#include <CSCPairResidualsConstraint.h>
Public Types | |
enum | { kModePhiy, kModePhiPos, kModePhiz, kModeRadius } |
Public Member Functions | |
bool | addTrack (const std::vector< TrajectoryMeasurement > &measurements, const reco::TransientTrack &track, const TrackTransformer *trackTransformer) |
void | configure (CSCOverlapsAlignmentAlgorithm *parent) |
CSCPairResidualsConstraint (unsigned int identifier, int i, int j, CSCDetId id_i, CSCDetId id_j) | |
double | error () const |
CSCDetId | id_i () const |
CSCDetId | id_j () const |
double | radius (bool is_i) const |
void | read (std::vector< std::ifstream * > &input, std::vector< std::string > &filenames) |
void | setPropagator (const Propagator *propagator) |
void | setZplane (const CSCGeometry *cscGeometry) |
bool | valid () const |
double | value () const |
void | write (std::ofstream &output) |
virtual | ~CSCPairResidualsConstraint () |
Protected Member Functions | |
void | calculatePhi (const TransientTrackingRecHit *hit, double &phi, double &phierr2, bool doRphi=false, bool globalPhi=false) |
bool | dphidzFromTrack (const std::vector< TrajectoryMeasurement > &measurements, const reco::TransientTrack &track, const TrackTransformer *trackTransformer, double &drphidz) |
bool | isFiducial (std::vector< const TransientTrackingRecHit * > &hits, bool is_i) |
Protected Attributes | |
double | m_averageRadius |
const CSCGeometry * | m_cscGeometry |
CSCDetId | m_id_i |
CSCDetId | m_id_j |
unsigned int | m_identifier |
double | m_iZ |
double | m_iZ1 |
double | m_iZ6 |
double | m_jZ |
double | m_jZ1 |
double | m_jZ6 |
TH1F * | m_offsetResiduals |
CSCOverlapsAlignmentAlgorithm * | m_parent |
const Propagator * | m_propagator |
TH1F * | m_radial |
TH1F * | m_slopeResiduals |
double | m_sum1 |
int | m_sumN |
double | m_sumx |
double | m_sumxx |
double | m_sumxy |
double | m_sumy |
double | m_sumyy |
double | m_Zplane |
Plane::PlanePointer | m_Zsurface |
anonymous enum |
Definition at line 37 of file CSCPairResidualsConstraint.h.
{ kModePhiy, kModePhiPos, kModePhiz, kModeRadius };
CSCPairResidualsConstraint::CSCPairResidualsConstraint | ( | unsigned int | identifier, |
int | i, | ||
int | j, | ||
CSCDetId | id_i, | ||
CSCDetId | id_j | ||
) | [inline] |
Definition at line 29 of file CSCPairResidualsConstraint.h.
virtual CSCPairResidualsConstraint::~CSCPairResidualsConstraint | ( | ) | [inline, virtual] |
Definition at line 35 of file CSCPairResidualsConstraint.h.
{};
bool CSCPairResidualsConstraint::addTrack | ( | const std::vector< TrajectoryMeasurement > & | measurements, |
const reco::TransientTrack & | track, | ||
const TrackTransformer * | trackTransformer | ||
) |
Definition at line 93 of file CSCPairResidualsConstraint.cc.
References calculatePhi(), CSCDetId::chamber(), MuonSubdetId::CSC, CSCDetId, dphidzFromTrack(), CSCDetId::endcap(), TrackingRecHit::geographicalId(), isFiducial(), kModePhiPos, kModePhiy, kModePhiz, kModeRadius, m_averageRadius, CSCOverlapsAlignmentAlgorithm::m_combineME11, CSCOverlapsAlignmentAlgorithm::m_drdz, CSCOverlapsAlignmentAlgorithm::m_fiducial, CSCOverlapsAlignmentAlgorithm::m_hitsPerChamber, m_id_i, m_id_j, m_iZ, m_jZ, CSCOverlapsAlignmentAlgorithm::m_makeHistograms, CSCOverlapsAlignmentAlgorithm::m_maxdrdz, CSCOverlapsAlignmentAlgorithm::m_minHitsPerChamber, CSCOverlapsAlignmentAlgorithm::m_mode, CSCOverlapsAlignmentAlgorithm::m_occupancy, CSCOverlapsAlignmentAlgorithm::m_offsetResiduals, m_offsetResiduals, CSCOverlapsAlignmentAlgorithm::m_offsetResiduals_normalized, CSCOverlapsAlignmentAlgorithm::m_offsetResiduals_weighted, m_parent, m_radial, CSCOverlapsAlignmentAlgorithm::m_slope, CSCOverlapsAlignmentAlgorithm::m_slope_MEm1, CSCOverlapsAlignmentAlgorithm::m_slope_MEm2, CSCOverlapsAlignmentAlgorithm::m_slope_MEm3, CSCOverlapsAlignmentAlgorithm::m_slope_MEm4, CSCOverlapsAlignmentAlgorithm::m_slope_MEp1, CSCOverlapsAlignmentAlgorithm::m_slope_MEp2, CSCOverlapsAlignmentAlgorithm::m_slope_MEp3, CSCOverlapsAlignmentAlgorithm::m_slope_MEp4, CSCOverlapsAlignmentAlgorithm::m_slopeFromTrackRefit, CSCOverlapsAlignmentAlgorithm::m_slopeResiduals, m_slopeResiduals, CSCOverlapsAlignmentAlgorithm::m_slopeResiduals_normalized, CSCOverlapsAlignmentAlgorithm::m_slopeResiduals_weighted, m_sum1, m_sumN, m_sumx, m_sumxx, m_sumxy, m_sumy, m_sumyy, CSCOverlapsAlignmentAlgorithm::m_truncateOffsetResid, CSCOverlapsAlignmentAlgorithm::m_truncateSlopeResid, CSCOverlapsAlignmentAlgorithm::m_useHitWeights, CSCOverlapsAlignmentAlgorithm::m_useTrackWeights, m_Zplane, DetId::Muon, phi, funct::pow(), alignCSCRings::r, CSCDetId::ring(), mathSSE::sqrt(), CSCDetId::station(), CommonMethods::weight(), and z.
