 
channelMapEE
int color
int colorref
std::vector< int > colors
int dccID
TMomDelta01
TMomDelta12
std::string digiCollection_
std::string digiPNCollection_
std::string digiProducer_
bool doesABTreeExist
int eta
int event
std::string eventHeaderCollection_
std::string eventHeaderProducer_
int eventref
int fedID
unsigned int firstChanMod [NMODEE]
int flag
int flagAB
int iChannelID [NCRYSEB]
int idccID [NCRYSEB]
int iEta [NCRYSEB]
int iEvent
unsigned int iModule [NCRYSEB]
int iPhi [NCRYSEB]
unsigned int isFirstChanModFilled [NMODEE]
bool isGainOK
int iside [NCRYSEB]
int IsThereDataADC [NCRYSEB][nColor]
bool isTimingOK
int iTowerID [NCRYSEB]
int iZ
int laserEvents
int lightside
TMemMem
int moduleID
std::vector< int > modules
unsigned int nCrys
unsigned int nevtAB [NCRYSEB]
int nEvtBadGain [NCRYSEB]
int nEvtBadTiming [NCRYSEB]
int nEvtTot [NCRYSEB]
unsigned int nMod
unsigned int nPNPerMod
unsigned int nRefChan
unsigned int nRefTrees
unsigned int nSides
int phi
double pn [50]
double PN [6]
double pn0
double pn1
double pnAmpl
TPNPNAnal [NMODEE][NPNPERMOD][nColor]
std::string pncorfile_
TPNCorpnCorrector
TPNPNFirstAnal [NMODEE][NPNPERMOD][nColor]
int pnG [50]
int pnID
double * pnNoPed
double PNoPN [6]
double PNoPNA [6]
double PNoPNB [6]
TPNPulsePNPulse
TTree * RefAPDtrees [NREFCHAN][NMODEE]
std::string resdir_
TFile * resFile
std::string resfile
TTree * respntrees [nColor]
TTree * restrees [nColor]
int runNum
int runType
TShapeAnalysisshapana
int side
double Time [6]
int towerID
bool wasABCalcOK [NCRYSEB]
bool wasGainOK [NCRYSEB]
bool wasTimingOK [NCRYSEB]

Detailed Description

Definition at line 47 of file EcalLaserAnalyzer.h.


Member Enumeration Documentation

Enumerator:
iBlue 
iRed 
nColor 

Definition at line 64 of file EcalLaserAnalyzer.h.

{ iBlue, iRed, nColor }; 

Constructor & Destructor Documentation

EcalLaserAnalyzer::EcalLaserAnalyzer ( const edm::ParameterSet iConfig) [explicit]

Definition at line 58 of file EcalLaserAnalyzer.cc.

References _ecalPart, _fedid, _firstsample, _lastsample, _nsamples, _nsamplesPN, _presample, _presamplePN, _ratiomaxcutlow, _ratiomincuthigh, _ratiomincutlow, _timingcuthigh, _timingcutlow, _timingqualhigh, _timingquallow, APDPulse, Delta01, Delta12, digiCollection_, digiPNCollection_, digiProducer_, eventHeaderCollection_, eventHeaderProducer_, firstChanMod, edm::ParameterSet::getParameter(), edm::ParameterSet::getUntrackedParameter(), iChannelID, idccID, iEta, iModule, iPhi, isFirstChanModFilled, isGainOK, iside, isTimingOK, iTowerID, iZ, j, ME::lmmodFromDcc(), Mem, modules, nCrys, NCRYSEB, NCRYSEE, nMod, nRefChan, NREFCHAN, pncorfile_, pnCorrector, PNPulse, resdir_, wasGainOK, and wasTimingOK.

  :
iEvent(0),

// Framework parameters with default values

_nsamples(        iConfig.getUntrackedParameter< unsigned int >( "nSamples",           10 ) ),
_presample(       iConfig.getUntrackedParameter< unsigned int >( "nPresamples",         2 ) ),
_firstsample(     iConfig.getUntrackedParameter< unsigned int >( "firstSample",         1 ) ),
_lastsample(      iConfig.getUntrackedParameter< unsigned int >( "lastSample",          2 ) ),
_nsamplesPN(      iConfig.getUntrackedParameter< unsigned int >( "nSamplesPN",         50 ) ), 
_presamplePN(     iConfig.getUntrackedParameter< unsigned int >( "nPresamplesPN",       6 ) ),
_firstsamplePN(   iConfig.getUntrackedParameter< unsigned int >( "firstSamplePN",       7 ) ),
_lastsamplePN(    iConfig.getUntrackedParameter< unsigned int >( "lastSamplePN",        8 ) ),
_timingcutlow(    iConfig.getUntrackedParameter< unsigned int >( "timingCutLow",        2 ) ),
_timingcuthigh(   iConfig.getUntrackedParameter< unsigned int >( "timingCutHigh",       9 ) ),
_timingquallow(   iConfig.getUntrackedParameter< unsigned int >( "timingQualLow",       3 ) ),
_timingqualhigh(  iConfig.getUntrackedParameter< unsigned int >( "timingQualHigh",      8 ) ),
_ratiomincutlow(  iConfig.getUntrackedParameter< double       >( "ratioMinCutLow",    0.4 ) ),
_ratiomincuthigh( iConfig.getUntrackedParameter< double       >( "ratioMinCutHigh",  0.95 ) ),
_ratiomaxcutlow(  iConfig.getUntrackedParameter< double       >( "ratioMaxCutLow",    0.8 ) ),
_presamplecut(    iConfig.getUntrackedParameter< double       >( "presampleCut",      5.0 ) ),
_niter(           iConfig.getUntrackedParameter< unsigned int >( "nIter",               3 ) ),
_fitab(           iConfig.getUntrackedParameter< bool         >( "fitAB",           false ) ),
_alpha(           iConfig.getUntrackedParameter< double       >( "alpha",       1.5076494 ) ),
_beta(            iConfig.getUntrackedParameter< double       >( "beta",        1.5136036 ) ),
_nevtmax(         iConfig.getUntrackedParameter< unsigned int >( "nEvtMax",           200 ) ),
_noise(           iConfig.getUntrackedParameter< double       >( "noise",             2.0 ) ),
_chi2cut(         iConfig.getUntrackedParameter< double       >( "chi2cut",          10.0 ) ), 
_ecalPart(        iConfig.getUntrackedParameter< std::string  >( "ecalPart",         "EB" ) ),
_docorpn(         iConfig.getUntrackedParameter< bool         >( "doCorPN",         false ) ),
_fedid(           iConfig.getUntrackedParameter< int          >( "fedID",            -999 ) ),
_saveallevents(   iConfig.getUntrackedParameter< bool         >( "saveAllEvents",   false ) ),
_qualpercent(     iConfig.getUntrackedParameter< double       >( "qualPercent",       0.2 ) ),
_debug(           iConfig.getUntrackedParameter< int          >( "debug",              0  ) ),
nCrys(                                                                               NCRYSEB),
nPNPerMod(                                                                         NPNPERMOD),
nMod(                                                                                 NMODEE),
nSides(                                                                               NSIDES),
runType(-1), runNum(0), fedID(-1), dccID(-1), side(2), lightside(2), iZ(1),
phi(-1), eta(-1), event(0), color(-1),pn0(0), pn1(0), apdAmpl(0), apdAmplA(0), 
apdAmplB(0),apdTime(0),pnAmpl(0),
pnID(-1), moduleID(-1), channelIteratorEE(0)


  //========================================================================


{

  // Initialization from cfg file

  resdir_                 = iConfig.getUntrackedParameter<std::string>("resDir");
  pncorfile_              = iConfig.getUntrackedParameter<std::string>("pnCorFile");

  digiCollection_         = iConfig.getParameter<std::string>("digiCollection");
  digiPNCollection_       = iConfig.getParameter<std::string>("digiPNCollection");
  digiProducer_           = iConfig.getParameter<std::string>("digiProducer");

  eventHeaderCollection_  = iConfig.getParameter<std::string>("eventHeaderCollection");
  eventHeaderProducer_    = iConfig.getParameter<std::string>("eventHeaderProducer");


  // Geometrical constants initialization 

  if (_ecalPart == "EB") {
    nCrys    = NCRYSEB;
  } else {
    nCrys    = NCRYSEE;
  }
  iZ         =  1;
  if(_fedid <= 609 ) 
    iZ       = -1;
  modules    = ME::lmmodFromDcc(_fedid);
  nMod       = modules.size(); 
  nRefChan   = NREFCHAN;
  
  for(unsigned int j=0;j<nCrys;j++){
    iEta[j]=-1;
    iPhi[j]=-1;
    iModule[j]=10;
    iTowerID[j]=-1;
    iChannelID[j]=-1;
    idccID[j]=-1;
    iside[j]=-1;
    wasTimingOK[j]=true;
    wasGainOK[j]=true;
  }
  
  for(unsigned int j=0;j<nMod;j++){
    int ii= modules[j];
    firstChanMod[ii-1]=0;
    isFirstChanModFilled[ii-1]=0;
  }
  

  // Quality check flags
  
  isGainOK=true;
  isTimingOK=true;

  // PN linearity corrector

  pnCorrector = new TPNCor(pncorfile_.c_str());


  // Objects dealing with pulses

  APDPulse = new TAPDPulse(_nsamples, _presample, _firstsample, _lastsample, 
                           _timingcutlow, _timingcuthigh, _timingquallow, _timingqualhigh,
                           _ratiomincutlow,_ratiomincuthigh, _ratiomaxcutlow);
  PNPulse = new TPNPulse(_nsamplesPN, _presamplePN);

  // Object dealing with MEM numbering

  Mem = new TMem(_fedid);

  // Objects needed for npresample calculation

  Delta01=new TMom();
  Delta12=new TMom();

}
EcalLaserAnalyzer::~EcalLaserAnalyzer ( )

Definition at line 184 of file EcalLaserAnalyzer.cc.

                                     {
  //========================================================================


  // do anything here that needs to be done at destruction time
  // (e.g. close files, deallocate resources etc.)

}

Member Function Documentation

void EcalLaserAnalyzer::analyze ( const edm::Event e,
const edm::EventSetup c 
) [virtual]

Implements edm::EDAnalyzer.

Definition at line 310 of file EcalLaserAnalyzer.cc.

