35 m1(0,0) = rhErr_vect(1,1); m1(0,1) = rhErr_vect(1,2); m1(0,2) = rhErr_vect(1,3);m1(0,3) = rhErr_vect(1,4);
36 m1(1,0) = rhErr_vect(2,1); m1(1,1) = rhErr_vect(2,2); m1(1,2) = rhErr_vect(2,3);m1(1,3) = rhErr_vect(2,4);
37 m1(2,0) = rhErr_vect(3,1); m1(2,1) = rhErr_vect(3,2); m1(2,2) = rhErr_vect(3,3);m1(2,3) = rhErr_vect(3,4);
38 m1(3,0) = rhErr_vect(4,1); m1(3,1) = rhErr_vect(4,2); m1(3,2) = rhErr_vect(4,3);m1(3,3) = rhErr_vect(4,4);
54 m1_2d(0,0) = rhErr_vect(1,1); m1_2d(0,1) = rhErr_vect(1,2);
55 m1_2d(1,0) = rhErr_vect(2,1); m1_2d(1,1) = rhErr_vect(2,2);
86 m1(0,0) = rhErr_vect(1,1);m1(0,1) = rhErr_vect(1,2);m1(0,2) = rhErr_vect(1,3);m1(0,3) = rhErr_vect(1,4);
87 m1(1,0) = rhErr_vect(2,1);m1(1,1) = rhErr_vect(2,2);m1(1,2) = rhErr_vect(2,3);m1(1,3) = rhErr_vect(2,4);
88 m1(2,0) = rhErr_vect(3,1);m1(2,1) = rhErr_vect(3,2);m1(2,2) = rhErr_vect(3,3);m1(2,3) = rhErr_vect(3,4);
89 m1(3,0) = rhErr_vect(4,1);m1(3,1) = rhErr_vect(4,2);m1(3,2) = rhErr_vect(4,3);m1(3,3) = rhErr_vect(4,4);
104 bool m3i = !m3.Invert();
108 estValue = ROOT::Math::Similarity(v3,m3);
114 bool m3i = !m3.Invert();
118 estValue = ROOT::Math::Similarity(v3,m3);
128 tsos_4d[0] = tsos_v[1];
129 tsos_4d[1] = tsos_v[2];
130 tsos_4d[2] = tsos_v[3];
131 tsos_4d[3] = tsos_v[4];
134 tsosErr_44(0,0) = E(1,1);tsosErr_44(0,1) = E(1,2);tsosErr_44(0,2) = E(1,3);tsosErr_44(0,3) = E(1,4);
135 tsosErr_44(1,0) = E(2,1);tsosErr_44(1,1) = E(2,2);tsosErr_44(1,2) = E(2,3);tsosErr_44(1,3) = E(2,4);
136 tsosErr_44(2,0) = E(3,1);tsosErr_44(2,1) = E(3,2);tsosErr_44(2,2) = E(3,3);tsosErr_44(2,3) = E(3,4);
137 tsosErr_44(3,0) = E(4,1);tsosErr_44(3,1) = E(4,2);tsosErr_44(3,2) = E(4,3);tsosErr_44(3,3) = E(4,4);
151 tsos_2d_phi[0] = tsos_v[1];
152 tsos_2d_phi[1] = tsos_v[3];
155 tsosErr_22_phi(0,0) = E(1,1);tsosErr_22_phi(0,1) = E(1,3);
156 tsosErr_22_phi(1,0) = E(3,1);tsosErr_22_phi(1,1) = E(3,3);
170 tsos_2d_zed[0] = tsos_v[2];
171 tsos_2d_zed[1] = tsos_v[4];
174 tsosErr_22_zed(0,0) = E(2,2);tsosErr_22_zed(0,1) = E(2,4);
175 tsosErr_22_zed(1,0) = E(4,2);tsosErr_22_zed(1,1) = E(4,4);
AlgebraicSymMatrix22 errorMatrix() const
AlgebraicVector parameters() const
StateSegmentMatcher(TrajectoryStateOnSurface *, CSCSegment *, LocalError *)
ROOT::Math::SMatrix< double, 2, 2, ROOT::Math::MatRepSym< double, 2 > > AlgebraicSymMatrix22
AlgebraicVector2 paramVector() const
const LocalTrajectoryParameters & localParameters() const
AlgebraicVector parameters() const
Parameters of the segment, for the track fit in the order (dx/dz, dy/dz, x, y )
Tsos4D(TrajectoryStateOnSurface *)
ROOT::Math::SMatrix< double, 5, 5, ROOT::Math::MatRepSym< double, 5 > > AlgebraicSymMatrix55
AlgebraicVector2 paramVector() const
AlgebraicSymMatrix22 errorMatrix() const
Tsos2DZed(TrajectoryStateOnSurface *)
AlgebraicVector5 vector() const
ROOT::Math::SMatrix< double, 4, 4, ROOT::Math::MatRepSym< double, 4 > > AlgebraicSymMatrix44
const AlgebraicSymMatrix55 & matrix() const
bool hasPhi() const
Does it have the Phi projection?
const LocalTrajectoryError & localError() const
bool hasZed() const
Does it have the Z projection?
CLHEP::HepVector AlgebraicVector
AlgebraicSymMatrix parametersError() const
Covariance matrix of parameters()
ROOT::Math::SVector< double, 5 > AlgebraicVector5
AlgebraicSymMatrix parametersError() const
Covariance matrix fo parameters()
Tsos2DPhi(TrajectoryStateOnSurface *)
CLHEP::HepSymMatrix AlgebraicSymMatrix
ROOT::Math::SVector< double, 4 > AlgebraicVector4
ROOT::Math::SVector< double, 2 > AlgebraicVector2
AlgebraicSymMatrix44 errorMatrix() const
AlgebraicVector4 paramVector() const