CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
EcalUncalibRecHitWorkerGlobal.cc
Go to the documentation of this file.
2 
7 
15 
18 {
19  // ratio method parameters
20  EBtimeFitParameters_ = ps.getParameter<std::vector<double> >("EBtimeFitParameters");
21  EEtimeFitParameters_ = ps.getParameter<std::vector<double> >("EEtimeFitParameters");
22  EBamplitudeFitParameters_ = ps.getParameter<std::vector<double> >("EBamplitudeFitParameters");
23  EEamplitudeFitParameters_ = ps.getParameter<std::vector<double> >("EEamplitudeFitParameters");
24  EBtimeFitLimits_.first = ps.getParameter<double>("EBtimeFitLimits_Lower");
25  EBtimeFitLimits_.second = ps.getParameter<double>("EBtimeFitLimits_Upper");
26  EEtimeFitLimits_.first = ps.getParameter<double>("EEtimeFitLimits_Lower");
27  EEtimeFitLimits_.second = ps.getParameter<double>("EEtimeFitLimits_Upper");
28  EBtimeConstantTerm_=ps.getParameter<double>("EBtimeConstantTerm");
29  EBtimeNconst_=ps.getParameter<double>("EBtimeNconst");
30  EEtimeConstantTerm_=ps.getParameter<double>("EEtimeConstantTerm");
31  EEtimeNconst_=ps.getParameter<double>("EEtimeNconst");
32  outOfTimeThreshG12pEB_ = ps.getParameter<double>("outOfTimeThresholdGain12pEB");
33  outOfTimeThreshG12mEB_ = ps.getParameter<double>("outOfTimeThresholdGain12mEB");
34  outOfTimeThreshG61pEB_ = ps.getParameter<double>("outOfTimeThresholdGain61pEB");
35  outOfTimeThreshG61mEB_ = ps.getParameter<double>("outOfTimeThresholdGain61mEB");
36  outOfTimeThreshG12pEE_ = ps.getParameter<double>("outOfTimeThresholdGain12pEE");
37  outOfTimeThreshG12mEE_ = ps.getParameter<double>("outOfTimeThresholdGain12mEE");
38  outOfTimeThreshG61pEE_ = ps.getParameter<double>("outOfTimeThresholdGain61pEE");
39  outOfTimeThreshG61mEE_ = ps.getParameter<double>("outOfTimeThresholdGain61mEE");
40  amplitudeThreshEB_ = ps.getParameter<double>("amplitudeThresholdEB");
41  amplitudeThreshEE_ = ps.getParameter<double>("amplitudeThresholdEE");
42  // amplitude-dependent correction of time
43  doEBtimeCorrection_ = ps.getParameter<bool>("doEBtimeCorrection");
44  doEEtimeCorrection_ = ps.getParameter<bool>("doEEtimeCorrection");
45  EBtimeCorrAmplitudeBins_ = ps.getParameter<std::vector<double> >("EBtimeCorrAmplitudeBins");
46  EBtimeCorrShiftBins_ = ps.getParameter<std::vector<double> >("EBtimeCorrShiftBins");
47  EEtimeCorrAmplitudeBins_ = ps.getParameter<std::vector<double> >("EEtimeCorrAmplitudeBins");
48  EEtimeCorrShiftBins_ = ps.getParameter<std::vector<double> >("EEtimeCorrShiftBins");
49  if(EBtimeCorrAmplitudeBins_.size() != EBtimeCorrShiftBins_.size()) {
50  doEBtimeCorrection_ = false;
51  edm::LogError("EcalRecHitError") << "Size of EBtimeCorrAmplitudeBins different from EBtimeCorrShiftBins. Forcing no time corrections for EB. ";
52  }
53  if(EEtimeCorrAmplitudeBins_.size() != EEtimeCorrShiftBins_.size()) {
54  doEEtimeCorrection_ = false;