{ std::vector<const TransientTrackingRecHit*> hits_i; std::vector<const TransientTrackingRecHit*> hits_j; for (std::vector<TrajectoryMeasurement>::const_iterator measurement = measurements.begin(); measurement != measurements.end(); ++measurement) { const TransientTrackingRecHit *hit = &*(measurement->recHit()); DetId id = hit->geographicalId(); if (id.det() == DetId::Muon && id.subdetId() == MuonSubdetId::CSC) { CSCDetId cscid(id.rawId()); CSCDetId chamberId(cscid.endcap(), cscid.station(), cscid.ring(), cscid.chamber(), 0); if (m_parent->m_combineME11 && cscid.station() == 1 && cscid.ring() == 4) chamberId = CSCDetId(cscid.endcap(), 1, 1, cscid.chamber(), 0); if (chamberId == m_id_i) hits_i.push_back(hit); if (chamberId == m_id_j) hits_j.push_back(hit); } } if (m_parent->m_makeHistograms) { m_parent->m_hitsPerChamber->Fill(hits_i.size()); m_parent->m_hitsPerChamber->Fill(hits_j.size()); } // require minimum number of hits (if the requirement is too low (~2), some NANs might result...) if (int(hits_i.size()) < m_parent->m_minHitsPerChamber || int(hits_j.size()) < m_parent->m_minHitsPerChamber) return false; // maybe require segments to be fiducial if (m_parent->m_fiducial && !(isFiducial(hits_i, true) && isFiducial(hits_j, false))) return false; double intercept_i = 0.; double interceptError2_i = 0.; double slope_i = 0.; double slopeError2_i = 0.; double intercept_j = 0.; double interceptError2_j = 0.; double slope_j = 0.; double slopeError2_j = 0.; // if slopeFromTrackRefit, then you'll need to refit the whole track without this station's hits; // need at least two other stations for that to be reliable if (m_parent->m_slopeFromTrackRefit) { double dphidz; if (dphidzFromTrack(measurements, track, trackTransformer, dphidz)) { double sum1_i = 0.; double sumy_i = 0.; for (std::vector<const TransientTrackingRecHit*>::const_iterator hit = hits_i.begin(); hit != hits_i.end(); ++hit) { double phi, phierr2; calculatePhi(*hit, phi, phierr2, false, true); double z = (*hit)->globalPosition().z() - m_Zplane; double weight = 1.; if (m_parent->m_useHitWeights) weight = 1./phierr2; sum1_i += weight; sumy_i += weight * (phi - z*dphidz); } double sum1_j = 0.; double sumy_j = 0.; for (std::vector<const TransientTrackingRecHit*>::const_iterator hit = hits_j.begin(); hit != hits_j.end(); ++hit) { double phi, phierr2; calculatePhi(*hit, phi, phierr2, false, true); double z = (*hit)->globalPosition().z() - m_Zplane; double weight = 1.; if (m_parent->m_useHitWeights) weight = 1./phierr2; sum1_j += weight; sumy_j += weight * (phi - z*dphidz); } if (sum1_i != 0. && sum1_j != 0.) { slope_i = slope_j = dphidz; intercept_i = sumy_i / sum1_i; interceptError2_i = 1. / sum1_i; intercept_j = sumy_j / sum1_j; interceptError2_j = 1. / sum1_j; } else return false; } } else { // not slopeFromTrackRefit double sum1_i = 0.; double sumx_i = 0.; double sumy_i = 0.; double sumxx_i = 0.; double sumxy_i = 0.; for (std::vector<const TransientTrackingRecHit*>::const_iterator hit = hits_i.begin(); hit != hits_i.end(); ++hit) { double phi, phierr2; calculatePhi(*hit, phi, phierr2, false, true); double z = (*hit)->globalPosition().z() - m_Zplane; double weight = 1.; if (m_parent->m_useHitWeights) weight = 1./phierr2; sum1_i += weight; sumx_i += weight * z; sumy_i += weight * phi; sumxx_i += weight * z*z; sumxy_i += weight * z*phi; } double sum1_j = 0.; double sumx_j = 0.; double sumy_j = 0.; double sumxx_j = 0.; double sumxy_j = 0.; for (std::vector<const TransientTrackingRecHit*>::const_iterator hit = hits_j.begin(); hit != hits_j.end(); ++hit) { double phi, phierr2; calculatePhi(*hit, phi, phierr2, false, true); double z = (*hit)->globalPosition().z() - m_Zplane; double weight = 1.; if (m_parent->m_useHitWeights) weight = 1./phierr2; sum1_j += weight; sumx_j += weight * z; sumy_j += weight * phi; sumxx_j += weight * z*z; sumxy_j += weight * z*phi; } double delta_i = (sum1_i*sumxx_i) - (sumx_i*sumx_i); double delta_j = (sum1_j*sumxx_j) - (sumx_j*sumx_j); if (delta_i != 0. && delta_j != 0.) { intercept_i = ((sumxx_i*sumy_i) - (sumx_i*sumxy_i))/delta_i; interceptError2_i = sumxx_i/delta_i; slope_i = ((sum1_i*sumxy_i) - (sumx_i*sumy_i))/delta_i; slopeError2_i = sum1_i/delta_i; intercept_j = ((sumxx_j*sumy_j) - (sumx_j*sumxy_j))/delta_j; interceptError2_j = sumxx_j/delta_j; slope_j = ((sum1_j*sumxy_j) - (sumx_j*sumy_j))/delta_j; slopeError2_j = sum1_j/delta_j; } else return false; } // from hits on the two chambers, determine radial_intercepts separately and radial_slope together double sum1_ri = 0.; double sumx_ri = 0.; double sumy_ri = 0.; double sumxx_ri = 0.; double sumxy_ri = 0.; for (std::vector<const TransientTrackingRecHit*>::const_iterator