CMS 3D CMS Logo

Public Member Functions

DDI::Trap Class Reference

#include <Trap.h>

Inheritance diagram for DDI::Trap:
DDI::Solid

List of all members.

Public Member Functions

void stream (std::ostream &) const
 Trap (double pDz, double pTheta, double pPhi, double pDy1, double pDx1, double pDx2, double pAlp1, double pDy2, double pDx3, double pDx4, double pAlp2)
double volume () const

Detailed Description

Definition at line 9 of file Trap.h.


Constructor & Destructor Documentation

DDI::Trap::Trap ( double  pDz,
double  pTheta,
double  pPhi,
double  pDy1,
double  pDx1,
double  pDx2,
double  pAlp1,
double  pDy2,
double  pDx3,
double  pDx4,
double  pAlp2 
)

Definition at line 9 of file Trap.cc.

References DDI::Solid::p_.

 : Solid(ddtrap) 
{                
  p_.push_back(pDz); // ......... 0
  p_.push_back(pTheta); // .. 1
  p_.push_back(pPhi); // ....... 2
  p_.push_back(pDy1); // ........ 3
  p_.push_back(pDx1); // ........ 4
  p_.push_back(pDx2); // ........ 5
  p_.push_back(pAlp1); // ....... 6
  p_.push_back(pDy2); // ........ 7
  p_.push_back(pDx3); // ......... 8
  p_.push_back(pDx4); // ........ 9
  p_.push_back(pAlp2);
}

Member Function Documentation

void DDI::Trap::stream ( std::ostream &  os) const [virtual]

Reimplemented from DDI::Solid.

Definition at line 32 of file Trap.cc.

{
  os << " dz=" << p_[0]/cm
     << " theta=" << p_[1]/deg
     << " phi=" << p_[2]/deg
     << " dy1=" << p_[3]/cm
     << " dx1=" << p_[4]/cm
     << " dx2=" << p_[5]/cm
     << " alpha1=" << p_[6]/deg
     << " dy2=" << p_[7]/cm
     << " dx3=" << p_[8]/cm
     << " dx4=" << p_[9]/cm
     << " alpha2=" << p_[10]/deg;
}
double DDI::Trap::volume ( void  ) const [virtual]

Reimplemented from DDI::Solid.

Definition at line 47 of file Trap.cc.

References a, funct::A, b, DCOUT, mathSSE::sqrt(), and z.

{
 double volume=0;

  /* use notation as described in documentation about geant 3 shapes */
  /* we do not need all the parameters.*/

  double Dz=p_[0];
  double H1=p_[3];
  double Bl1=p_[4];
  double Tl1=p_[5];
  double H2=p_[7];
  double Bl2=p_[8];
  double Tl2=p_[9];

  double z=2*Dz;

  /* the area of a trapezoid with one side of length 2*Bl1 and other side 2*Tl1,     and height 2*H1 is 0.5*(2*Bl1+2*Tl1)*2H1=2*H1(Bl1+Tl1) */

  /* the volume of a geometry defined by 2 2D parallel trapezoids is (in this case the integral over the area of a trapezoid that is defined as function x between these two trapezoids */

  /* the following formula describes this parmeterized area in x. x=0: trapezoid defined by H1,Bl1,Tl1,  x=z: trapezoid defined by H2,Bl2,Tl2 */

  /* area(x)=2*(H1+x/z*(H2-H1))*(Bl1+x/z*(Bl2-Bl1)+Tl1+x/z*(Tl2-Tl1)) */
 
 /* primitive of area(x):
    (2*H1*Bl1+2*H1*Tl1)*x+(H1*Bl2-2*H1*Bl1+H1*Tl2-2*H1*Tl1+H2*Bl1+H2*Tl1+H2*Tl2-H2*Tl1)*x*x/z+(2/3)*(H2*Bl2-H2*Bl1-H1*Bl2+H1*Bl1-H1*Tl2+H1*Tl1)*x*x*x/(z*z)   */

// volume=(2*H1*Bl1+2*H1*Tl1)*z+(H1*Bl2-2*H1*Bl1+H1*Tl2-2*H1*Tl1+H2*Bl1+H2*Tl1+H2*Tl2-H2*Tl1)*z*z+(2/3)*(H2*Bl2-H2*Bl1-H1*Bl2+H1*Bl1-H1*Tl2+H1*Tl1)*z*z*z; 
  volume=(2*H1*Bl1+2*H1*Tl1)*z+(H1*Bl2-2*H1*Bl1+H1*Tl2-2*H1*Tl1+H2*Bl1+H2*Tl1+H2*Tl2-H2*Tl1)*z+(2/3)*(H2*Bl2-H2*Bl1-H1*Bl2+H1*Bl1-H1*Tl2+H1*Tl1)*z; 


 /* 
    Alternative:
    A ... height of bottom trapez, B ... middle line perpendicular to A
    a ... height of top trapez,    b ... middle line perpendicular to a
    H ... heigt of the solid
    
    V = H/3. * ( A*B + 0.5 * ( A*b + B*a ) + a*b ) <-- this is wrong ..
    V = H/3 * ( A*B + sqrt( A*B*a*b ) + a*b )
 */ 
  double A = 2.*p_[3];
  double B = p_[4] + p_[5];
  double a = 2.*p_[7];
  double b = p_[8] + p_[9];
  

  double volu_alt = 2.*p_[0]/3. * ( A*B + sqrt ( A*b*B*a ) + a*b );
  DCOUT('V', "alternative-volume=" << volu_alt/m3 << std::endl);
  
  //DCOUT_V('C',"DC: solid=" << this->ddname() << " vol=" << volume << " vol_a=" << volu_alt << " d=" << (volume-volu_alt)/volume*100. << "%");
  return volume;
}