References _debug, _docorpn, _ecalPart, _fedid, _firstsamplePN, _fitab, _lastsamplePN, _nevtmax, _nsamplesPN, adc, adcG, ADCtrees, TMom::addEntry(), APDPulse, MEEBGeom::apdRefTower(), MEEEGeom::apdRefTower(), edm::DataFrameContainer::begin(), edm::SortedCollection< T, SORT >::begin(), dtNoiseDBValidation_cfg::cerr, channelID, EcalElectronicsId::channelId(), channelIteratorEE, channelMapEE, color, colors, corr, gather_cfg::cout, dccID, MEEEGeom::dee(), Delta01, Delta12, digiCollection_, digiPNCollection_, digiProducer_, doesABTreeExist, MEEBGeom::electronic_channel(), edm::DataFrameContainer::end(), edm::SortedCollection< T, SORT >::end(), eta, eventHeaderCollection_, eventHeaderProducer_, exception, fedID, spr::find(), edm::EventSetup::get(), TPNPulse::getAdcWithoutPedestal(), edm::Event::getByLabel(), TAPDPulse::getDelta(), EcalElectronicsMapping::getElectronicsId(), TPNPulse::getMaxSample(), TPNCor::getPNCorrectionFactor(), ecalpyutils::hashedIndex(), i, EcalPnDiodeDetId::iDCCId(), iEvent, init, EcalPnDiodeDetId::iPnId(), TMem::isMemRelevant(), TAPDPulse::isPulseOK(), TAPDPulse::isTimingQualOK(), iZ, EcalDCCHeaderBlock::LASER_DELAY_SCAN, EcalDCCHeaderBlock::LASER_GAP, EcalDCCHeaderBlock::LASER_POWER_SCAN, EcalDCCHeaderBlock::LASER_STD, laserEvents, lightside, MEEEGeom::lmmod(), MEEBGeom::lmmod(), MEEEGeom::lmr(), MEEBGeom::lmr(), MEEBGeom::localCoord(), siStripFEDMonitor_P5_cff::Max, TMem::Mem(), Mem, modules, nCrys, nevtAB, nEvtBadGain, nEvtBadTiming, nEvtTot, phi, pn, pn0, pn1, pnAmpl, pnCorrector, pnG, pnNoPed, PNPulse, edm::ESHandle< T >::product(), edm::Handle< T >::product(), runNum, runType, setGeomEB(), setGeomEE(), TAPDPulse::setPulse(), TPNPulse::setPulse(), shapana, side, findQualityFiles::size, strip(), EcalElectronicsId::stripId(), towerID, EcalElectronicsId::towerId(), EcalDCCHeaderBlock::EcalDCCEventSettings::wavelength, and EcalElectronicsId::xtalId().

                                                                            {
//========================================================================

  ++iEvent;
  
  // retrieving DCC header

  edm::Handle<EcalRawDataCollection> pDCCHeader;
  const  EcalRawDataCollection* DCCHeader=0;
  try {
    e.getByLabel(eventHeaderProducer_,eventHeaderCollection_, pDCCHeader);
    DCCHeader=pDCCHeader.product();
  }catch ( std::exception& ex ) {
    std::cerr << "Error! can't get the product retrieving DCC header" << 
      eventHeaderCollection_.c_str() <<" "<< eventHeaderProducer_.c_str() << std::endl;
  }
 
  //retrieving crystal data from Event

  edm::Handle<EBDigiCollection>  pEBDigi;
  const  EBDigiCollection* EBDigi=0;
  edm::Handle<EEDigiCollection>  pEEDigi;
  const  EEDigiCollection* EEDigi=0;


  if (_ecalPart == "EB") {
    try {
      e.getByLabel(digiProducer_,digiCollection_, pEBDigi); 
      EBDigi=pEBDigi.product(); 
    }catch ( std::exception& ex ) {
      std::cerr << "Error! can't get the product retrieving EB crystal data " << 
        digiCollection_.c_str() << std::endl;
    } 
  } else if (_ecalPart == "EE") {
    try {
      e.getByLabel(digiProducer_,digiCollection_, pEEDigi); 
      EEDigi=pEEDigi.product(); 
    }catch ( std::exception& ex ) {
      std::cerr << "Error! can't get the product retrieving EE crystal data " << 
        digiCollection_.c_str() << std::endl;
    } 
  } else {
    std::cout <<" Wrong ecalPart in cfg file " << std::endl;
    return;
  }
  
  // retrieving crystal PN diodes from Event
  
  edm::Handle<EcalPnDiodeDigiCollection>  pPNDigi;
  const  EcalPnDiodeDigiCollection* PNDigi=0;
  try {
    e.getByLabel(digiProducer_, pPNDigi);
    PNDigi=pPNDigi.product(); 
  }catch ( std::exception& ex ) {
    std::cerr << "Error! can't get the product " << digiPNCollection_.c_str() << std::endl;
  }

  // retrieving electronics mapping

  edm::ESHandle< EcalElectronicsMapping > ecalmapping;
  const EcalElectronicsMapping* TheMapping=0; 
  try{
    c.get< EcalMappingRcd >().get(ecalmapping);
    TheMapping = ecalmapping.product();
  }catch ( std::exception& ex ) {
    std::cerr << "Error! can't get the product EcalMappingRcd"<< std::endl;
  }


  // ============================
  // Decode DCCHeader Information 
  // ============================
  
  for ( EcalRawDataCollection::const_iterator headerItr= DCCHeader->begin();
        headerItr != DCCHeader->end(); ++headerItr ) {
    
    // Get run type and run number 

    int fed = headerItr->fedId();  
    if(fed!=_fedid && _fedid!=-999) continue; 
    
    runType=headerItr->getRunType();
    runNum=headerItr->getRunNumber();
    event=headerItr->getLV1();

    dccID=headerItr->getDccInTCCCommand();
    fedID=headerItr->fedId();  
    lightside=headerItr->getRtHalf();

    // Check fed corresponds to the DCC in TCC
    
    if( 600+dccID != fedID ) continue;

    // Cut on runType

    if( runType!=EcalDCCHeaderBlock::LASER_STD 
       && runType!=EcalDCCHeaderBlock::LASER_GAP 
       && runType!=EcalDCCHeaderBlock::LASER_POWER_SCAN
       && runType!=EcalDCCHeaderBlock::LASER_DELAY_SCAN ) return; 
    
    // Retrieve laser color and event number
    
    EcalDCCHeaderBlock::EcalDCCEventSettings settings = headerItr->getEventSettings();
    color = settings.wavelength;
    if( color<0 ) return;
    
    std::vector<int>::iterator iter = find( colors.begin(), colors.end(), color );
    if( iter==colors.end() ){
      colors.push_back( color );
      std::cout <<" new color found "<< color<<" "<< colors.size()<< std::endl;
    }
  }

  // Cut on fedID
 
  if(fedID!=_fedid && _fedid!=-999) return; 
    
  // Count laser events

  laserEvents++;


  // ======================
  // Decode PN Information
  // ======================
  
  TPNFit * pnfit = new TPNFit();
  pnfit -> init(_nsamplesPN,_firstsamplePN,  _lastsamplePN);
  
  double chi2pn=0;
  unsigned int samplemax=0;
  int  pnGain=0;
  
  std::map <int, std::vector<double> > allPNAmpl;
  std::map <int, std::vector<double> > allPNGain;

  
  // Loop on PNs digis
  
  for ( EcalPnDiodeDigiCollection::const_iterator pnItr = PNDigi->begin();
        pnItr != PNDigi->end(); ++pnItr ) { 
    
    EcalPnDiodeDetId pnDetId = EcalPnDiodeDetId((*pnItr).id());
    
    if (_debug==1) std::cout <<"-- debug -- Inside PNDigi - pnID=" <<
                     pnDetId.iPnId()<<", dccID="<< pnDetId.iDCCId()<< std::endl;

    // Skip MEM DCC without relevant data
  
    bool isMemRelevant=Mem->isMemRelevant(pnDetId.iDCCId());
    if(!isMemRelevant) continue;

    // Loop on PN samples

    for ( int samId=0; samId < (*pnItr).size() ; samId++ ) {   
      pn[samId]=(*pnItr).sample(samId).adc();  
      pnG[samId]=(*pnItr).sample(samId).gainId(); 
      if (samId==0) pnGain=pnG[samId];
      if (samId>0) pnGain=int(TMath::Max(pnG[samId],pnGain));     
    }
    
    if( pnGain!=1 ) std::cout << "PN gain different from 1"<< std::endl;
    
    // Calculate amplitude from pulse
    
    PNPulse->setPulse(pn);
    pnNoPed=PNPulse->getAdcWithoutPedestal();
    samplemax=PNPulse->getMaxSample();
    chi2pn = pnfit -> doFit(samplemax,&pnNoPed[0]); 
    if(chi2pn == 101 || chi2pn == 102 || chi2pn == 103) pnAmpl=0.;
    else pnAmpl= pnfit -> getAmpl();
    
    // Apply linearity correction

    double corr=1.0;
    if( _docorpn ) corr=pnCorrector->getPNCorrectionFactor(pnAmpl, pnGain);
    pnAmpl*=corr;

    // Fill PN ampl vector

    allPNAmpl[pnDetId.iDCCId()].push_back(pnAmpl);
      
    if (_debug==1) std::cout <<"-- debug -- Inside PNDigi - PNampl=" << 
                     pnAmpl<<", PNgain="<< pnGain<<std::endl;  
  }
  
  // ===========================
  // Decode EBDigis Information
  // ===========================
  
  int  adcGain=0;

  if (EBDigi){
    
    // Loop on crystals
    //=================== 
    
    for ( EBDigiCollection::const_iterator digiItr= EBDigi->begin();
          digiItr != EBDigi->end(); ++digiItr ) { 
      
      // Retrieve geometry
      //=================== 
      
      EBDetId id_crystal(digiItr->id()) ;
      EBDataFrame df( *digiItr );
      EcalElectronicsId elecid_crystal = TheMapping->getElectronicsId(id_crystal);
      
      int etaG = id_crystal.ieta() ;  // global
      int phiG = id_crystal.iphi() ;  // global
      
      std::pair<int, int> LocalCoord=MEEBGeom::localCoord( etaG , phiG );
      
      int etaL=LocalCoord.first ; // local
      int phiL=LocalCoord.second ;// local
      
      int strip=elecid_crystal.stripId();
      int xtal=elecid_crystal.xtalId();
      
      int module= MEEBGeom::lmmod(etaG, phiG);
      int tower=elecid_crystal.towerId();
           
      int apdRefTT=MEEBGeom::apdRefTower(module);      
           
      std::pair<int,int> pnpair=MEEBGeom::pn(module);
      unsigned int MyPn0=pnpair.first;
      unsigned int MyPn1=pnpair.second;
      
      int lmr=MEEBGeom::lmr( etaG,phiG ); 
      unsigned int channel=MEEBGeom::electronic_channel( etaL, phiL );
      assert( channel < nCrys );

      setGeomEB(etaG, phiG, module, tower, strip, xtal, apdRefTT, channel, lmr);      
      
      if (_debug==1) std::cout << "-- debug -- Inside EBDigi - towerID:"<< towerID<<
                       " channelID:" <<channelID<<" module:"<< module<<
                       " modules:"<<modules.size()<< std::endl;
      