hit = hits_i.begin(); hit != hits_i.end(); ++hit) { double r = (*hit)->globalPosition().perp(); double z = (*hit)->globalPosition().z() - m_Zplane; sum1_ri += 1.; sumx_ri += z; sumy_ri += r; sumxx_ri += z*z; sumxy_ri += z*r; } double radial_delta_i = (sum1_ri*sumxx_ri) - (sumx_ri*sumx_ri); if (radial_delta_i == 0.) return false; double radial_slope_i = ((sum1_ri*sumxy_ri) - (sumx_ri*sumy_ri))/radial_delta_i; double radial_intercept_i = ((sumxx_ri*sumy_ri) - (sumx_ri*sumxy_ri))/radial_delta_i + radial_slope_i*(m_iZ - m_Zplane); double sum1_rj = 0.; double sumx_rj = 0.; double sumy_rj = 0.; double sumxx_rj = 0.; double sumxy_rj = 0.; for (std::vector<const TransientTrackingRecHit*>::const_iterator hit = hits_j.begin(); hit != hits_j.end(); ++hit) { double r = (*hit)->globalPosition().perp(); double z = (*hit)->globalPosition().z() - m_Zplane; sum1_rj += 1.; sumx_rj += z; sumy_rj += r; sumxx_rj += z*z; sumxy_rj += z*r; } double radial_delta_j = (sum1_rj*sumxx_rj) - (sumx_rj*sumx_rj); if (radial_delta_j == 0.) return false; double radial_slope_j = ((sum1_rj*sumxy_rj) - (sumx_rj*sumy_rj))/radial_delta_j; double radial_intercept_j = ((sumxx_rj*sumy_rj) - (sumx_rj*sumxy_rj))/radial_delta_j + radial_slope_j*(m_jZ - m_Zplane); double radial_delta = ((sum1_ri + sum1_rj)*(sumxx_ri + sumxx_rj)) - ((sumx_ri + sumx_rj)*(sumx_ri + sumx_rj)); if (radial_delta == 0.) return false; double radial_intercept = (((sumxx_ri + sumxx_rj)*(sumy_ri + sumy_rj)) - ((sumx_ri + sumx_rj)*(sumxy_ri + sumxy_rj)))/radial_delta; double radial_slope = (((sum1_ri + sum1_rj)*(sumxy_ri + sumxy_rj)) - ((sumx_ri + sumx_rj)*(sumy_ri + sumy_rj)))/radial_delta; if (m_parent->m_makeHistograms) { m_parent->m_drdz->Fill(radial_slope); } if (m_parent->m_maxdrdz > 0. && fabs(radial_slope) > m_parent->m_maxdrdz) return false; double quantity = 0.; double quantityError2 = 0.; if (m_parent->m_mode == kModePhiy) { // phiy comes from track d(rphi)/dz quantity = (slope_i*radial_intercept_i) - (slope_j*radial_intercept_j); quantityError2 = (slopeError2_i)*pow(radial_intercept_i, 2) + (slopeError2_j)*pow(radial_intercept_j, 2); } else if (m_parent->m_mode == kModePhiPos || m_parent->m_mode == kModeRadius) { // phipos comes from phi intercepts quantity = intercept_i - intercept_j; quantityError2 = interceptError2_i + interceptError2_j; } else if (m_parent->m_mode == kModePhiz) { // phiz comes from the slope of rphi intercepts quantity = (intercept_i - intercept_j) * radial_intercept; quantityError2 = (interceptError2_i + interceptError2_j) * pow(radial_intercept, 2); } else assert(false); if (quantityError2 == 0.) return false; double slopeResid = ((slope_i*radial_intercept_i) - (slope_j*radial_intercept_j)) * 1000.; double slopeResidError2 = ((slopeError2_i)*pow(radial_intercept_i, 2) + (slopeError2_j)*pow(radial_intercept_j, 2)) * 1000. * 1000.; double offsetResid = (intercept_i - intercept_j) * radial_intercept * 10.; double offsetResidError2 = (interceptError2_i + interceptError2_j) * pow(radial_intercept, 2) * 10. * 10.; if (m_parent->m_truncateSlopeResid > 0. && fabs(slopeResid) > m_parent->m_truncateSlopeResid) return false; if (m_parent->m_truncateOffsetResid > 0. && fabs(offsetResid) > m_parent->m_truncateOffsetResid) return false; double weight = 1.; if (m_parent->m_useTrackWeights) weight = 1./quantityError2; // fill the running sums for this CSCPairResidualsConstraint m_sumN += 1; m_sum1 += weight; m_sumx += weight * (radial_intercept - m_averageRadius); m_sumy += weight * quantity; m_sumxx += weight * pow(radial_intercept - m_averageRadius, 2); m_sumyy += weight * quantity*quantity; m_sumxy += weight * (radial_intercept - m_averageRadius)*quantity; if (m_parent->m_makeHistograms) { double rphi_slope_i = slope_i * radial_intercept_i; double rphi_slope_j = slope_j * radial_intercept_j; if (m_parent->m_slopeFromTrackRefit) { m_parent->m_slope->Fill(rphi_slope_i); // == rphi_slope_j if (m_id_i.endcap() == 1 && m_id_i.station() == 4) m_parent->m_slope_MEp4->Fill(rphi_slope_i); if (m_id_i.endcap() == 1 && m_id_i.station() == 3) m_parent->m_slope_MEp3->Fill(rphi_slope_i); if (m_id_i.endcap() == 1 && m_id_i.station() == 2) m_parent->m_slope_MEp2->Fill(rphi_slope_i); if (m_id_i.endcap() == 1 && m_id_i.station() == 1) m_parent->m_slope_MEp1->Fill(rphi_slope_i); if (m_id_i.endcap() == 2 && m_id_i.station() == 1) m_parent->m_slope_MEm1->Fill(rphi_slope_i); if (m_id_i.endcap() == 2 && m_id_i.station() == 2) m_parent->m_slope_MEm2->Fill(rphi_slope_i); if (m_id_i.endcap() == 2 && m_id_i.station() == 3) m_parent->m_slope_MEm3->Fill(rphi_slope_i); if (m_id_i.endcap() == 2 && m_id_i.station() == 4) m_parent->m_slope_MEm4->Fill(rphi_slope_i); } else { m_parent->m_slope->Fill(rphi_slope_i); m_parent->m_slope->Fill(rphi_slope_j); if (m_id_i.endcap() == 1 && m_id_i.station() == 4) { m_parent->m_slope_MEp4->Fill(rphi_slope_i); m_parent->m_slope_MEp4->Fill(rphi_slope_j); } if (m_id_i.endcap() == 1 && m_id_i.station() == 3) { m_parent->m_slope_MEp3->Fill(rphi_slope_i); m_parent->m_slope_MEp3->Fill(rphi_slope_j); } if (m_id_i.endcap() == 1 && m_id_i.station() == 2) { m_parent->m_slope_MEp2->Fill(rphi_slope_i); m_parent->m_slope_MEp2->Fill(rphi_slope_j); } if (m_id_i.endcap() == 1 && m_id_i.station() == 1) { m_parent->m_slope_MEp1->Fill(rphi_slope_i); m_parent->m_slope_MEp1->Fill(rphi_slope_j); } if (m_id_i.endcap() == 2 && m_id_i.station() == 1) { m_parent->m_slope_MEm1->Fill(rphi_slope_i); m_parent->m_slope_MEm1->Fill(rphi_slope_j); } if (m_id_i.endcap() == 2 && m_id_i.station() == 2) { m_parent->m_slope_MEm2->Fill(rphi_slope_i); m_parent->m_slope_MEm2->Fill(rphi_slope_j); } if (m_id_i.endcap() == 2 && m_id_i.station() == 3) { m_parent->m_slope_MEm3->Fill(rphi_slope_i); m_parent->m_slope_MEm3->Fill(rphi_slope_j); } if (m_id_i.endcap() == 2 && m_id_i.station() == 4) { m_parent->m_slope_MEm4->Fill(rphi_slope_i); m_parent->m_slope_MEm4->Fill(rphi_slope_j); } } m_slopeResiduals->Fill(slopeResid); m_offsetResiduals->Fill(offsetResid); m_radial->Fill(radial_intercept); m_parent->m_slopeResiduals->Fill(slopeResid); m_parent->m_slopeResiduals_weighted->Fill(slopeResid, 1./slopeResidError2); m_parent->m_slopeResiduals_normalized->Fill(slopeResid/sqrt(slopeResidError2)); m_parent->m_offsetResiduals->Fill(offsetResid); m_parent->m_offsetResiduals_weighted->Fill(offsetResid, 1./offsetResidError2); m_parent->m_offsetResiduals_normalized->Fill(offsetResid/sqrt(offsetResidError2)); double ringbin = 0; if (m_id_i.endcap() == 2 && m_id_i.station() == 4 && m_id_i.ring() == 2) ringbin = 1.5; else if (m_id_i.endcap() == 2 && m_id_i.station() == 4 && m_id_i.ring() == 1) ringbin = 2.5; else if (m_id_i.endcap() == 2 && m_id_i.station() == 3 && m_id_i.ring() == 2) ringbin = 3.5; else if (m_id_i.endcap() == 2 && m_id_i.station() == 3 && m_id_i.ring() == 1) ringbin = 4.5; else if (m_id_i.endcap() == 2 && m_id_i.station() == 2 && m_id_i.ring() == 2) ringbin = 5.5; else if (m_id_i.endcap() == 2 && m_id_i.station() == 2 && m_id_i.ring() == 1) ringbin = 6.5; else if (m_id_i.endcap() == 2 && m_id_i.station() == 1 && m_id_i.ring() == 3) ringbin = 7.5; else if (m_id_i.endcap() == 2 && m_id_i.station() == 1 && m_id_i.ring() == 2) ringbin = 8.5; else if (m_id_i.endcap() == 2 && m_id_i.station() == 1 && m_id_i.ring() == 1) ringbin = 9.5; else if (m_id_i.endcap() == 2 && m_id_i.station() == 1 && m_id_i.ring() == 4) ringbin = 10.5; else if (m_id_i.endcap() == 1 && m_id_i.station() == 1 && m_id_i.ring() == 4) ringbin = 11.5; else if (m_id_i.endcap() == 1 && m_id_i.station() == 1 && m_id_i.ring() == 1) ringbin = 12.5; else if (m_id_i.endcap() == 1 && m_id_i.station() == 1 && m_id_i.ring() == 2) ringbin = 13.5; else if (m_id_i.endcap() == 1 && m_id_i.station() == 1 && m_id_i.ring() == 3) ringbin = 14.5; else if (m_id_i.endcap() == 1 && m_id_i.station() == 2 && m_id_i.ring() == 1) ringbin = 15.5; else if (m_id_i.endcap() == 1 && m_id_i.station() == 2 && m_id_i.ring() == 2) ringbin = 16.5; else if (m_id_i.endcap() == 1 && m_id_i.station() == 3 && m_id_i.ring() == 1) ringbin = 17.5; else if (m_id_i.endcap() == 1 && m_id_i.station() == 3 && m_id_i.ring() == 2) ringbin = 18.5; else if (m_id_i.endcap() == 1 && m_id_i.station() == 4 && m_id_i.ring() == 1) ringbin = 19.5; else if (m_id_i.endcap() == 1 && m_id_i.station() == 4 && m_id_i.ring() == 2) ringbin = 20.5; m_parent->m_occupancy->Fill(m_id_i.chamber() + 0.5, ringbin); } return true; }
void CSCPairResidualsConstraint::calculatePhi | ( | const TransientTrackingRecHit * | hit, |
double & | phi, | ||
double & | phierr2, | ||
bool | doRphi = false , |
||
bool | globalPhi = false |
||
) | [protected] |
Definition at line 535 of file CSCPairResidualsConstraint.cc.
References angle(), funct::cos(), CSCDetId, CSCDetId::endcap(), TrackingRecHit::geographicalId(), CSCLayer::geometry(), TransientTrackingRecHit::globalPosition(), CSCGeometry::layer(), TrackingRecHit::localPosition(), TrackingRecHit::localPositionError(), m_cscGeometry, M_PI, CSCLayerGeometry::nearestStrip(), PV3DBase< T, PVType, FrameType >::perp(), PV3DBase< T, PVType, FrameType >::phi(), pos, dttmaxenums::R, alignCSCRings::r, CSCDetId::ring(), funct::sin(), CSCDetId::station(), strip(), CSCLayerGeometry::stripAngle(), PV3DBase< T, PVType, FrameType >::x(), LocalError::xx(), LocalError::xy(), xy(), PV3DBase< T, PVType, FrameType >::y(), and LocalError::yy().
Referenced by addTrack(), and isFiducial().