55  edm::LogError("EcalRecHitError") << "Size of EEtimeCorrAmplitudeBins different from EEtimeCorrShiftBins. Forcing no time corrections for EE. ";
56  }
57 
58  // spike threshold
59  ebSpikeThresh_ = ps.getParameter<double>("ebSpikeThreshold");
60  // leading edge parameters
61  ebPulseShape_ = ps.getParameter<std::vector<double> >("ebPulseShape");
62  eePulseShape_ = ps.getParameter<std::vector<double> >("eePulseShape");
63  // chi2 parameters
64  kPoorRecoFlagEB_ = ps.getParameter<bool>("kPoorRecoFlagEB");
65  kPoorRecoFlagEE_ = ps.getParameter<bool>("kPoorRecoFlagEE");;
66  chi2ThreshEB_=ps.getParameter<double>("chi2ThreshEB_");
67  chi2ThreshEE_=ps.getParameter<double>("chi2ThreshEE_");
68  EBchi2Parameters_ = ps.getParameter<std::vector<double> >("EBchi2Parameters");
69  EEchi2Parameters_ = ps.getParameter<std::vector<double> >("EEchi2Parameters");
70 }
71 
72 void
74 {
75  // common setup
76  es.get<EcalGainRatiosRcd>().get(gains);
77  es.get<EcalPedestalsRcd>().get(peds);
78 
79  // for the weights method
80  es.get<EcalWeightXtalGroupsRcd>().get(grps);
81  es.get<EcalTBWeightsRcd>().get(wgts);
82 
83  // which of the samples need be used
85 
86  // for the ratio method
87 
88  // for the leading edge method
91 }
92 
93 
94 // check saturation: 5 samples with gainId = 0
95 template < class C >
97 {
98  //bool saturated_ = 0;
99  int cnt;
100  for (int j = 0; j < C::MAXSAMPLES - 5; ++j) {
101  cnt = 0;
102  for (int i = j; i < (j + 5) && i < C::MAXSAMPLES; ++i) {
103  if ( dataFrame.sample(i).gainId() == 0 ) ++cnt;
104  }
105  if ( cnt == 5 ) return j-1 ; // the last unsaturated sample
106  }
107  return -1; // no saturation found
108 }
109 
110 
112  // computed initially in ns. Than turned in the BX's, as EcalUncalibratedRecHit need be.
113  double theCorrection=0;
114 
115 
116  int myBin = -1;
117  for (int bin=0; bin<(int)EBtimeCorrAmplitudeBins_.size(); bin++ ){
118  if(ampliEB > EBtimeCorrAmplitudeBins_.at(bin)) {
119  myBin = bin; }
120  else break;
121  }
122 
123  if (myBin == -1)
124  {
125  theCorrection = EBtimeCorrShiftBins_.at(0);
126  }
127  else if ( myBin == ((int)(EBtimeCorrAmplitudeBins_.size()-1)) )
128  {
129  theCorrection = EBtimeCorrShiftBins_.at( myBin );
130  }
131  else if ( -1 < myBin && myBin < ((int)EBtimeCorrAmplitudeBins_.size()-1) )
132  {
133  // interpolate linearly between two assingned points
134  theCorrection = ( EBtimeCorrShiftBins_.at(myBin+1) - EBtimeCorrShiftBins_.at(myBin) );
135  theCorrection *= ( ((double)ampliEB) - EBtimeCorrAmplitudeBins_.at(myBin) ) / ( EBtimeCorrAmplitudeBins_.at(myBin+1) - EBtimeCorrAmplitudeBins_.at(myBin) );
136  theCorrection += EBtimeCorrShiftBins_.at(myBin);
137  }
138  else
139  {
140  edm::LogError("EcalRecHitError") << "Assigning time correction impossible. Setting it to 0 ";
141  theCorrection = 0.;
142  }
143 
144  // convert ns into clocks
145  return theCorrection/25.;
146 }
147 
148 
150  // computed initially in ns. Than turned in the BX's, as EcalUncalibratedRecHit need be.