      // APD Pulse
      //=========== 

      // Loop on adc samples 
     
      for (unsigned int i=0; i< (*digiItr).size() ; ++i ) {   

        EcalMGPASample samp_crystal(df.sample(i));
        adc[i]=samp_crystal.adc() ;    
        adcG[i]=samp_crystal.gainId();   
        adc[i]*=adcG[i];
        if (i==0) adcGain=adcG[i];
        if (i>0) adcGain=TMath::Max(adcG[i],adcGain);  
      }

      APDPulse->setPulse(adc);
      
      // Quality checks
      //================
      
      if(adcGain!=1) nEvtBadGain[channel]++;   
      if(!APDPulse->isTimingQualOK()) nEvtBadTiming[channel]++;
      nEvtTot[channel]++;

      // Associate PN ampl
      //===================
 
      int mem0=Mem->Mem(lmr,0);
      int mem1=Mem->Mem(lmr,1);

      if(allPNAmpl[mem0].size()>MyPn0) pn0=allPNAmpl[mem0][MyPn0];
      else pn0=0;
      if(allPNAmpl[mem1].size()>MyPn1) pn1=allPNAmpl[mem1][MyPn1];
      else pn1=0;


      // Fill if Pulse is fine
      //=======================
      
      if( APDPulse->isPulseOK() && lightside==side){
        
        ADCtrees[channel]->Fill(); 
        
        Delta01->addEntry(APDPulse->getDelta(0,1));
        Delta12->addEntry(APDPulse->getDelta(1,2));
        
        if( nevtAB[channel] < _nevtmax && _fitab ){
          if(doesABTreeExist)  shapana -> putAllVals(channel, adc, eta, phi);   
          else shapana -> putAllVals(channel, adc, eta, phi, dccID, side, towerID, channelID);
          nevtAB[channel]++ ;
        }
      }
    }
    
  } else if (EEDigi) {

    // Loop on crystals
    //===================
    
    for ( EEDigiCollection::const_iterator digiItr= EEDigi->begin(); 
          digiItr != EEDigi->end(); ++digiItr ) {  
      
      // Retrieve geometry
      //=================== 
      
      EEDetId id_crystal(digiItr->id()) ;
      EEDataFrame df( *digiItr );
      EcalElectronicsId elecid_crystal = TheMapping->getElectronicsId(id_crystal);
       
      int etaG = id_crystal.iy() ; 
      int phiG = id_crystal.ix() ;

      int iX = (phiG-1)/5+1;
      int iY = (etaG-1)/5+1;

      int tower=elecid_crystal.towerId();
      int ch=elecid_crystal.channelId()-1; 

      int module=MEEEGeom::lmmod( iX, iY );
      if( module>=18 && side==1 ) module+=2;
      int lmr=MEEEGeom::lmr( iX, iY ,iZ); 
      int dee=MEEEGeom::dee(lmr);
      int apdRefTT=MEEEGeom::apdRefTower(lmr, module);  
      
      std::pair<int,int> pnpair=MEEEGeom::pn( dee, module ) ; 
      unsigned int MyPn0=pnpair.first;
      unsigned int MyPn1=pnpair.second;

      int hashedIndex=100000*eta+phi;
      if( channelMapEE.count(hashedIndex) == 0 ){
        channelMapEE[hashedIndex]=channelIteratorEE;
        channelIteratorEE++;
      }
      unsigned int channel=channelMapEE[hashedIndex];
      assert ( channel < nCrys );

      setGeomEE(etaG, phiG, iX, iY, iZ, module, tower, ch, apdRefTT, channel, lmr);
      
      
      if (_debug==1) std::cout << "-- debug -- Inside EEDigi - towerID:"<< towerID<<
                       " channelID:" <<channelID<<" module:"<< module<<
                       " modules:"<<modules.size()<< std::endl;
      
      // APD Pulse
      //=========== 

      if( (*digiItr).size()>10) std::cout <<"SAMPLES SIZE > 10!" <<  (*digiItr).size()<< std::endl;
 
      // Loop on adc samples  

      for (unsigned int i=0; i< (*digiItr).size() ; ++i ) { 

        EcalMGPASample samp_crystal(df.sample(i));
        adc[i]=samp_crystal.adc() ;    
        adcG[i]=samp_crystal.gainId();   
        adc[i]*=adcG[i];
        
        if (i==0) adcGain=adcG[i];
        if (i>0) adcGain=TMath::Max(adcG[i],adcGain);  
      }
      
      APDPulse->setPulse(adc);
      
      // Quality checks
      //================
      
      if(adcGain!=1) nEvtBadGain[channel]++;   
      if(!APDPulse->isTimingQualOK()) nEvtBadTiming[channel]++;
      nEvtTot[channel]++;

      
      // Associate PN ampl
      //===================

      int mem0=Mem->Mem(lmr,0);
      int mem1=Mem->Mem(lmr,1);
      
      if(allPNAmpl[mem0].size()>MyPn0) pn0=allPNAmpl[mem0][MyPn0];
      else pn0=0;
      if(allPNAmpl[mem1].size()>MyPn1) pn1=allPNAmpl[mem1][MyPn1];
      else pn1=0;

      // Fill if Pulse is fine
      //=======================
      
      if( APDPulse->isPulseOK() && lightside==side){
        ADCtrees[channel]->Fill(); 
        
        Delta01->addEntry(APDPulse->getDelta(0,1));
        Delta12->addEntry(APDPulse->getDelta(1,2));
        
        if( nevtAB[channel] < _nevtmax && _fitab ){
          if(doesABTreeExist)  shapana -> putAllVals(channel, adc, eta, phi);   
          else shapana -> putAllVals(channel, adc, eta, phi, dccID, side, towerID, channelID);  
          nevtAB[channel]++ ;
        }
      }
    }
  }
}
void EcalLaserAnalyzer::beginJob ( void  ) [virtual]

Reimplemented from edm::EDAnalyzer.

Definition at line 196 of file EcalLaserAnalyzer.cc.

References _alpha, _beta, _chi2cut, _firstsample, _fitab, _lastsample, _nevtmax, _noise, _nsamples, _presample, adc, ADCfile, ADCFile, ADCtrees, alphafile, alphainitfile, APDfile, channelID, color, dccID, doesABTreeExist, eta, event, i, laserEvents, mergeVDriftHistosByStation::name, nCrys, nevtAB, NULL, phi, pn0, pn1, resdir_, resfile, shapana, side, run_regression::test, and towerID.

                                 {
  //========================================================================

  
  // Create temporary files and trees to save adc samples
  //======================================================

  ADCfile=resdir_;
  ADCfile+="/APDSamplesLaser.root";

  APDfile=resdir_;
  APDfile+="/APDPNLaserAllEvents.root";

  ADCFile = new TFile(ADCfile.c_str(),"RECREATE");
  
  for (unsigned int i=0;i<nCrys;i++){
    
    std::stringstream name;
    name << "ADCTree" <<i+1;
    ADCtrees[i]= new TTree(name.str().c_str(),name.str().c_str());

    ADCtrees[i]->Branch( "ieta",        &eta,         "eta/I"         );
    ADCtrees[i]->Branch( "iphi",        &phi,         "phi/I"         );
    ADCtrees[i]->Branch( "side",        &side,        "side/I"        );
    ADCtrees[i]->Branch( "dccID",       &dccID,       "dccID/I"       );
    ADCtrees[i]->Branch( "towerID",     &towerID,     "towerID/I"     );
    ADCtrees[i]->Branch( "channelID",   &channelID,   "channelID/I"   );
    ADCtrees[i]->Branch( "event",       &event,       "event/I"       );
    ADCtrees[i]->Branch( "color",       &color,       "color/I"       );
    ADCtrees[i]->Branch( "adc",         &adc ,        "adc[10]/D"     );
    ADCtrees[i]->Branch( "pn0",         &pn0 ,        "pn0/D"         );
    ADCtrees[i]->Branch( "pn1",         &pn1 ,        "pn1/D"         );

     
    ADCtrees[i]->SetBranchAddress( "ieta",        &eta         );  
    ADCtrees[i]->SetBranchAddress( "iphi",        &phi         ); 
    ADCtrees[i]->SetBranchAddress( "side",        &side        ); 
    ADCtrees[i]->SetBranchAddress( "dccID",       &dccID       ); 
    ADCtrees[i]->SetBranchAddress( "towerID",     &towerID     ); 
    ADCtrees[i]->SetBranchAddress( "channelID",   &channelID   ); 
    ADCtrees[i]->SetBranchAddress( "event",       &event       );   
    ADCtrees[i]->SetBranchAddress( "color",       &color       );   
    ADCtrees[i]->SetBranchAddress( "adc",         adc          );
    ADCtrees[i]->SetBranchAddress( "pn0",         &pn0         );
    ADCtrees[i]->SetBranchAddress( "pn1",         &pn1         );    
 
    nevtAB[i]=0 ;
  } 


  // Define output results filenames and shape analyzer object (alpha,beta) 
  //=====================================================================
  
  // 1) AlphaBeta files
  
  doesABTreeExist=true;

  std::stringstream nameabinitfile;
  nameabinitfile << resdir_ <<"/ABInit.root";
  alphainitfile=nameabinitfile.str();
  
  std::stringstream nameabfile;  
  nameabfile << resdir_ <<"/AB.root";
  alphafile=nameabfile.str();
  
  FILE *test;
  if(_fitab)
    test = fopen(alphainitfile.c_str(),"r"); 
  else 
    test = fopen(alphafile.c_str(),"r"); 
  if(test == NULL) {
    doesABTreeExist=false;
    _fitab=true;
  };
  delete test;
  
  TFile *fAB=0; TTree *ABInit=0;
  if(doesABTreeExist){
    fAB=new TFile(nameabinitfile.str().c_str());
  }
  if(doesABTreeExist && fAB){
    ABInit = (TTree*) fAB->Get("ABCol0");
  }
  
  // 2) Shape analyzer
  
  if(doesABTreeExist && fAB && ABInit && ABInit->GetEntries()!=0){
    shapana= new TShapeAnalysis(ABInit, _alpha, _beta, 5.5, 1.0);
    doesABTreeExist=true;
  }else{
    shapana= new TShapeAnalysis(_alpha, _beta, 5.5, 1.0);
    doesABTreeExist=false;
    _fitab=true;  
  }  
  shapana -> set_const(_nsamples,_firstsample,_lastsample,
                       _presample, _nevtmax, _noise, _chi2cut);
  
  if(doesABTreeExist && fAB ) fAB->Close();
  

  //  2) APD file
  
  std::stringstream nameapdfile;
  nameapdfile << resdir_ <<"/APDPN_LASER.root";      
  resfile=nameapdfile.str();

  
  // Laser events counter

  laserEvents=0;

}
void EcalLaserAnalyzer::endJob ( void  ) [virtual]

Reimplemented from edm::EDAnalyzer.