{ align::LocalPoint pos = hit->localPosition(); DetId id = hit->geographicalId(); CSCDetId cscid = CSCDetId(id.rawId()); double r = 0.; if (globalPhi) { phi = hit->globalPosition().phi(); r = hit->globalPosition().perp(); // double sinAngle = sin(phi); // double cosAngle = cos(phi); // double xx = hit->globalPositionError().cxx(); // double xy = hit->globalPositionError().cyx(); // double yy = hit->globalPositionError().cyy(); // phierr2 = (xx*cosAngle*cosAngle + 2.*xy*sinAngle*cosAngle + yy*sinAngle*sinAngle) / (r*r); } else { // these constants are related to the way CSC chambers are built--- really constant! const double R_ME11 = 181.5; const double R_ME12 = 369.7; const double R_ME21 = 242.7; const double R_ME31 = 252.7; const double R_ME41 = 262.65; const double R_MEx2 = 526.5; double R = 0.; if (cscid.station() == 1 && (cscid.ring() == 1 || cscid.ring() == 4)) R = R_ME11; else if (cscid.station() == 1 && cscid.ring() == 2) R = R_ME12; else if (cscid.station() == 2 && cscid.ring() == 1) R = R_ME21; else if (cscid.station() == 3 && cscid.ring() == 1) R = R_ME31; else if (cscid.station() == 4 && cscid.ring() == 1) R = R_ME41; else if (cscid.station() > 1 && cscid.ring() == 2) R = R_MEx2; else assert(false); r = (pos.y() + R); phi = atan2(pos.x(), r); if (cscid.endcap() == 1 && cscid.station() >= 3) phi *= -1; else if (cscid.endcap() == 2 && cscid.station() <= 2) phi *= -1; } int strip = m_cscGeometry->layer(id)->geometry()->nearestStrip(pos); double angle = m_cscGeometry->layer(id)->geometry()->stripAngle(strip) - M_PI/2.; double sinAngle = sin(angle); double cosAngle = cos(angle); double xx = hit->localPositionError().xx(); double xy = hit->localPositionError().xy(); double yy = hit->localPositionError().yy(); phierr2 = (xx*cosAngle*cosAngle + 2.*xy*sinAngle*cosAngle + yy*sinAngle*sinAngle) / (r*r); if (doRphi) { phi *= r; phierr2 *= r*r; } }
void CSCPairResidualsConstraint::configure | ( | CSCOverlapsAlignmentAlgorithm * | parent | ) |
Definition at line 43 of file CSCPairResidualsConstraint.cc.
References m_id_i, m_id_j, m_identifier, CSCOverlapsAlignmentAlgorithm::m_makeHistograms, m_offsetResiduals, m_parent, m_radial, m_slopeResiduals, mergeVDriftHistosByStation::name, NULL, dbtoconf::parent, and indexGen::title.
{ m_parent = parent; if (m_parent->m_makeHistograms) { edm::Service<TFileService> tFileService; std::stringstream name, name2, name3, title; title << "i =" << m_id_i << " j =" << m_id_j; name << "slopeResiduals_" << m_identifier; m_slopeResiduals = tFileService->make<TH1F>(name.str().c_str(), title.str().c_str(), 300, -30., 30.); name2 << "offsetResiduals_" << m_identifier; m_offsetResiduals = tFileService->make<TH1F>(name2.str().c_str(), title.str().c_str(), 300, -30., 30.); name3 << "radial_" << m_identifier; m_radial = tFileService->make<TH1F>(name3.str().c_str(), title.str().c_str(), 700, 0., 700.); } else { m_slopeResiduals = NULL; m_offsetResiduals = NULL; m_radial = NULL; } }
bool CSCPairResidualsConstraint::dphidzFromTrack | ( | const std::vector< TrajectoryMeasurement > & | measurements, |
const reco::TransientTrack & | track, | ||
const TrackTransformer * | trackTransformer, | ||
double & | drphidz | ||
) | [protected] |
Definition at line 385 of file CSCPairResidualsConstraint.cc.
References angle(), CSCDetId::chamber(), TrajectoryStateCombiner::combine(), funct::cos(), MuonSubdetId::CSC, CSCDetId, CSCDetId::endcap(), TrajectoryStateOnSurface::globalDirection(), TrajectoryStateOnSurface::globalPosition(), TrajectoryStateOnSurface::isValid(), CSCOverlapsAlignmentAlgorithm::m_combineME11, m_id_i, m_id_j, CSCOverlapsAlignmentAlgorithm::m_minHitsPerChamber, CSCOverlapsAlignmentAlgorithm::m_minStationsInTrackRefits, m_parent, M_PI, m_propagator, m_Zplane, m_Zsurface, DetId::Muon, PV3DBase< T, PVType, FrameType >::perp(), PV3DBase< T, PVType, FrameType >::phi(), Propagator::propagate(), CSCDetId::ring(), funct::sin(), relativeConstraints::station, CSCDetId::station(), mergeVDriftHistosByStation::stations, pileupDistInMC::total, TrackTransformer::transform(), PV3DBase< T, PVType, FrameType >::x(), PV3DBase< T, PVType, FrameType >::y(), PV3DBase< T, PVType, FrameType >::z(), and z.
Referenced by addTrack().
{ // make a list of hits on all chambers *other* than the ones associated with this constraint std::map<int,int> stations; int total = 0; TransientTrackingRecHit::ConstRecHitContainer cscHits; for (std::vector<TrajectoryMeasurement>::const_iterator measurement = measurements.begin(); measurement != measurements.end(); ++measurement) { DetId id = measurement->recHit()->geographicalId(); if (id.det() == DetId::Muon && id.subdetId() == MuonSubdetId::CSC) { CSCDetId cscid(id.rawId()); CSCDetId chamberId(cscid.endcap(), cscid.station(), cscid.ring(), cscid.chamber(), 0); if (m_parent->m_combineME11 && cscid.station() == 1 && cscid.ring() == 4) chamberId = CSCDetId(cscid.endcap(), 1, 1, cscid.chamber(), 0); if (chamberId != m_id_i && chamberId != m_id_j) { int station = (cscid.endcap() == 1 ? 1 : -1) * cscid.station(); if (stations.find(station) == stations.end()) { stations[station] = 0; } stations[station]++; total++; cscHits.push_back(measurement->recHit()); } } } // for the fit to be reliable, it needs to cross multiple stations int numStations = 0; for (std::map<int,int>::const_iterator station = stations.begin(); station != stations.end(); ++station) { if (station->second >= m_parent->m_minHitsPerChamber) { numStations++; } } if (numStations >= m_parent->m_minStationsInTrackRefits) { // refit the track with these hits std::vector<Trajectory> trajectories = trackTransformer->transform(track, cscHits); if (!trajectories.empty()) { const std::vector<TrajectoryMeasurement> &measurements2 = trajectories.begin()->measurements(); // find the closest TSOS to the Z plane (on both sides) bool found_plus = false; bool found_minus = false; TrajectoryStateOnSurface tsos_plus, tsos_minus; for (std::vector<TrajectoryMeasurement>::const_iterator measurement = measurements2.begin(); measurement != measurements2.end(); ++measurement) { double z = measurement->recHit()->globalPosition().z(); if (z > m_Zplane) { if (!found_plus || fabs(z - m_Zplane) < fabs(tsos_plus.globalPosition().z() - m_Zplane)) { tsos_plus = TrajectoryStateCombiner().combine(measurement->forwardPredictedState(), measurement->backwardPredictedState()); } if (tsos_plus.isValid()) found_plus = true; } else { if (!found_minus || fabs(z - m_Zplane) < fabs(tsos_minus.globalPosition().z() - m_Zplane)) { tsos_minus = TrajectoryStateCombiner().combine(measurement->forwardPredictedState(), measurement->backwardPredictedState()); } if (tsos_minus.isValid()) found_minus = true; } } // propagate from the closest TSOS to the Z plane (from both sides, if possible) TrajectoryStateOnSurface from_plus, from_minus; if (found_plus) { from_plus = m_propagator->propagate(tsos_plus, *m_Zsurface); } if (found_minus) { from_minus = m_propagator->propagate(tsos_minus, *m_Zsurface); } // if you have two sides, merge them TrajectoryStateOnSurface merged; if (found_plus && from_plus.isValid() && found_minus && from_minus.isValid()) { merged = TrajectoryStateCombiner().combine(from_plus, from_minus); } else if (found_plus && from_plus.isValid()) { merged = from_plus; } else if (found_minus && from_minus.isValid()) { merged = from_minus; } else return false; // if, after all that, we have a good fit-and-propagation, report the direction if (merged.isValid()) { double angle = merged.globalPosition().phi() + M_PI/2.; GlobalVector direction = merged.globalDirection(); double dxdz = direction.x() / direction.z(); double dydz = direction.y() / direction.z(); dphidz = (dxdz*cos(angle) + dydz*sin(angle)) / merged.globalPosition().perp(); return true; } } // end if refit successful } // end if enough hits return false; }
double CSCPairResidualsConstraint::error | ( | ) | const [virtual] |
Reimplemented from CSCPairConstraint.