151  double theCorrection=0;
152 
153  int myBin = -1;
154  for (int bin=0; bin<(int)EEtimeCorrAmplitudeBins_.size(); bin++ ){
155  if(ampliEE > EEtimeCorrAmplitudeBins_.at(bin)) {
156  myBin = bin; }
157  else break;
158  }
159 
160  if (myBin == -1)
161  {
162  theCorrection = EEtimeCorrShiftBins_.at(0);
163  }
164  else if ( myBin == ((int)(EEtimeCorrAmplitudeBins_.size()-1)) )
165  {
166  theCorrection = EEtimeCorrShiftBins_.at( myBin );
167  }
168  else if ( -1 < myBin && myBin < ((int)EEtimeCorrAmplitudeBins_.size()-1) )
169  {
170  // interpolate linearly between two assingned points
171  theCorrection = ( EEtimeCorrShiftBins_.at(myBin+1) - EEtimeCorrShiftBins_.at(myBin) );
172  theCorrection *= ( ((double)ampliEE) - EEtimeCorrAmplitudeBins_.at(myBin) ) / ( EEtimeCorrAmplitudeBins_.at(myBin+1) - EEtimeCorrAmplitudeBins_.at(myBin) );
173  theCorrection += EEtimeCorrShiftBins_.at(myBin);
174  }
175  else
176  {
177  edm::LogError("EcalRecHitError") << "Assigning time correction impossible. Setting it to 0 ";
178  theCorrection = 0.;
179  }
180 
181  // convert ns into clocks
182  return theCorrection/25.;
183 }
184 
185 
186 
187 
188 bool
192 {
193  DetId detid(itdg->id());
194 
195  const EcalSampleMask *sampleMask_ = sampleMaskHand_.product();
196 
197  // intelligence for recHit computation
198  EcalUncalibratedRecHit uncalibRecHit;
199 
200 
201  const EcalPedestals::Item * aped = 0;
202  const EcalMGPAGainRatio * aGain = 0;
203  const EcalXtalGroupId * gid = 0;
204  float offsetTime = 0;
205 
206  if (detid.subdetId()==EcalEndcap) {
207  unsigned int hashedIndex = EEDetId(detid).hashedIndex();
208  aped = &peds->endcap(hashedIndex);
209  aGain = &gains->endcap(hashedIndex);
210  gid = &grps->endcap(hashedIndex);
211  offsetTime = offtime->getEEValue();
212  } else {
213  unsigned int hashedIndex = EBDetId(detid).hashedIndex();
214  aped = &peds->barrel(hashedIndex);
215  aGain = &gains->barrel(hashedIndex);
216  gid = &grps->barrel(hashedIndex);
217  offsetTime = offtime->getEBValue();
218  }
219 
220  pedVec[0] = aped->mean_x12;
221  pedVec[1] = aped->mean_x6;
222  pedVec[2] = aped->mean_x1;
223  pedRMSVec[0] = aped->rms_x12;
224  pedRMSVec[1] = aped->rms_x6;
225  pedRMSVec[2] = aped->rms_x1;
226  gainRatios[0] = 1.;
227  gainRatios[1] = aGain->gain12Over6();
228  gainRatios[2] = aGain->gain6Over1()*aGain->gain12Over6();
229 
230  // compute the right bin of the pulse shape using time calibration constants
232  EcalTimeCalibConstant itimeconst = 0;
233  if( it != itime->end() ) {
234  itimeconst = (*it);
235  } else {
236  edm::LogError("EcalRecHitError") << "No time intercalib const found for xtal "
237  << detid.rawId()
238  << "! something wrong with EcalTimeCalibConstants in your DB? ";
239  }
240 
241 
242  // === amplitude computation ===
243  int leadingSample = -1;
244  if (detid.subdetId()==EcalEndcap) {
245  leadingSample = ((EcalDataFrame)(*itdg)).lastUnsaturatedSample();
246  } else {
247  leadingSample = ((EcalDataFrame)(*itdg)).lastUnsaturatedSample();
248  }
249 
250  if ( leadingSample >= 0 ) { // saturation
251  if ( leadingSample != 4 ) {
252  // all samples different from the fifth are not reliable for the amplitude estimation
253  // put by default the energy at the saturation threshold and flag as saturated
254  float sratio = 1;
255  if ( detid.subdetId()==EcalBarrel) {
256  sratio = ebPulseShape_[5] / ebPulseShape_[4];
257  } else {
258  sratio = eePulseShape_[5] / eePulseShape_[4];
259  }
260  uncalibRecHit = EcalUncalibratedRecHit( (*itdg).id(), 4095*12*sratio, 0, 0, 0);
262  } else {