Definition at line 711 of file EcalLaserAnalyzer.cc.

References _debug, _ecalPart, _firstsample, _fitab, _lastsample, _niter, _nsamples, _presample, _presamplecut, _qualpercent, _saveallevents, adc, ADCfile, ADCFile, adcNoPed, ADCtrees, TPN::addEntry(), TAPD::addEntry(), alpha, alphafile, alphainitfile, APD, apdAmpl, apdAmplA, apdAmplB, APDAnal, APDfile, APDFile, APDFirstAnal, APDoAPDA, APDoAPDB, APDoPN, APDoPNA, APDoPNB, APDPulse, apdRefMap, apdTime, APDtrees, asciidump::at, beta, channelID, channelMapEE, color, colorref, colors, TShapeAnalysis::computeShape(), gather_cfg::cout, GOODCOLL_filter_cfg::cut, dccID, Delta01, Delta12, doesABTreeExist, event, eventref, firstChanMod, flag, flagAB, TAPDPulse::getAdcWithoutPedestal(), TAPD::getAPD(), TAPD::getAPDoAPD0(), TAPD::getAPDoAPD1(), TAPD::getAPDoPN(), TAPD::getAPDoPN0(), TAPD::getAPDoPN1(), TMom::getMean(), TPN::getPN(), TPN::getPNoPN(), TPN::getPNoPN0(), TPN::getPNoPN1(), TAPD::getTime(), edm::service::getTime(), TShapeAnalysis::getVals(), i, iChannelID, idccID, iEta, iModule, init, iPhi, isGainOK, iside, TAPDPulse::isPulseOK(), IsThereDataADC, isTimingOK, iTowerID, laserEvents, moduleID, modules, mergeVDriftHistosByStation::name, nColor, nCrys, nEvtBadGain, nEvtBadTiming, nEvtTot, nMod, nPNPerMod, nRefChan, PN, pn0, pn1, PNAnal, PNFirstAnal, pnID, PNoPN, PNoPNA, PNoPNB, RefAPDtrees, resFile, resfile, respntrees, restrees, TAPD::set2DAPDoAPD0Cut(), TAPD::set2DAPDoAPD1Cut(), TShapeAnalysis::set_nch(), TShapeAnalysis::set_presample(), TAPD::setAPDCut(), TAPD::setAPDoPN0Cut(), TAPD::setAPDoPN1Cut(), TAPD::setAPDoPNCut(), TPN::setPNCut(), TAPDPulse::setPresamples(), TAPDPulse::setPulse(), TAPD::setTimeCut(), shapana, side, Time, towerID, wasGainOK, and wasTimingOK.

                               {
//========================================================================

  // Adjust channel numbers for EE 
  //===============================

  if( _ecalPart == "EE" ) {
    nCrys=channelMapEE.size();
    shapana->set_nch(nCrys);
  }
  
  // Set presamples number 
  //======================
  
  double delta01=Delta01->getMean();
  double delta12=Delta12->getMean();
  if(delta12>_presamplecut) {
    _presample=2;
    if(delta01>_presamplecut) _presample=1;
  }
  
  APDPulse->setPresamples(_presample);
  shapana->set_presample(_presample);

  //  Get alpha and beta
  //======================

  if(_fitab){
    std::cout <<  "\n\t+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+" << std::endl;
    std::cout <<   "\t+=+     Analyzing data: getting (alpha, beta)     +=+" << std::endl;
    TFile *fAB=0; TTree *ABInit=0;
    if(doesABTreeExist){
      fAB=new TFile(alphainitfile.c_str());
    }
    if(doesABTreeExist && fAB){
      ABInit = (TTree*) fAB->Get("ABCol0");
    }
    shapana->computeShape(alphafile, ABInit);
    std::cout <<    "\t+=+    .................................... done  +=+" << std::endl;
    std::cout <<    "\t+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+" << std::endl;
  }
  

  // Don't do anything if there is no events
  //=========================================

  if( laserEvents == 0 ){
    
    ADCFile->Close(); 
    std::stringstream del;
    del << "rm " <<ADCfile;
    system(del.str().c_str());
    std::cout << " No Laser Events "<< std::endl;
    return;
  }

  // Set quality flags for gains and timing
  //=========================================

  double BadGainEvtPercentage=0.0;
  double BadTimingEvtPercentage=0.0;
  
  int nChanBadGain=0;
  int nChanBadTiming=0;
  
  for (unsigned int i=0;i<nCrys;i++){
    if(nEvtTot[i]!=0){
      BadGainEvtPercentage=double(nEvtBadGain[i])/double(nEvtTot[i]);
      BadTimingEvtPercentage=double(nEvtBadTiming[i])/double(nEvtTot[i]);
    }
    if(BadGainEvtPercentage>_qualpercent) {
      wasGainOK[i]=false;
      nChanBadGain++;
    }
    if(BadTimingEvtPercentage>_qualpercent){
      wasTimingOK[i]=false;
      nChanBadTiming++;
    }
  }
  
  double BadGainChanPercentage=double(nChanBadGain)/double(nCrys);
  double BadTimingChanPercentage=double(nChanBadTiming)/double(nCrys);
  
  if(BadGainChanPercentage>_qualpercent) isGainOK = false;
  if(BadTimingChanPercentage>_qualpercent) isTimingOK = false;

  // Analyze adc samples to get amplitudes
  //=======================================
  
  std::cout <<  "\n\t+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+" << std::endl;
  std::cout <<    "\t+=+     Analyzing laser data: getting APD, PN, APD/PN, PN/PN    +=+" << std::endl;
  
  if( !isGainOK )
  std::cout <<    "\t+=+ ............................ WARNING! APD GAIN WAS NOT 1    +=+" << std::endl;
  if( !isTimingOK )
  std::cout <<    "\t+=+ ............................ WARNING! TIMING WAS BAD        +=+" << std::endl;
    
  
  APDFile = new TFile(APDfile.c_str(),"RECREATE");
  
  int ieta, iphi, channelID, towerID, flag;

  for (unsigned int i=0;i<nCrys;i++){
    
    std::stringstream name;
    name << "APDTree" <<i+1;
    
    APDtrees[i]= new TTree(name.str().c_str(),name.str().c_str());
    
    //List of branches
    
    APDtrees[i]->Branch( "event",     &event,     "event/I"     );
    APDtrees[i]->Branch( "color",     &color,     "color/I"     );
    APDtrees[i]->Branch( "iphi",      &iphi,      "iphi/I"      );
    APDtrees[i]->Branch( "ieta",      &ieta,      "ieta/I"      );
    APDtrees[i]->Branch( "side",      &side,      "side/I"      );
    APDtrees[i]->Branch( "dccID",     &dccID,     "dccID/I"     );
    APDtrees[i]->Branch( "towerID",   &towerID,   "towerID/I"   );
    APDtrees[i]->Branch( "channelID", &channelID, "channelID/I" );
    APDtrees[i]->Branch( "apdAmpl",   &apdAmpl,   "apdAmpl/D"   );
    APDtrees[i]->Branch( "apdTime",   &apdTime,   "apdTime/D"   );
    if(_saveallevents) APDtrees[i]->Branch( "adc", &adc ,"adc[10]/D" );
    APDtrees[i]->Branch( "flag",      &flag,      "flag/I"      ); 
    APDtrees[i]->Branch( "flagAB",    &flagAB,    "flagAB/I"    ); 
    APDtrees[i]->Branch( "pn0",       &pn0,       "pn0/D"       );
    APDtrees[i]->Branch( "pn1",       &pn1,       "pn1/D"       ); 
    
    APDtrees[i]->SetBranchAddress( "event",     &event     );
    APDtrees[i]->SetBranchAddress( "color",     &color     ); 
    APDtrees[i]->SetBranchAddress( "iphi",      &iphi      );
    APDtrees[i]->SetBranchAddress( "ieta",      &ieta      );
    APDtrees[i]->SetBranchAddress( "side",      &side      );
    APDtrees[i]->SetBranchAddress( "dccID",     &dccID     );
    APDtrees[i]->SetBranchAddress( "towerID",   &towerID   );
    APDtrees[i]->SetBranchAddress( "channelID", &channelID ); 
    APDtrees[i]->SetBranchAddress( "apdAmpl",   &apdAmpl   );
    APDtrees[i]->SetBranchAddress( "apdTime",   &apdTime   );
    if(_saveallevents)APDtrees[i]->SetBranchAddress( "adc", adc );
    APDtrees[i]->SetBranchAddress( "flag",      &flag      ); 
    APDtrees[i]->SetBranchAddress( "flagAB",    &flagAB    ); 
    APDtrees[i]->SetBranchAddress( "pn0",       &pn0       );
    APDtrees[i]->SetBranchAddress( "pn1",       &pn1       ); 
  
  }


  for (unsigned int iref=0;iref<nRefChan;iref++){
    for (unsigned int imod=0;imod<nMod;imod++){
      
      int jmod=modules[imod];
      
      std::stringstream nameref;
      nameref << "refAPDTree" <<imod<<"_"<<iref;
      
      RefAPDtrees[iref][jmod]= new TTree(nameref.str().c_str(),nameref.str().c_str());
      