Definition at line 21 of file CSCPairResidualsConstraint.cc.
References delta, kModePhiPos, kModePhiy, kModePhiz, kModeRadius, CSCOverlapsAlignmentAlgorithm::m_errorFromRMS, CSCOverlapsAlignmentAlgorithm::m_mode, m_parent, m_sum1, m_sumN, m_sumx, m_sumxx, m_sumy, m_sumyy, funct::pow(), and mathSSE::sqrt().
{ if (m_parent->m_errorFromRMS) { assert(m_sum1 > 0.); return sqrt((m_sumyy/m_sum1) - pow(m_sumy/m_sum1, 2))/sqrt(m_sumN); } else { double delta = (m_sum1*m_sumxx) - (m_sumx*m_sumx); assert(delta > 0.); if (m_parent->m_mode == kModePhiy || m_parent->m_mode == kModePhiPos || m_parent->m_mode == kModeRadius) { return sqrt(m_sumxx/delta); } else if (m_parent->m_mode == kModePhiz) { return sqrt(m_sum1/delta); } else assert(false); } }
CSCDetId CSCPairResidualsConstraint::id_i | ( | ) | const [inline] |
Definition at line 46 of file CSCPairResidualsConstraint.h.
References m_id_i.
Referenced by CSCChamberFitter::radiusCorrection().
{ return m_id_i; };
CSCDetId CSCPairResidualsConstraint::id_j | ( | ) | const [inline] |
bool CSCPairResidualsConstraint::isFiducial | ( | std::vector< const TransientTrackingRecHit * > & | hits, |
bool | is_i | ||
) | [protected] |
Definition at line 592 of file CSCPairResidualsConstraint.cc.
References calculatePhi(), delta, CSCGeometry::idToDet(), m_cscGeometry, CSCOverlapsAlignmentAlgorithm::m_fiducial_ME11, CSCOverlapsAlignmentAlgorithm::m_fiducial_ME12, CSCOverlapsAlignmentAlgorithm::m_fiducial_MEx1, CSCOverlapsAlignmentAlgorithm::m_fiducial_MEx2, m_id_i, m_id_j, m_iZ1, m_iZ6, m_jZ1, m_jZ6, CSCOverlapsAlignmentAlgorithm::m_makeHistograms, m_parent, CSCOverlapsAlignmentAlgorithm::m_useHitWeights, phi, CSCDetId::ring(), slope, mathSSE::sqrt(), CSCDetId::station(), GeomDet::surface(), toLocal(), CommonMethods::weight(), and z.
Referenced by addTrack().
{ // these constants are related to the way CSC chambers are built--- really constant! const double cut_ME11 = 0.086; const double cut_ME12 = 0.090; const double cut_MEx1 = 0.180; const double cut_MEx2 = 0.090; double sum1 = 0.; double sumx = 0.; double sumy = 0.; double sumxx = 0.; double sumxy = 0.; for (std::vector<const TransientTrackingRecHit*>::const_iterator hit = hits.begin(); hit != hits.end(); ++hit) { double phi, phierr2; calculatePhi(*hit, phi, phierr2); double z = (is_i ? m_cscGeometry->idToDet(m_id_i)->surface() : m_cscGeometry->idToDet(m_id_j)->surface()).toLocal((*hit)->globalPosition()).z(); if (m_parent->m_makeHistograms) { if (m_id_i.station() == 1 && (m_id_i.ring() == 1 || m_id_i.ring() == 4)) { m_parent->m_fiducial_ME11->Fill(fabs(phi), sqrt(phierr2)); } else if (m_id_i.station() == 1 && m_id_i.ring() == 2) { m_parent->m_fiducial_ME12->Fill(fabs(phi), sqrt(phierr2)); } else if (m_id_i.station() > 1 && m_id_i.ring() == 1) { m_parent->m_fiducial_MEx1->Fill(fabs(phi), sqrt(phierr2)); } else if (m_id_i.station() > 1 && m_id_i.ring() == 2) { m_parent->m_fiducial_MEx2->Fill(fabs(phi), sqrt(phierr2)); } } double weight = 1.; if (m_parent->m_useHitWeights) weight = 1./phierr2; sum1 += weight; sumx += weight * z; sumy += weight * phi; sumxx += weight * z*z; sumxy += weight * z*phi; } double delta = (sum1*sumxx) - (sumx*sumx); if (delta == 0.) return false; double intercept = ((sumxx*sumy) - (sumx*sumxy))/delta; double slope = ((sum1*sumxy) - (sumx*sumy))/delta; double phi1 = intercept + slope*(is_i ? m_iZ1 : m_jZ1); double phi6 = intercept + slope*(is_i ? m_iZ6 : m_jZ6); if (m_id_i.station() == 1 && (m_id_i.ring() == 1 || m_id_i.ring() == 4)) { return (fabs(phi1) < cut_ME11 && fabs(phi6) < cut_ME11); } else if (m_id_i.station() == 1 && m_id_i.ring() == 2) { return (fabs(phi1) < cut_ME12 && fabs(phi6) < cut_ME12); } else if (m_id_i.station() > 1 && m_id_i.ring() == 1) { return (fabs(phi1) < cut_MEx1 && fabs(phi6) < cut_MEx1); } else if (m_id_i.station() > 1 && m_id_i.ring() == 2) { return (fabs(phi1) < cut_MEx2 && fabs(phi6) < cut_MEx2); } else assert(false); }
double CSCPairResidualsConstraint::radius | ( | bool | is_i | ) | const [inline] |
Definition at line 49 of file CSCPairResidualsConstraint.h.