263  // float clockToNsConstant = 25.;
264  // reconstruct the rechit
265  if (detid.subdetId()==EcalEndcap) {
267  // float mult = (float)eePulseShape_.size() / (float)(*itdg).size();
268  // bin (or some analogous mapping) will be used instead of the leadingSample
269  //int bin = (int)(( (mult * leadingSample + mult/2) * clockToNsConstant + itimeconst ) / clockToNsConstant);
270  // bin is not uset for the moment
272  uncalibRecHit = leadingEdgeMethod_endcap_.makeRecHit(*itdg, pedVec, gainRatios, 0, 0);
275  } else {
277  // float mult = (float)ebPulseShape_.size() / (float)(*itdg).size();
278  // bin (or some analogous mapping) will be used instead of the leadingSample
279  //int bin = (int)(( (mult * leadingSample + mult/2) * clockToNsConstant + itimeconst ) / clockToNsConstant);
280  // bin is not uset for the moment
282  uncalibRecHit = leadingEdgeMethod_barrel_.makeRecHit(*itdg, pedVec, gainRatios, 0, 0);
285  }
286  }
287  // do not propagate the default chi2 = -1 value to the calib rechit (mapped to 64), set it to 0 when saturation
288  uncalibRecHit.setChi2(0);
289  uncalibRecHit.setOutOfTimeChi2(0);
290  } else {
291  // weights method
292  EcalTBWeights::EcalTDCId tdcid(1);
293  EcalTBWeights::EcalTBWeightMap const & wgtsMap = wgts->getMap();
294  EcalTBWeights::EcalTBWeightMap::const_iterator wit;
295  wit = wgtsMap.find( std::make_pair(*gid,tdcid) );
296  if( wit == wgtsMap.end() ) {
297  edm::LogError("EcalUncalibRecHitError") << "No weights found for EcalGroupId: "
298  << gid->id() << " and EcalTDCId: " << tdcid
299  << "\n skipping digi with id: " << detid.rawId();
300 
301  return false;
302  }
303  const EcalWeightSet& wset = wit->second; // this is the EcalWeightSet
304 
307 
308  weights[0] = &mat1;
309  weights[1] = &mat2;
310 
311  // get uncalibrated recHit from weights
312  if (detid.subdetId()==EcalEndcap) {
314  } else {
316  }
317 
318  // === time computation ===
319  // ratio method
320  float const clockToNsConstant = 25.;
321  if (detid.subdetId()==EcalEndcap) {
322  ratioMethod_endcap_.init( *itdg, *sampleMask_, pedVec, pedRMSVec, gainRatios );
326  double theTimeCorrectionEE=0;
327  if(doEEtimeCorrection_) theTimeCorrectionEE = timeCorrectionEE( uncalibRecHit.amplitude() );
328  uncalibRecHit.setJitter( crh.timeMax - 5 + theTimeCorrectionEE);
329  uncalibRecHit.setJitterError( std::sqrt(pow(crh.timeError,2) + std::pow(EEtimeConstantTerm_,2)/std::pow(clockToNsConstant,2)) );
330  uncalibRecHit.setOutOfTimeEnergy( crh.amplitudeMax );
331  // consider flagging as kOutOfTime only if above noise
332  if (uncalibRecHit.amplitude() > pedRMSVec[0] * amplitudeThreshEE_){
333  float outOfTimeThreshP = outOfTimeThreshG12pEE_;
334  float outOfTimeThreshM = outOfTimeThreshG12mEE_;
335  // determine if gain has switched away from gainId==1 (x12 gain)
336  // and determine cuts (number of 'sigmas') to ose for kOutOfTime
337  // >3k ADC is necessasry condition for gain switch to occur
338  if (uncalibRecHit.amplitude() > 3000.){
339  for (int iSample = 0; iSample < EEDataFrame::MAXSAMPLES; iSample++) {
340  int GainId = ((EcalDataFrame)(*itdg)).sample(iSample).gainId();
341  if (GainId!=1) {
342  outOfTimeThreshP = outOfTimeThreshG61pEE_;
343  outOfTimeThreshM = outOfTimeThreshG61mEE_;
344  break;
345  }
346  }}
347  float correctedTime = (crh.timeMax-5) * clockToNsConstant + itimeconst + offsetTime;
348  float cterm = EEtimeConstantTerm_;
349  float sigmaped = pedRMSVec[0]; // approx for lower gains
350  float nterm = EEtimeNconst_*sigmaped/uncalibRecHit.amplitude();
351  float sigmat = std::sqrt( nterm*nterm + cterm*cterm );