      RefAPDtrees[iref][jmod]->Branch( "eventref",     &eventref,     "eventref/I"     );
      RefAPDtrees[iref][jmod]->Branch( "colorref",     &colorref,     "colorref/I"     );
      if(iref==0) RefAPDtrees[iref][jmod]->Branch( "apdAmplA",   &apdAmplA,   "apdAmplA/D"   );
      if(iref==1) RefAPDtrees[iref][jmod]->Branch( "apdAmplB",   &apdAmplB,   "apdAmplB/D"   );
      
      RefAPDtrees[iref][jmod]->SetBranchAddress( "eventref",     &eventref     );
      RefAPDtrees[iref][jmod]->SetBranchAddress( "colorref",     &colorref     ); 
      if(iref==0)RefAPDtrees[iref][jmod]->SetBranchAddress( "apdAmplA",   &apdAmplA   );
      if(iref==1)RefAPDtrees[iref][jmod]->SetBranchAddress( "apdAmplB",   &apdAmplB   );
      
    } 
  }
 
  assert( colors.size()<= nColor );
  unsigned int nCol=colors.size();

  // Declare PN stuff
  //===================
  
  for (unsigned int iM=0;iM<nMod;iM++){
    unsigned int iMod=modules[iM]-1;

    for (unsigned int ich=0;ich<nPNPerMod;ich++){
      for (unsigned int icol=0;icol<nCol;icol++){
        PNFirstAnal[iMod][ich][icol]=new TPN(ich);
        PNAnal[iMod][ich][icol]=new TPN(ich);
      }

    }
  }
  

  // Declare function for APD ampl fit
  //===================================

  PulseFitWithFunction * pslsfit = new PulseFitWithFunction();
  double chi2;

  
  for (unsigned int iCry=0;iCry<nCrys;iCry++){
    for (unsigned int icol=0;icol<nCol;icol++){

      // Declare APD stuff
      //===================
      
      APDFirstAnal[iCry][icol] = new TAPD();
      IsThereDataADC[iCry][icol]=1;      
      std::stringstream cut;
      cut <<"color=="<<colors[icol];
      if(ADCtrees[iCry]->GetEntries(cut.str().c_str())<10) IsThereDataADC[iCry][icol]=0;  
      
    }

    unsigned int iMod=iModule[iCry]-1;
    double alpha, beta;
    
    // Loop on events
    //================
    
    Long64_t nbytes = 0, nb = 0;
    for (Long64_t jentry=0; jentry< ADCtrees[iCry]->GetEntriesFast();jentry++){
      nb = ADCtrees[iCry]->GetEntry(jentry);   nbytes += nb;    
      
      // Get back color
 
      unsigned int iCol=0;
      for(unsigned int i=0;i<nCol;i++){
        if(color==colors[i]) {
          iCol=i;
          i=colors.size();
        }
      }
      
      // Retreive alpha and beta
      
      std::vector<double> abvals=shapana->getVals(iCry);
      alpha=abvals[0];
      beta=abvals[1];
      flagAB=int(abvals[4]);
      iphi=iPhi[iCry];
      ieta=iEta[iCry];
      towerID=iTowerID[iCry];
      channelID=iChannelID[iCry];
      
      // Amplitude calculation

      APDPulse->setPulse(adc);
      adcNoPed=APDPulse->getAdcWithoutPedestal();

      apdAmpl=0;
      apdAmplA=0;
      apdAmplB=0;
      apdTime=0;
      
      if( APDPulse->isPulseOK()){
        
        pslsfit -> init(_nsamples,_firstsample,_lastsample,_niter,  alpha,  beta);
        chi2 = pslsfit -> doFit(&adcNoPed[0]);
        
        if( chi2 < 0. || chi2 == 102 || chi2 == 101  ) {          
          apdAmpl=0;      
          apdTime=0;
          flag=0;
        }else{
          apdAmpl = pslsfit -> getAmpl();
          apdTime = pslsfit -> getTime();
          flag=1;
        }
      }else {
        chi2=0.0;
        apdAmpl=0;        
        apdTime=0;
        flag=0;
      }
      
      if (_debug==1) std::cout <<"-- debug test -- apdAmpl="<<apdAmpl<< 
                       ", apdTime="<< apdTime<< std::endl;
      double pnmean;
      if (pn0<10 && pn1>10) {
        pnmean=pn1;
      }else if (pn1<10 && pn0>10){
        pnmean=pn0;
      }else pnmean=0.5*(pn0+pn1);
      
      if (_debug==1) std::cout <<"-- debug test -- pn0="<<pn0<<", pn1="<<pn1<< std::endl;
      
      // Fill PN stuff
      //===============

      if( firstChanMod[iMod]==iCry && IsThereDataADC[iCry][iCol]==1 ){ 
        for (unsigned int ichan=0;ichan<nPNPerMod;ichan++){
          PNFirstAnal[iMod][ichan][iCol]->addEntry(pnmean,pn0,pn1);
        }
      }
      
      // Fill APD stuff 
      //================

      if( APDPulse->isPulseOK() ){
        APDFirstAnal[iCry][iCol]->addEntry(apdAmpl,pnmean, pn0, pn1, apdTime);      
        APDtrees[iCry]->Fill();    
        
        // Fill reference trees
        //=====================
        
        if( apdRefMap[0][iMod+1]==iCry || apdRefMap[1][iMod+1]==iCry ) {
          
          apdAmplA=0.0;
          apdAmplB=0.0;      
          eventref=event;
          colorref=color;
          
          for(unsigned int ir=0;ir<nRefChan;ir++){
            
            if(apdRefMap[ir][iMod+1]==iCry) {
              if (ir==0) apdAmplA=apdAmpl;
              else if(ir==1) apdAmplB=apdAmpl;
              RefAPDtrees[ir][iMod+1]->Fill(); 
            }   
          }
        }
      }
    }
  }
  
  delete pslsfit;
  
  ADCFile->Close(); 
  
  // Remove temporary file
  //=======================
  std::stringstream del;
  del << "rm " <<ADCfile;
  system(del.str().c_str());
  
  
  // Create output trees
  //=====================

  resFile = new TFile(resfile.c_str(),"RECREATE");
  
  for (unsigned int iColor=0;iColor<nCol;iColor++){
    
    std::stringstream nametree;
    nametree <<"APDCol"<<colors[iColor];
    std::stringstream nametree2;
    nametree2 <<"PNCol"<<colors[iColor];
    
    restrees[iColor]= new TTree(nametree.str().c_str(),nametree.str().c_str());
    respntrees[iColor]= new TTree(nametree2.str().c_str(),nametree2.str().c_str());
    
    restrees[iColor]->Branch( "iphi",        &iphi,        "iphi/I"           );
    restrees[iColor]->Branch( "ieta",        &ieta,        "ieta/I"           );
    restrees[iColor]->Branch( "side",        &side,        "side/I"           );
    restrees[iColor]->Branch( "dccID",       &dccID,       "dccID/I"          );
    restrees[iColor]->Branch( "moduleID",    &moduleID,    "moduleID/I"       );
    restrees[iColor]->Branch( "towerID",     &towerID,     "towerID/I"        );
    restrees[iColor]->Branch( "channelID",   &channelID,   "channelID/I"      );
    restrees[iColor]->Branch( "APD",         &APD,         "APD[6]/D"         );
    restrees[iColor]->Branch( "Time",        &Time,        "Time[6]/D"        );
    restrees[iColor]->Branch( "APDoPN",      &APDoPN,      "APDoPN[6]/D"      );
    restrees[iColor]->Branch( "APDoPNA",     &APDoPNA,     "APDoPNA[6]/D"     );
    restrees[iColor]->Branch( "APDoPNB",     &APDoPNB,     "APDoPNB[6]/D"     );
    restrees[iColor]->Branch( "APDoAPDA",    &APDoAPDA,    "APDoAPDA[6]/D"    );
    restrees[iColor]->Branch( "APDoAPDB",    &APDoAPDB,    "APDoAPDB[6]/D"    );
    restrees[iColor]->Branch( "flag",        &flag,        "flag/I"           ); 

    respntrees[iColor]->Branch( "side",      &side,      "side/I"         );
    respntrees[iColor]->Branch( "moduleID",  &moduleID,  "moduleID/I"     );
    respntrees[iColor]->Branch( "pnID",      &pnID,      "pnID/I"         );
    respntrees[iColor]->Branch( "PN",        &PN,        "PN[6]/D"        ); 
    respntrees[iColor]->Branch( "PNoPN",     &PNoPN,     "PNoPN[6]/D"     );
    respntrees[iColor]->Branch( "PNoPNA",    &PNoPNA,    "PNoPNA[6]/D"    );
    respntrees[iColor]->Branch( "PNoPNB",    &PNoPNB,    "PNoPNB[6]/D"    );

    restrees[iColor]->SetBranchAddress( "iphi",        &iphi       );
    restrees[iColor]->SetBranchAddress( "ieta",        &ieta       );
    restrees[iColor]->SetBranchAddress( "side",        &side       );
    restrees[iColor]->SetBranchAddress( "dccID",       &dccID      );
    restrees[iColor]->SetBranchAddress( "moduleID",    &moduleID   );
    restrees[iColor]->SetBranchAddress( "towerID",     &towerID    );
    restrees[iColor]->SetBranchAddress( "channelID",   &channelID  );
    restrees[iColor]->SetBranchAddress( "APD",         APD         ); 
    restrees[iColor]->SetBranchAddress( "Time",        Time        );   
    restrees[iColor]->SetBranchAddress( "APDoPN",      APDoPN      ); 
    restrees[iColor]->SetBranchAddress( "APDoPNA",     APDoPNA     );
    restrees[iColor]->SetBranchAddress( "APDoPNB",     APDoPNB     );
    restrees[iColor]->SetBranchAddress( "APDoAPDA",    APDoAPDA    );
    restrees[iColor]->SetBranchAddress( "APDoAPDB",    APDoAPDB    );
    restrees[iColor]->SetBranchAddress( "flag",        &flag       ); 
   
    respntrees[iColor]->SetBranchAddress( "side",      &side     );
    respntrees[iColor]->SetBranchAddress( "moduleID",  &moduleID );
    respntrees[iColor]->SetBranchAddress( "pnID",      &pnID     );
    respntrees[iColor]->SetBranchAddress( "PN",        PN        );
    respntrees[iColor]->SetBranchAddress( "PNoPN",     PNoPN     );
    respntrees[iColor]->SetBranchAddress( "PNoPNA",    PNoPNA    );
    respntrees[iColor]->SetBranchAddress( "PNoPNB",    PNoPNB    );
  