References CSCGeometry::idToDet(), m_cscGeometry, m_id_i, m_id_j, GloballyPositioned< T >::position(), and GeomDet::surface().
Referenced by CSCChamberFitter::radiusCorrection().
void CSCPairResidualsConstraint::read | ( | std::vector< std::ifstream * > & | input, |
std::vector< std::string > & | filenames | ||
) |
Definition at line 488 of file CSCPairResidualsConstraint.cc.
References Exception, lut2db_cfg::filename, CSCPairConstraint::i(), CSCPairConstraint::j(), CSCPairConstraint::m_i, m_identifier, CSCPairConstraint::m_j, m_sum1, m_sumN, m_sumx, m_sumxx, m_sumxy, m_sumy, m_sumyy, and mergeVDriftHistosByStation::name.
{ m_sumN = 0; m_sum1 = 0.; m_sumx = 0.; m_sumy = 0.; m_sumxx = 0.; m_sumyy = 0.; m_sumxy = 0.; std::vector<std::ifstream*>::const_iterator inputiter = input.begin(); std::vector<std::string>::const_iterator filename = filenames.begin(); for (; inputiter != input.end(); ++inputiter, ++filename) { int linenumber = 0; bool touched = false; while (!(*inputiter)->eof()) { linenumber++; std::string name, eoln; unsigned int identifier; int i, j; int sumN; double sum1, sumx, sumy, sumxx, sumyy, sumxy; (**inputiter) >> name >> identifier >> i >> j >> sumN >> sum1 >> sumx >> sumy >> sumxx >> sumyy >> sumxy >> eoln; if (!(*inputiter)->eof() && (name != "CSCPairResidualsConstraint" || eoln != "EOLN")) throw cms::Exception("CorruptTempFile") << "Temporary file " << *filename << " is incorrectly formatted on line " << linenumber << std::endl; if (identifier == m_identifier) { if (i != m_i || j != m_j) throw cms::Exception("CorruptTempFile") << "Wrong (i,j) for CSCPairResidualsConstraint " << m_identifier << " (" << m_i << "," << m_j << ") in file " << *filename << " on line " << linenumber << std::endl; touched = true; m_sumN += sumN; m_sum1 += sum1; m_sumx += sumx; m_sumy += sumy; m_sumxx += sumxx; m_sumyy += sumyy; m_sumxy += sumxy; } } (*inputiter)->clear(); (*inputiter)->seekg(0, std::ios::beg); if (!touched) throw cms::Exception("CorruptTempFile") << "CSCPairResidualsConstraint " << m_identifier << " is missing from file " << *filename << std::endl; } }
void CSCPairResidualsConstraint::setPropagator | ( | const Propagator * | propagator | ) |
Definition at line 89 of file CSCPairResidualsConstraint.cc.
References m_propagator, and LargeD0_PixelPairStep_cff::propagator.
{ m_propagator = propagator; }
void CSCPairResidualsConstraint::setZplane | ( | const CSCGeometry * | cscGeometry | ) |
Definition at line 68 of file CSCPairResidualsConstraint.cc.
References newFWLiteAna::build, CSCDetId::chamber(), CSCDetId::endcap(), CSCGeometry::idToDet(), m_averageRadius, m_cscGeometry, m_id_i, m_id_j, m_iZ, m_iZ1, m_iZ6, m_jZ, m_jZ1, m_jZ6, m_Zplane, m_Zsurface, GloballyPositioned< T >::position(), CSCDetId::ring(), CSCDetId::station(), GeomDet::surface(), GloballyPositioned< T >::toLocal(), and z.
{ m_cscGeometry = cscGeometry; m_Zplane = (m_cscGeometry->idToDet(m_id_i)->surface().position().z() + m_cscGeometry->idToDet(m_id_j)->surface().position().z()) / 2.; m_averageRadius = (m_cscGeometry->idToDet(m_id_i)->surface().position().perp() + m_cscGeometry->idToDet(m_id_j)->surface().position().perp()) / 2.; m_iZ = m_cscGeometry->idToDet(m_id_i)->surface().position().z(); m_jZ = m_cscGeometry->idToDet(m_id_j)->surface().position().z(); CSCDetId i1(m_id_i.endcap(), m_id_i.station(), m_id_i.ring(), m_id_i.chamber(), 1); CSCDetId i6(m_id_i.endcap(), m_id_i.station(), m_id_i.ring(), m_id_i.chamber(), 6); CSCDetId j1(m_id_j.endcap(), m_id_j.station(), m_id_j.ring(), m_id_j.chamber(), 1); CSCDetId j6(m_id_j.endcap(), m_id_j.station(), m_id_j.ring(), m_id_j.chamber(), 6); m_iZ1 = m_cscGeometry->idToDet(m_id_i)->surface().toLocal(m_cscGeometry->idToDet(i1)->surface().position()).z(); m_iZ6 = m_cscGeometry->idToDet(m_id_i)->surface().toLocal(m_cscGeometry->idToDet(i6)->surface().position()).z(); m_jZ1 = m_cscGeometry->idToDet(m_id_j)->surface().toLocal(m_cscGeometry->idToDet(j1)->surface().position()).z(); m_jZ6 = m_cscGeometry->idToDet(m_id_j)->surface().toLocal(m_cscGeometry->idToDet(j6)->surface().position()).z(); m_Zsurface = Plane::build(Plane::PositionType(0., 0., m_Zplane), Plane::RotationType()); }
bool CSCPairResidualsConstraint::valid | ( | ) | const [virtual] |
Reimplemented from CSCPairConstraint.
Definition at line 39 of file CSCPairResidualsConstraint.cc.