352  if ( ( correctedTime > sigmat*outOfTimeThreshP ) ||
353  ( correctedTime < (-1.*sigmat*outOfTimeThreshM) ))
354  { uncalibRecHit.setFlagBit( EcalUncalibratedRecHit::kOutOfTime ); }
355  }
356 
357  } else {
358  ratioMethod_barrel_.init( *itdg, *sampleMask_, pedVec, pedRMSVec, gainRatios );
363  double theTimeCorrectionEB=0;
364  if(doEBtimeCorrection_) theTimeCorrectionEB = timeCorrectionEB( uncalibRecHit.amplitude() );
365 
366  uncalibRecHit.setJitter( crh.timeMax - 5 + theTimeCorrectionEB);
367 
368  uncalibRecHit.setJitterError( std::sqrt(std::pow(crh.timeError,2) + std::pow(EBtimeConstantTerm_,2)/std::pow(clockToNsConstant,2)) );
369  uncalibRecHit.setOutOfTimeEnergy( crh.amplitudeMax );
370  // consider flagging as kOutOfTime only if above noise
371  if (uncalibRecHit.amplitude() > pedRMSVec[0] * amplitudeThreshEB_){
372  float outOfTimeThreshP = outOfTimeThreshG12pEB_;
373  float outOfTimeThreshM = outOfTimeThreshG12mEB_;
374  // determine if gain has switched away from gainId==1 (x12 gain)
375  // and determine cuts (number of 'sigmas') to ose for kOutOfTime
376  // >3k ADC is necessasry condition for gain switch to occur
377  if (uncalibRecHit.amplitude() > 3000.){
378  for (int iSample = 0; iSample < EBDataFrame::MAXSAMPLES; iSample++) {
379  int GainId = ((EcalDataFrame)(*itdg)).sample(iSample).gainId();
380  if (GainId!=1) {
381  outOfTimeThreshP = outOfTimeThreshG61pEB_;
382  outOfTimeThreshM = outOfTimeThreshG61mEB_;
383  break;}
384  } }
385  float correctedTime = (crh.timeMax-5) * clockToNsConstant + itimeconst + offsetTime;
386  float cterm = EBtimeConstantTerm_;
387  float sigmaped = pedRMSVec[0]; // approx for lower gains
388  float nterm = EBtimeNconst_*sigmaped/uncalibRecHit.amplitude();
389  float sigmat = std::sqrt( nterm*nterm + cterm*cterm );
390  if ( ( correctedTime > sigmat*outOfTimeThreshP ) ||
391  ( correctedTime < (-1.*sigmat*outOfTimeThreshM) ))
392  { uncalibRecHit.setFlagBit( EcalUncalibratedRecHit::kOutOfTime ); }
393  }
394  }
395 
396  // === chi2express ===
397  if (detid.subdetId()==EcalEndcap) {
398 
399  double amplitude = uncalibRecHit.amplitude();
400  double amplitudeOutOfTime = uncalibRecHit.outOfTimeEnergy();
401  double jitter= uncalibRecHit.jitter();
402 
403 
404 
406  *itdg,
407  amplitude,
408  (itimeconst + offsetTime),
409  amplitudeOutOfTime,
410  jitter,
411  pedVec,
412  pedRMSVec,
413  gainRatios,
416  );
417  double chi2 = chi2expressEE_.chi2();
418  uncalibRecHit.setChi2(chi2);
419  double chi2OutOfTime = chi2expressEE_.chi2OutOfTime();
420  uncalibRecHit.setOutOfTimeChi2(chi2OutOfTime);
421 
422  if(kPoorRecoFlagEE_)
423  {
425  }
426 
427  } else {
428  double amplitude = uncalibRecHit.amplitude();
429  double amplitudeOutOfTime = uncalibRecHit.outOfTimeEnergy();
430  double jitter= uncalibRecHit.jitter();
431 
433  *itdg,
434  amplitude,
435  (itimeconst + offsetTime),
436  amplitudeOutOfTime,
437  jitter,
438  pedVec,
439  pedRMSVec,
440  gainRatios,
443  );
444  double chi2 = chi2expressEB_.chi2();
445  uncalibRecHit.setChi2(chi2);
446  double chi2OutOfTime = chi2expressEB_.chi2OutOfTime();
447  uncalibRecHit.setOutOfTimeChi2(chi2OutOfTime);
448 
449  if(kPoorRecoFlagEB_)
450  {
452  }
453  }
454  }
455 
456  // set flags if gain switch has occurred
457  if( ((EcalDataFrame)(*itdg)).hasSwitchToGain6() ) uncalibRecHit.setFlagBit( EcalUncalibratedRecHit::kHasSwitchToGain6 );
458  if( ((EcalDataFrame)(*itdg)).hasSwitchToGain1() ) uncalibRecHit.setFlagBit( EcalUncalibratedRecHit::kHasSwitchToGain1 );
459 
460  // put the recHit in the collection