  }

  // Set Cuts for PN stuff
  //=======================

  for (unsigned int iM=0;iM<nMod;iM++){
    unsigned int iMod=modules[iM]-1;
    
    for (unsigned int ich=0;ich<nPNPerMod;ich++){
      for (unsigned int icol=0;icol<nCol;icol++){
        PNAnal[iMod][ich][icol]->setPNCut(PNFirstAnal[iMod][ich][icol]->getPN().at(0),
                                          PNFirstAnal[iMod][ich][icol]->getPN().at(1));
      }
    }
  }
  
  // Build ref trees indexes
  //========================
  for(unsigned int imod=0;imod<nMod;imod++){
    int jmod=modules[imod];
    if( RefAPDtrees[0][jmod]->GetEntries()!=0 && RefAPDtrees[1][jmod]->GetEntries()!=0 ){
      RefAPDtrees[0][jmod]->BuildIndex("eventref");
      RefAPDtrees[1][jmod]->BuildIndex("eventref");
    }
  }
  
  
  // Final loop on crystals
  //=======================

  for (unsigned int iCry=0;iCry<nCrys;iCry++){ 
    
    unsigned int iMod=iModule[iCry]-1;
    
    // Set cuts on APD stuff
    //=======================
    
    for(unsigned int iCol=0;iCol<nCol;iCol++){   
      
      std::vector<double> lowcut;
      std::vector<double> highcut;
      double cutMin;
      double cutMax;

      cutMin=APDFirstAnal[iCry][iCol]->getAPD().at(0)-2.0*APDFirstAnal[iCry][iCol]->getAPD().at(1);
      if(cutMin<0) cutMin=0;
      cutMax=APDFirstAnal[iCry][iCol]->getAPD().at(0)+2.0*APDFirstAnal[iCry][iCol]->getAPD().at(1);
      
      lowcut.push_back(cutMin);
      highcut.push_back(cutMax);
      
      cutMin=APDFirstAnal[iCry][iCol]->getTime().at(0)-2.0*APDFirstAnal[iCry][iCol]->getTime().at(1);
      cutMax=APDFirstAnal[iCry][iCol]->getTime().at(0)+2.0*APDFirstAnal[iCry][iCol]->getTime().at(1); 
      lowcut.push_back(cutMin);
      highcut.push_back(cutMax);
      
      APDAnal[iCry][iCol]=new TAPD();
      APDAnal[iCry][iCol]->setAPDCut(APDFirstAnal[iCry][iCol]->getAPD().at(0),APDFirstAnal[iCry][iCol]->getAPD().at(1));
      APDAnal[iCry][iCol]->setAPDoPNCut(APDFirstAnal[iCry][iCol]->getAPDoPN().at(0),APDFirstAnal[iCry][iCol]->getAPDoPN().at(1));
      APDAnal[iCry][iCol]->setAPDoPN0Cut(APDFirstAnal[iCry][iCol]->getAPDoPN0().at(0),APDFirstAnal[iCry][iCol]->getAPDoPN0().at(1));
      APDAnal[iCry][iCol]->setAPDoPN1Cut(APDFirstAnal[iCry][iCol]->getAPDoPN1().at(0),APDFirstAnal[iCry][iCol]->getAPDoPN1().at(1));
      APDAnal[iCry][iCol]->setTimeCut(APDFirstAnal[iCry][iCol]->getTime().at(0),APDFirstAnal[iCry][iCol]->getTime().at(1));
      APDAnal[iCry][iCol]->set2DAPDoAPD0Cut(lowcut,highcut);
      APDAnal[iCry][iCol]->set2DAPDoAPD1Cut(lowcut,highcut);
      
    }

    // Final loop on events
    //=======================

    Long64_t nbytes = 0, nb = 0;
    for (Long64_t jentry=0; jentry< APDtrees[iCry]->GetEntriesFast();jentry++) { 
      nb = APDtrees[iCry]->GetEntry(jentry);   nbytes += nb; 
      
      double pnmean;
      if (pn0<10 && pn1>10) {
        pnmean=pn1;
      }else if (pn1<10 && pn0>10){
        pnmean=pn0;
      }else pnmean=0.5*(pn0+pn1);
      
      // Get back color
      //================
      
      unsigned int iCol=0;
      for(unsigned int i=0;i<nCol;i++){
        if(color==colors[i]) {
          iCol=i;
          i=colors.size();
        }
      }
      
      // Fill PN stuff
      //===============
      
      if( firstChanMod[iMod]==iCry && IsThereDataADC[iCry][iCol]==1 ){ 
        for (unsigned int ichan=0;ichan<nPNPerMod;ichan++){
          PNAnal[iMod][ichan][iCol]->addEntry(pnmean,pn0,pn1);
        }
      }
      
      // Get ref amplitudes
      //===================

      if (_debug==1) std::cout <<"-- debug test -- Last Loop event:"<<event<<" apdAmpl:"<< apdAmpl<< std::endl;
      apdAmplA = 0.0;
      apdAmplB = 0.0;
      
      for (unsigned int iRef=0;iRef<nRefChan;iRef++){
        RefAPDtrees[iRef][iMod+1]->GetEntryWithIndex(event); 
      }
      
      if (_debug==1 ) std::cout <<"-- debug test -- Last Loop apdAmplA:"<<apdAmplA<< " apdAmplB:"<< apdAmplB<<", event:"<< event<<", eventref:"<< eventref<< std::endl;
      
      
      // Fill APD stuff
      //===============
      
      APDAnal[iCry][iCol]->addEntry(apdAmpl, pnmean, pn0, pn1, apdTime, apdAmplA, apdAmplB); 
   
    }
    
    moduleID=iMod+1;
    
    if( moduleID>=20 ) moduleID-=2; // Trick to fix endcap specificity   
    
    // Get final results for APD
    //===========================
    
    for(unsigned int iColor=0;iColor<nCol;iColor++){
      
      std::vector<double> apdvec = APDAnal[iCry][iColor]->getAPD();
      std::vector<double> apdpnvec = APDAnal[iCry][iColor]->getAPDoPN();
      std::vector<double> apdpn0vec = APDAnal[iCry][iColor]->getAPDoPN0();
      std::vector<double> apdpn1vec = APDAnal[iCry][iColor]->getAPDoPN1();
      std::vector<double> timevec = APDAnal[iCry][iColor]->getTime();
      std::vector<double> apdapd0vec = APDAnal[iCry][iColor]->getAPDoAPD0();
      std::vector<double> apdapd1vec = APDAnal[iCry][iColor]->getAPDoAPD1();
      
      
      for(unsigned int i=0;i<apdvec.size();i++){
        
        APD[i]=apdvec.at(i);
        APDoPN[i]=apdpnvec.at(i);
        APDoPNA[i]=apdpn0vec.at(i);
        APDoPNB[i]=apdpn1vec.at(i);
        APDoAPDA[i]=apdapd0vec.at(i);
        APDoAPDB[i]=apdapd1vec.at(i);
        Time[i]=timevec.at(i);
      }
      
      
      // Fill APD results trees
      //========================

      iphi=iPhi[iCry];
      ieta=iEta[iCry];
      dccID=idccID[iCry];
      side=iside[iCry];
      towerID=iTowerID[iCry];
      channelID=iChannelID[iCry];

      
      if( !wasGainOK[iCry] || !wasTimingOK[iCry] || IsThereDataADC[iCry][iColor]==0 ){
        flag=0;
      }else flag=1;
      
      restrees[iColor]->Fill();   
    }
  }
   
  // Get final results for PN 
  //==========================
  
  for (unsigned int iM=0;iM<nMod;iM++){
    unsigned int iMod=modules[iM]-1;

    side=iside[firstChanMod[iMod]];
    
    for (unsigned int ch=0;ch<nPNPerMod;ch++){

      pnID=ch;
      moduleID=iMod+1;
      
      if( moduleID>=20 ) moduleID-=2;  // Trick to fix endcap specificity

      for(unsigned int iColor=0;iColor<nCol;iColor++){

        std::vector<double> pnvec = PNAnal[iMod][ch][iColor]->getPN();
        std::vector<double> pnopnvec = PNAnal[iMod][ch][iColor]->getPNoPN();
        std::vector<double> pnopn0vec = PNAnal[iMod][ch][iColor]->getPNoPN0();
        std::vector<double> pnopn1vec = PNAnal[iMod][ch][iColor]->getPNoPN1();
        
        for(unsigned int i=0;i<pnvec.size();i++){
          
          PN[i]=pnvec.at(i);
          PNoPN[i]=pnopnvec.at(i);
          PNoPNA[i]=pnopn0vec.at(i);
          PNoPNB[i]=pnopn1vec.at(i);
        }
        
        // Fill PN results trees
        //========================

        respntrees[iColor]->Fill();
      }
    }
  }
  
  // Remove temporary files
  //========================
  if(!_saveallevents){

    APDFile->Close();
    std::stringstream del2;
    del2 << "rm " <<APDfile;
    system(del2.str().c_str());

  }else {
    
    APDFile->cd();
    APDtrees[0]->Write();
    
    APDFile->Close();
    resFile->cd();
  }
  
  // Save results 
  //===============

  for (unsigned int i=0;i<nCol;i++){
    restrees[i]->Write();
    respntrees[i]->Write();
  }  
  
  resFile->Close(); 
  
  std::cout <<    "\t+=+    .................................................. done  +=+" << std::endl;
  std::cout <<    "\t+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+" << std::endl;
}
void EcalLaserAnalyzer::setGeomEB ( int  etaG,
int  phiG,
int  module,
int  tower,
int  strip,
int  xtal,
int  apdRefTT,
int  channel,
int  lmr 
)

Definition at line 1348 of file EcalLaserAnalyzer.cc.

References ME::apdRefChannels(), apdRefMap, channelID, prof2calltree::count, dccID, eta, firstChanMod, iChannelID, idccID, iEta, iModule, iPhi, isFirstChanModFilled, iside, iTowerID, python::rootplot::argparse::module, modules, nRefChan, phi, side, and towerID.

Referenced by analyze().