References CSCOverlapsAlignmentAlgorithm::m_minTracksPerOverlap, m_parent, and m_sumN.
Referenced by CSCChamberFitter::radiusCorrection().
{ return (m_sumN >= m_parent->m_minTracksPerOverlap); }
double CSCPairResidualsConstraint::value | ( | ) | const [virtual] |
Reimplemented from CSCPairConstraint.
Definition at line 9 of file CSCPairResidualsConstraint.cc.
References delta, kModePhiPos, kModePhiy, kModePhiz, kModeRadius, CSCOverlapsAlignmentAlgorithm::m_mode, m_parent, m_sum1, m_sumx, m_sumxx, m_sumxy, and m_sumy.
Referenced by CSCChamberFitter::radiusCorrection().
{ double delta = (m_sum1*m_sumxx) - (m_sumx*m_sumx); assert(delta > 0.); if (m_parent->m_mode == kModePhiy || m_parent->m_mode == kModePhiPos || m_parent->m_mode == kModeRadius) { return ((m_sumxx*m_sumy) - (m_sumx*m_sumxy))/delta; } else if (m_parent->m_mode == kModePhiz) { return ((m_sum1*m_sumxy) - (m_sumx*m_sumy))/delta; } else assert(false); }
void CSCPairResidualsConstraint::write | ( | std::ofstream & | output | ) |
Definition at line 482 of file CSCPairResidualsConstraint.cc.
References CSCPairConstraint::i(), CSCPairConstraint::j(), m_identifier, m_sum1, m_sumN, m_sumx, m_sumxx, m_sumxy, m_sumy, and m_sumyy.
double CSCPairResidualsConstraint::m_averageRadius [protected] |
Definition at line 71 of file CSCPairResidualsConstraint.h.
Referenced by addTrack(), and setZplane().
const CSCGeometry* CSCPairResidualsConstraint::m_cscGeometry [protected] |
Definition at line 72 of file CSCPairResidualsConstraint.h.
Referenced by calculatePhi(), isFiducial(), radius(), and setZplane().
CSCDetId CSCPairResidualsConstraint::m_id_i [protected] |
Definition at line 65 of file CSCPairResidualsConstraint.h.
Referenced by addTrack(), configure(), dphidzFromTrack(), id_i(), isFiducial(), radius(), and setZplane().
CSCDetId CSCPairResidualsConstraint::m_id_j [protected] |
Definition at line 65 of file CSCPairResidualsConstraint.h.
Referenced by addTrack(), configure(), dphidzFromTrack(), id_j(), isFiducial(), radius(), and setZplane().
unsigned int CSCPairResidualsConstraint::m_identifier [protected] |
Definition at line 64 of file CSCPairResidualsConstraint.h.
Referenced by configure(), read(), and write().
double CSCPairResidualsConstraint::m_iZ [protected] |
Definition at line 71 of file CSCPairResidualsConstraint.h.
Referenced by addTrack(), and setZplane().
double CSCPairResidualsConstraint::m_iZ1 [protected] |
Definition at line 71 of file CSCPairResidualsConstraint.h.
Referenced by isFiducial(), and setZplane().
double CSCPairResidualsConstraint::m_iZ6 [protected] |
Definition at line 71 of file CSCPairResidualsConstraint.h.
Referenced by isFiducial(), and setZplane().
double CSCPairResidualsConstraint::m_jZ [protected] |
Definition at line 71 of file CSCPairResidualsConstraint.h.
Referenced by addTrack(), and setZplane().
double CSCPairResidualsConstraint::m_jZ1 [protected] |
Definition at line 71 of file CSCPairResidualsConstraint.h.
Referenced by isFiducial(), and setZplane().
double CSCPairResidualsConstraint::m_jZ6 [protected] |
Definition at line 71 of file CSCPairResidualsConstraint.h.
Referenced by isFiducial(), and setZplane().
TH1F* CSCPairResidualsConstraint::m_offsetResiduals [protected] |
Definition at line 77 of file CSCPairResidualsConstraint.h.
Referenced by addTrack(), and configure().
Definition at line 69 of file CSCPairResidualsConstraint.h.
Referenced by addTrack(), configure(), dphidzFromTrack(), error(), isFiducial(), valid(), and value().
const Propagator* CSCPairResidualsConstraint::m_propagator [protected] |
Definition at line 73 of file CSCPairResidualsConstraint.h.
Referenced by dphidzFromTrack(), and setPropagator().
TH1F* CSCPairResidualsConstraint::m_radial [protected] |
Definition at line 78 of file CSCPairResidualsConstraint.h.
Referenced by addTrack(), and configure().
TH1F* CSCPairResidualsConstraint::m_slopeResiduals [protected] |
Definition at line 76 of file CSCPairResidualsConstraint.h.
Referenced by addTrack(), and configure().
double CSCPairResidualsConstraint::m_sum1 [protected] |
Definition at line 66 of file CSCPairResidualsConstraint.h.
Referenced by addTrack(), error(), read(), value(), and write().
int CSCPairResidualsConstraint::m_sumN [protected] |
Definition at line 67 of file CSCPairResidualsConstraint.h.
Referenced by addTrack(), error(), read(), valid(), and write().
double CSCPairResidualsConstraint::m_sumx [protected] |
Definition at line 66 of file CSCPairResidualsConstraint.h.
Referenced by addTrack(), error(), read(), value(), and write().
double CSCPairResidualsConstraint::m_sumxx [protected] |
Definition at line 66 of file CSCPairResidualsConstraint.h.
Referenced by addTrack(), error(), read(), value(), and write().
double CSCPairResidualsConstraint::m_sumxy [protected] |
Definition at line 66 of file CSCPairResidualsConstraint.h.
Referenced by addTrack(), read(), value(), and write().
double CSCPairResidualsConstraint::m_sumy [protected] |
Definition at line 66 of file CSCPairResidualsConstraint.h.
Referenced by addTrack(), error(), read(), value(), and write().
double CSCPairResidualsConstraint::m_sumyy [protected] |
Definition at line 66 of file CSCPairResidualsConstraint.h.
Referenced by addTrack(), error(), read(), and write().
double CSCPairResidualsConstraint::m_Zplane [protected] |
Definition at line 71 of file CSCPairResidualsConstraint.h.
Referenced by addTrack(), dphidzFromTrack(), and setZplane().
Definition at line 74 of file CSCPairResidualsConstraint.h.
Referenced by dphidzFromTrack(), and setZplane().