461  if (detid.subdetId()==EcalEndcap) {
462  result.push_back( uncalibRecHit );
463  } else {
464  result.push_back( uncalibRecHit );
465  }
466 
467  return true;
468 }
469 
edm::ESHandle< EcalTimeOffsetConstant > offtime
std::map< std::pair< EcalXtalGroupId, EcalTDCId >, EcalWeightSet > EcalTBWeightMap
Definition: EcalTBWeights.h:19
T getParameter(std::string const &) const
int i
Definition: DBlmapReader.cc:9
bool run(const edm::Event &evt, const EcalDigiCollection::const_iterator &digi, EcalUncalibratedRecHitCollection &result)
int hashedIndex() const
get a compact index for arrays
Definition: EBDetId.h:73
void computeAmplitude(std::vector< double > &amplitudeFitParameters)
boost::transform_iterator< IterHelp, boost::counting_iterator< int > > const_iterator
EcalUncalibRecHitWorkerGlobal(const edm::ParameterSet &)
void setJitter(float jitter)
std::pair< double, double > EBtimeFitLimits_
void computeTime(std::vector< double > &timeFitParameters, std::pair< double, double > &timeFitLimits, std::vector< double > &amplitudeFitParameters)
void push_back(T const &t)
EcalUncalibRecHitRecWeightsAlgo< EBDataFrame > weightsMethod_barrel_
void setJitterError(float jitterErr)
std::pair< double, double > EEtimeFitLimits_
void setPulseShape(std::vector< double > &shape)
EcalUncalibRecHitRatioMethodAlgo< EEDataFrame > ratioMethod_endcap_
const unsigned int id() const
EcalUncalibRecHitLeadingEdgeAlgo< EBDataFrame > leadingEdgeMethod_barrel_
void setOutOfTimeChi2(float chi2)
int hashedIndex(int ieta, int iphi)
Definition: EcalPyUtils.cc:42
EcalUncalibRecHitRatioMethodAlgo< EBDataFrame > ratioMethod_barrel_
edm::ESHandle< EcalGainRatios > gains
EcalUncalibRecHitLeadingEdgeAlgo< EEDataFrame > leadingEdgeMethod_endcap_
T sqrt(T t)
Definition: SSEVec.h:46
edm::ESHandle< EcalPedestals > peds
tuple result
Definition: query.py:137
virtual EcalUncalibratedRecHit makeRecHit(const C &dataFrame, const double *pedestals, const double *pedestalsRMS, const double *gainRatios, const EcalWeightSet::EcalWeightMatrix **weights, const EcalShapeBase &testbeamPulseShape)
Compute parameters.
int j
Definition: DBlmapReader.cc:9
edm::ESHandle< EcalTBWeights > wgts
float gain6Over1() const
edm::ESHandle< EcalWeightXtalGroups > grps
EcalWeightMatrix & getWeightsAfterGainSwitch()
Definition: EcalWeightSet.h:28
virtual EcalUncalibratedRecHit makeRecHit(const C &dataFrame, const double *pedestals, const double *gainRatios, const EcalWeightSet::EcalWeightMatrix **weights, const EcalWeightSet::EcalChi2WeightMatrix **chi2Matrix)
Compute parameters.
Definition: DetId.h:20
int hashedIndex() const
Definition: EEDetId.h:177
EcalWeightMatrix & getWeightsBeforeGainSwitch()
Definition: EcalWeightSet.h:27
const T & get() const
Definition: EventSetup.h:55
std::vector< Item >::const_iterator const_iterator
T const * product() const
Definition: ESHandle.h:62
float gain12Over6() const
const EcalWeightSet::EcalWeightMatrix * weights[2]
float EcalTimeCalibConstant
void set(const edm::EventSetup &es)
edm::ESHandle< EcalTimeCalibConstants > itime
EcalUncalibRecHitRecWeightsAlgo< EEDataFrame > weightsMethod_endcap_
math::Matrix< 3, 10 >::type EcalWeightMatrix
Definition: EcalWeightSet.h:20
#define DEFINE_EDM_PLUGIN(factory, type, name)
void setOutOfTimeEnergy(float energy)
edm::ESHandle< EcalSampleMask > sampleMaskHand_
void init(const C &dataFrame, const EcalSampleMask &sampleMask, const double *pedestals, const double *pedestalRMSes, const double *gainRatios)
static const int MAXSAMPLES
Definition: EcalDataFrame.h:49
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:40