                                                                                                                                   {
  
  side=MEEBGeom::side(etaG,phiG);
  
  assert( module>=*min_element(modules.begin(),modules.end()) && module<=*max_element(modules.begin(),modules.end()) );
      
  eta = etaG;
  phi = phiG;
  channelID=5*(strip-1) + xtal-1; 
  towerID=tower;
  
  std::vector<int> apdRefChan=ME::apdRefChannels(module, lmr);      
  for (unsigned int iref=0;iref<nRefChan;iref++){
    if(channelID==apdRefChan[iref] && towerID==apdRefTT 
       && apdRefMap[iref].count(module)==0){
      apdRefMap[iref][module]=channel;
    }
  }
  
  if(isFirstChanModFilled[module-1]==0) {
    firstChanMod[module-1]=channel;
    isFirstChanModFilled[module-1]=1;
  } 
  
  iEta[channel]=eta;
  iPhi[channel]=phi;
  iModule[channel]= module ;
  iTowerID[channel]=towerID;
  iChannelID[channel]=channelID;
  idccID[channel]=dccID;
  iside[channel]=side;

}
void EcalLaserAnalyzer::setGeomEE ( int  etaG,
int  phiG,
int  iX,
int  iY,
int  iZ,
int  module,
int  tower,
int  ch,
int  apdRefTT,
int  channel,
int  lmr 
)

Definition at line 1383 of file EcalLaserAnalyzer.cc.

References ME::apdRefChannels(), apdRefMap, channelID, prof2calltree::count, dccID, eta, firstChanMod, iChannelID, idccID, iEta, iModule, iPhi, isFirstChanModFilled, iside, iTowerID, python::rootplot::argparse::module, modules, nRefChan, phi, side, and towerID.

Referenced by analyze().

                                                                                                                                              {
  
  side=MEEEGeom::side(iX, iY, iZ);

  assert( module>=*min_element(modules.begin(),modules.end()) 
          && module<=*max_element(modules.begin(),modules.end()) );
  
  eta = etaG;
  phi = phiG;
  channelID=ch;
  towerID=tower;
  
  std::vector<int> apdRefChan=ME::apdRefChannels(module, lmr);      
  for (unsigned int iref=0;iref<nRefChan;iref++){
    if(channelID==apdRefChan[iref] && towerID==apdRefTT 
       && apdRefMap[iref].count(module)==0){
      apdRefMap[iref][module]=channel;
    }
  }
  
  if(isFirstChanModFilled[module-1]==0) {
    firstChanMod[module-1]=channel;
    isFirstChanModFilled[module-1]=1;
  } 
  
  iEta[channel]=eta;
  iPhi[channel]=phi;
  iModule[channel]= module ;
  iTowerID[channel]=towerID;
  iChannelID[channel]=channelID;
  idccID[channel]=dccID;
  iside[channel]=side;

}

Member Data Documentation

double EcalLaserAnalyzer::_alpha [private]

Definition at line 91 of file EcalLaserAnalyzer.h.

Referenced by beginJob().

double EcalLaserAnalyzer::_beta [private]

Definition at line 92 of file EcalLaserAnalyzer.h.

Referenced by beginJob().

double EcalLaserAnalyzer::_chi2cut [private]

Definition at line 95 of file EcalLaserAnalyzer.h.

Referenced by beginJob().

Definition at line 101 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and endJob().

Definition at line 97 of file EcalLaserAnalyzer.h.

Referenced by analyze().

std::string EcalLaserAnalyzer::_ecalPart [private]

Definition at line 96 of file EcalLaserAnalyzer.h.

Referenced by analyze(), EcalLaserAnalyzer(), and endJob().

Definition at line 98 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and EcalLaserAnalyzer().

unsigned int EcalLaserAnalyzer::_firstsample [private]

Definition at line 75 of file EcalLaserAnalyzer.h.

Referenced by beginJob(), EcalLaserAnalyzer(), and endJob().

unsigned int EcalLaserAnalyzer::_firstsamplePN [private]

Definition at line 79 of file EcalLaserAnalyzer.h.

Referenced by analyze().

bool EcalLaserAnalyzer::_fitab [private]

Definition at line 90 of file EcalLaserAnalyzer.h.

Referenced by analyze(), beginJob(), and endJob().

unsigned int EcalLaserAnalyzer::_lastsample [private]

Definition at line 76 of file EcalLaserAnalyzer.h.

Referenced by beginJob(), EcalLaserAnalyzer(), and endJob().

unsigned int EcalLaserAnalyzer::_lastsamplePN [private]

Definition at line 80 of file EcalLaserAnalyzer.h.

Referenced by analyze().

unsigned int EcalLaserAnalyzer::_nevtmax [private]

Definition at line 93 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and beginJob().

unsigned int EcalLaserAnalyzer::_niter [private]

Definition at line 89 of file EcalLaserAnalyzer.h.

Referenced by endJob().

double EcalLaserAnalyzer::_noise [private]

Definition at line 94 of file EcalLaserAnalyzer.h.

Referenced by beginJob().

unsigned int EcalLaserAnalyzer::_nsamples [private]

Definition at line 73 of file EcalLaserAnalyzer.h.

Referenced by beginJob(), EcalLaserAnalyzer(), and endJob().

unsigned int EcalLaserAnalyzer::_nsamplesPN [private]

Definition at line 77 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and EcalLaserAnalyzer().

unsigned int EcalLaserAnalyzer::_presample [private]

Definition at line 74 of file EcalLaserAnalyzer.h.

Referenced by beginJob(), EcalLaserAnalyzer(), and endJob().

Definition at line 88 of file EcalLaserAnalyzer.h.

Referenced by endJob().

unsigned int EcalLaserAnalyzer::_presamplePN [private]

Definition at line 78 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer().

Definition at line 100 of file EcalLaserAnalyzer.h.

Referenced by endJob().

Definition at line 87 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer().

Definition at line 86 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer().

Definition at line 85 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer().

Definition at line 99 of file EcalLaserAnalyzer.h.

Referenced by endJob().

unsigned int EcalLaserAnalyzer::_timingcuthigh [private]

Definition at line 82 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer().

unsigned int EcalLaserAnalyzer::_timingcutlow [private]

Definition at line 81 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer().

unsigned int EcalLaserAnalyzer::_timingqualhigh [private]

Definition at line 84 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer().

unsigned int EcalLaserAnalyzer::_timingquallow [private]

Definition at line 83 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer().

double EcalLaserAnalyzer::adc[10] [private]

Definition at line 186 of file EcalLaserAnalyzer.h.

Referenced by analyze(), beginJob(), and endJob().

TFile* EcalLaserAnalyzer::ADCFile [private]

Definition at line 164 of file EcalLaserAnalyzer.h.

Referenced by beginJob(), and endJob().

std::string EcalLaserAnalyzer::ADCfile [private]

Definition at line 123 of file EcalLaserAnalyzer.h.

Referenced by beginJob(), and endJob().

int EcalLaserAnalyzer::adcG[10] [private]

Definition at line 187 of file EcalLaserAnalyzer.h.

Referenced by analyze().

double* EcalLaserAnalyzer::adcNoPed [private]

Definition at line 200 of file EcalLaserAnalyzer.h.

Referenced by endJob().

TTree* EcalLaserAnalyzer::ADCtrees[NCRYSEB] [private]

Definition at line 165 of file EcalLaserAnalyzer.h.

Referenced by analyze(), beginJob(), and endJob().

std::string EcalLaserAnalyzer::alphafile [private]

Definition at line 121 of file EcalLaserAnalyzer.h.

Referenced by beginJob(), and endJob().

std::string EcalLaserAnalyzer::alphainitfile [private]

Definition at line 122 of file EcalLaserAnalyzer.h.

Referenced by beginJob(), and endJob().

double EcalLaserAnalyzer::APD[6] [private]

Definition at line 218 of file EcalLaserAnalyzer.h.

Referenced by endJob().

double EcalLaserAnalyzer::apdAmpl [private]

Definition at line 191 of file EcalLaserAnalyzer.h.

Referenced by endJob().

double EcalLaserAnalyzer::apdAmplA [private]

Definition at line 192 of file EcalLaserAnalyzer.h.

Referenced by endJob().

double EcalLaserAnalyzer::apdAmplB [private]

Definition at line 193 of file EcalLaserAnalyzer.h.

Referenced by endJob().

TAPD* EcalLaserAnalyzer::APDAnal[NCRYSEB][nColor] [private]

Definition at line 209 of file EcalLaserAnalyzer.h.

Referenced by endJob().

TFile* EcalLaserAnalyzer::APDFile [private]

Definition at line 167 of file EcalLaserAnalyzer.h.

Referenced by endJob().

std::string EcalLaserAnalyzer::APDfile [private]

Definition at line 124 of file EcalLaserAnalyzer.h.

Referenced by beginJob(), and endJob().

TAPD* EcalLaserAnalyzer::APDFirstAnal[NCRYSEB][nColor] [private]

Definition at line 208 of file EcalLaserAnalyzer.h.

Referenced by endJob().

double EcalLaserAnalyzer::APDoAPDA[6] [private]

Definition at line 218 of file EcalLaserAnalyzer.h.

Referenced by endJob().

double EcalLaserAnalyzer::APDoAPDB[6] [private]

Definition at line 218 of file EcalLaserAnalyzer.h.

Referenced by endJob().

double EcalLaserAnalyzer::APDoPN[6] [private]

Definition at line 218 of file EcalLaserAnalyzer.h.

Referenced by endJob().

double EcalLaserAnalyzer::APDoPNA[6] [private]

Definition at line 218 of file EcalLaserAnalyzer.h.

Referenced by endJob().

double EcalLaserAnalyzer::APDoPNB[6] [private]

Definition at line 218 of file EcalLaserAnalyzer.h.

Referenced by endJob().

Definition at line 103 of file EcalLaserAnalyzer.h.

Referenced by analyze(), EcalLaserAnalyzer(), and endJob().

std::map<int, unsigned int> EcalLaserAnalyzer::apdRefMap[2] [private]

Definition at line 178 of file EcalLaserAnalyzer.h.

Referenced by endJob(), setGeomEB(), and setGeomEE().

double EcalLaserAnalyzer::apdTime [private]

Definition at line 194 of file EcalLaserAnalyzer.h.

Referenced by endJob().

TTree* EcalLaserAnalyzer::APDtrees[NCRYSEB] [private]

Definition at line 168 of file EcalLaserAnalyzer.h.

Referenced by endJob().

Definition at line 148 of file EcalLaserAnalyzer.h.

Referenced by analyze(), beginJob(), endJob(), setGeomEB(), and setGeomEE().

Definition at line 216 of file EcalLaserAnalyzer.h.

Referenced by analyze().

std::map<unsigned int, unsigned int> EcalLaserAnalyzer::channelMapEE [private]

Definition at line 176 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and endJob().

int EcalLaserAnalyzer::color [private]

Definition at line 185 of file EcalLaserAnalyzer.h.

Referenced by analyze(), beginJob(), and endJob().

Definition at line 198 of file EcalLaserAnalyzer.h.

Referenced by endJob().

std::vector<int> EcalLaserAnalyzer::colors [private]

Definition at line 175 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and endJob().

int EcalLaserAnalyzer::dccID [private]

Definition at line 150 of file EcalLaserAnalyzer.h.

Referenced by analyze(), beginJob(), endJob(), setGeomEB(), and setGeomEE().

Definition at line 106 of file EcalLaserAnalyzer.h.

Referenced by analyze(), EcalLaserAnalyzer(), and endJob().

Definition at line 107 of file EcalLaserAnalyzer.h.

Referenced by analyze(), EcalLaserAnalyzer(), and endJob().

std::string EcalLaserAnalyzer::digiCollection_ [private]

Definition at line 113 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and EcalLaserAnalyzer().

std::string EcalLaserAnalyzer::digiPNCollection_ [private]

Definition at line 114 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and EcalLaserAnalyzer().

std::string EcalLaserAnalyzer::digiProducer_ [private]

Definition at line 115 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and EcalLaserAnalyzer().

Definition at line 109 of file EcalLaserAnalyzer.h.

Referenced by analyze(), beginJob(), and endJob().

int EcalLaserAnalyzer::eta [private]

Definition at line 183 of file EcalLaserAnalyzer.h.

Referenced by analyze(), beginJob(), setGeomEB(), and setGeomEE().

int EcalLaserAnalyzer::event [private]

Definition at line 184 of file EcalLaserAnalyzer.h.

Referenced by beginJob(), and endJob().

Definition at line 116 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and EcalLaserAnalyzer().

Definition at line 117 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and EcalLaserAnalyzer().

Definition at line 197 of file EcalLaserAnalyzer.h.

Referenced by endJob().

int EcalLaserAnalyzer::fedID [private]

Definition at line 149 of file EcalLaserAnalyzer.h.

Referenced by analyze().

unsigned int EcalLaserAnalyzer::firstChanMod[NMODEE] [private]

Definition at line 227 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().

int EcalLaserAnalyzer::flag [private]

Definition at line 215 of file EcalLaserAnalyzer.h.

Referenced by endJob().

Definition at line 215 of file EcalLaserAnalyzer.h.

Referenced by endJob().

int EcalLaserAnalyzer::iChannelID[NCRYSEB] [private]

Definition at line 226 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().

int EcalLaserAnalyzer::idccID[NCRYSEB] [private]

Definition at line 226 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().

int EcalLaserAnalyzer::iEta[NCRYSEB] [private]

Definition at line 224 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().

Definition at line 68 of file EcalLaserAnalyzer.h.

Referenced by analyze().

unsigned int EcalLaserAnalyzer::iModule[NCRYSEB] [private]

Definition at line 225 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().

int EcalLaserAnalyzer::iPhi[NCRYSEB] [private]

Definition at line 224 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().

unsigned int EcalLaserAnalyzer::isFirstChanModFilled[NMODEE] [private]

Definition at line 228 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer(), setGeomEB(), and setGeomEE().

Definition at line 240 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer(), and endJob().

int EcalLaserAnalyzer::iside[NCRYSEB] [private]

Definition at line 226 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().

int EcalLaserAnalyzer::IsThereDataADC[NCRYSEB][nColor] [private]

Definition at line 211 of file EcalLaserAnalyzer.h.

Referenced by endJob().

Definition at line 241 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer(), and endJob().

int EcalLaserAnalyzer::iTowerID[NCRYSEB] [private]

Definition at line 226 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().

int EcalLaserAnalyzer::iZ [private]

Definition at line 153 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and EcalLaserAnalyzer().

Definition at line 156 of file EcalLaserAnalyzer.h.

Referenced by analyze(), beginJob(), and endJob().

Definition at line 152 of file EcalLaserAnalyzer.h.

Referenced by analyze().

Definition at line 105 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and EcalLaserAnalyzer().

Definition at line 215 of file EcalLaserAnalyzer.h.

Referenced by endJob().

std::vector<int> EcalLaserAnalyzer::modules [private]

Definition at line 177 of file EcalLaserAnalyzer.h.

Referenced by analyze(), EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().

unsigned int EcalLaserAnalyzer::nCrys [private]

Definition at line 133 of file EcalLaserAnalyzer.h.

Referenced by analyze(), beginJob(), EcalLaserAnalyzer(), and endJob().

unsigned int EcalLaserAnalyzer::nevtAB[NCRYSEB] [private]

Definition at line 129 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and beginJob().

int EcalLaserAnalyzer::nEvtBadGain[NCRYSEB] [private]

Definition at line 232 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and endJob().

int EcalLaserAnalyzer::nEvtBadTiming[NCRYSEB] [private]

Definition at line 233 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and endJob().

int EcalLaserAnalyzer::nEvtTot[NCRYSEB] [private]

Definition at line 234 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and endJob().

unsigned int EcalLaserAnalyzer::nMod [private]

Definition at line 137 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer(), and endJob().

unsigned int EcalLaserAnalyzer::nPNPerMod [private]

Definition at line 134 of file EcalLaserAnalyzer.h.

Referenced by endJob().

unsigned int EcalLaserAnalyzer::nRefChan [private]

Definition at line 135 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer(), endJob(), setGeomEB(), and setGeomEE().

unsigned int EcalLaserAnalyzer::nRefTrees [private]

Definition at line 136 of file EcalLaserAnalyzer.h.

unsigned int EcalLaserAnalyzer::nSides [private]

Definition at line 138 of file EcalLaserAnalyzer.h.

int EcalLaserAnalyzer::phi [private]

Definition at line 183 of file EcalLaserAnalyzer.h.

Referenced by analyze(), beginJob(), setGeomEB(), and setGeomEE().

double EcalLaserAnalyzer::pn[50] [private]

Definition at line 189 of file EcalLaserAnalyzer.h.

Referenced by analyze().

double EcalLaserAnalyzer::PN[6] [private]

Definition at line 218 of file EcalLaserAnalyzer.h.

Referenced by endJob().

double EcalLaserAnalyzer::pn0 [private]

Definition at line 188 of file EcalLaserAnalyzer.h.

Referenced by analyze(), beginJob(), and endJob().

double EcalLaserAnalyzer::pn1 [private]

Definition at line 188 of file EcalLaserAnalyzer.h.

Referenced by analyze(), beginJob(), and endJob().

double EcalLaserAnalyzer::pnAmpl [private]

Definition at line 195 of file EcalLaserAnalyzer.h.

Referenced by analyze().

TPN* EcalLaserAnalyzer::PNAnal[NMODEE][NPNPERMOD][nColor] [private]

Definition at line 205 of file EcalLaserAnalyzer.h.

Referenced by endJob().

std::string EcalLaserAnalyzer::pncorfile_ [private]

Definition at line 112 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer().

Definition at line 160 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and EcalLaserAnalyzer().

TPN* EcalLaserAnalyzer::PNFirstAnal[NMODEE][NPNPERMOD][nColor] [private]

Definition at line 204 of file EcalLaserAnalyzer.h.

Referenced by endJob().

int EcalLaserAnalyzer::pnG[50] [private]

Definition at line 190 of file EcalLaserAnalyzer.h.

Referenced by analyze().

int EcalLaserAnalyzer::pnID [private]

Definition at line 215 of file EcalLaserAnalyzer.h.

Referenced by endJob().

double* EcalLaserAnalyzer::pnNoPed [private]

Definition at line 201 of file EcalLaserAnalyzer.h.

Referenced by analyze().

double EcalLaserAnalyzer::PNoPN[6] [private]

Definition at line 218 of file EcalLaserAnalyzer.h.

Referenced by endJob().

double EcalLaserAnalyzer::PNoPNA[6] [private]

Definition at line 218 of file EcalLaserAnalyzer.h.

Referenced by endJob().

double EcalLaserAnalyzer::PNoPNB[6] [private]

Definition at line 218 of file EcalLaserAnalyzer.h.

Referenced by endJob().

Definition at line 104 of file EcalLaserAnalyzer.h.

Referenced by analyze(), and EcalLaserAnalyzer().

TTree* EcalLaserAnalyzer::RefAPDtrees[NREFCHAN][NMODEE] [private]

Definition at line 169 of file EcalLaserAnalyzer.h.

Referenced by endJob().

std::string EcalLaserAnalyzer::resdir_ [private]

Definition at line 111 of file EcalLaserAnalyzer.h.

Referenced by beginJob(), and EcalLaserAnalyzer().

TFile* EcalLaserAnalyzer::resFile [private]

Definition at line 171 of file EcalLaserAnalyzer.h.

Referenced by endJob().

std::string EcalLaserAnalyzer::resfile [private]

Definition at line 125 of file EcalLaserAnalyzer.h.

Referenced by beginJob(), and endJob().

TTree* EcalLaserAnalyzer::respntrees[nColor] [private]

Definition at line 173 of file EcalLaserAnalyzer.h.

Referenced by endJob().

TTree* EcalLaserAnalyzer::restrees[nColor] [private]

Definition at line 172 of file EcalLaserAnalyzer.h.

Referenced by endJob().

Definition at line 143 of file EcalLaserAnalyzer.h.

Referenced by analyze().

Definition at line 142 of file EcalLaserAnalyzer.h.

Referenced by analyze().

Definition at line 128 of file EcalLaserAnalyzer.h.

Referenced by analyze(), beginJob(), and endJob().

int EcalLaserAnalyzer::side [private]

Definition at line 151 of file EcalLaserAnalyzer.h.

Referenced by analyze(), beginJob(), endJob(), setGeomEB(), and setGeomEE().

double EcalLaserAnalyzer::Time[6] [private]

Definition at line 218 of file EcalLaserAnalyzer.h.

Referenced by endJob().

Definition at line 147 of file EcalLaserAnalyzer.h.

Referenced by analyze(), beginJob(), endJob(), setGeomEB(), and setGeomEE().

bool EcalLaserAnalyzer::wasABCalcOK[NCRYSEB] [private]

Definition at line 238 of file EcalLaserAnalyzer.h.

bool EcalLaserAnalyzer::wasGainOK[NCRYSEB] [private]

Definition at line 236 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer(), and endJob().

bool EcalLaserAnalyzer::wasTimingOK[NCRYSEB] [private]

Definition at line 237 of file EcalLaserAnalyzer.h.

Referenced by EcalLaserAnalyzer(), and endJob().