CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
MaxLikelihoodFit.cc
Go to the documentation of this file.
1 #include "../interface/MaxLikelihoodFit.h"
2 #include "RooRealVar.h"
3 #include "RooArgSet.h"
4 #include "RooRandom.h"
5 #include "RooDataSet.h"
6 #include "RooFitResult.h"
7 #include "RooSimultaneous.h"
8 #include "RooAddPdf.h"
9 #include "RooProdPdf.h"
10 #include "RooConstVar.h"
11 #include "RooPlot.h"
12 #include "RooTrace.h"
13 #include <RooMinimizer.h>
14 #include "TCanvas.h"
15 #include "TStyle.h"
16 #include "TH2.h"
17 #include "TFile.h"
18 #include <RooStats/ModelConfig.h>
19 #include "../interface/Combine.h"
20 #include "../interface/ProfileLikelihood.h"
21 #include "../interface/ProfiledLikelihoodRatioTestStatExt.h"
22 #include "../interface/CloseCoutSentry.h"
23 #include "../interface/utils.h"
24 
25 
26 #include <Math/MinimizerOptions.h>
27 
28 using namespace RooStats;
29 
30 std::string MaxLikelihoodFit::name_ = "";
31 std::string MaxLikelihoodFit::minos_ = "poi";
32 std::string MaxLikelihoodFit::out_ = ".";
33 bool MaxLikelihoodFit::makePlots_ = false;
35 std::string MaxLikelihoodFit::signalPdfNames_ = "shapeSig*";
36 std::string MaxLikelihoodFit::backgroundPdfNames_ = "shapeBkg*";
38 bool MaxLikelihoodFit::justFit_ = false;
39 bool MaxLikelihoodFit::noErrors_ = false;
41 
42 
44  FitterAlgoBase("MaxLikelihoodFit specific options")
45 {
46  options_.add_options()
47  ("minos", boost::program_options::value<std::string>(&minos_)->default_value(minos_), "Compute MINOS errors for: 'none', 'poi', 'all'")
48  ("out", boost::program_options::value<std::string>(&out_)->default_value(out_), "Directory to put output in")
49  ("plots", "Make plots")
50  ("rebinFactor", boost::program_options::value<float>(&rebinFactor_)->default_value(rebinFactor_), "Rebin by this factor before plotting (does not affect fitting!)")
51  ("signalPdfNames", boost::program_options::value<std::string>(&signalPdfNames_)->default_value(signalPdfNames_), "Names of signal pdfs in plots (separated by ,)")
52  ("backgroundPdfNames", boost::program_options::value<std::string>(&backgroundPdfNames_)->default_value(backgroundPdfNames_), "Names of background pdfs in plots (separated by ',')")
53  ("saveNormalizations", "Save post-fit normalizations of all components of the pdfs")
54  ("justFit", "Just do the S+B fit, don't do the B-only one, don't save output file")
55  ("noErrors", "Don't compute uncertainties on the best fit value")
56  ("initFromBonly", "Use the vlaues of the nuisance parameters from the background only fit as the starting point for the s+b fit")
57  ;
58 
59  // setup a few defaults
61 }
62 
64  // delete the Arrays used to fill the trees;
65  delete globalObservables_;
66  delete nuisanceParameters_;
67 }
68 
69 void MaxLikelihoodFit::setToyNumber(const int iToy){
70  currentToy_ = iToy;
71 }
72 void MaxLikelihoodFit::setNToys(const int iToy){
73  nToys = iToy;
74 }
75 void MaxLikelihoodFit::applyOptions(const boost::program_options::variables_map &vm)
76 {
77  applyOptionsBase(vm);
78  makePlots_ = vm.count("plots");
79  name_ = vm["name"].defaulted() ? std::string() : vm["name"].as<std::string>();
80  saveNormalizations_ = vm.count("saveNormalizations");
81  justFit_ = vm.count("justFit");
82  noErrors_ = vm.count("noErrors");
83  reuseParams_ = vm.count("initFromBonly");
84  if (justFit_) { out_ = "none"; makePlots_ = false; saveNormalizations_ = false; reuseParams_ = false;}
85  // For now default this to true;
86 }
87 
88 bool MaxLikelihoodFit::runSpecific(RooWorkspace *w, RooStats::ModelConfig *mc_s, RooStats::ModelConfig *mc_b, RooAbsData &data, double &limit, double &limitErr, const double *hint) {
89 
90  if (reuseParams_ && minos_!="none"){
91  std::cout << "Cannot reuse b-only fit params when running minos. Parameters will be reset when running S+B fit"<<std::endl;
92  reuseParams_=false;
93  }
94 
95  if (!justFit_ && out_ != "none"){
96  if (currentToy_ < 1){
97  fitOut.reset(TFile::Open((out_+"/mlfit"+name_+".root").c_str(), "RECREATE"));
98  createFitResultTrees(*mc_s);
99  }
100  }
101 
102  RooRealVar *r = dynamic_cast<RooRealVar *>(mc_s->GetParametersOfInterest()->first());
103 
104  TCanvas *c1 = 0;
105  if (makePlots_) {
106  utils::tdrStyle();
107  c1 = new TCanvas("c1","c1");
108  }
109 
110  // Make pre-plots before the fit
111  r->setVal(preFitValue_);
112  if (makePlots_) {
113  std::vector<RooPlot *> plots = utils::makePlots(*mc_s->GetPdf(), data, signalPdfNames_.c_str(), backgroundPdfNames_.c_str(), rebinFactor_);
114  for (std::vector<RooPlot *>::iterator it = plots.begin(), ed = plots.end(); it != ed; ++it) {
115  (*it)->Draw();
116  c1->Print((out_+"/"+(*it)->GetName()+"_prefit.png").c_str());
117  if (fitOut.get() && currentToy_< 1) fitOut->WriteTObject(*it, (std::string((*it)->GetName())+"_prefit").c_str());
118  }
119  }
120 
121 
122  // Determine pre-fit values of nuisance parameters
123  if (currentToy_ < 1){
124  const RooArgSet *nuis = mc_s->GetNuisanceParameters();
125  const RooArgSet *globalObs = mc_s->GetGlobalObservables();
126  if (!justFit_ && nuis && globalObs ) {
127  std::auto_ptr<RooAbsPdf> nuisancePdf(utils::makeNuisancePdf(*mc_s));
128  std::auto_ptr<RooDataSet> globalData(new RooDataSet("globalData","globalData", *globalObs));
129  globalData->add(*globalObs);
130  RooFitResult *res_prefit = 0;
131  {
132  CloseCoutSentry sentry(verbose < 2);
133  res_prefit = nuisancePdf->fitTo(*globalData,
134  RooFit::Save(1),
135  RooFit::Minimizer(ROOT::Math::MinimizerOptions::DefaultMinimizerType().c_str(), ROOT::Math::MinimizerOptions::DefaultMinimizerAlgo().c_str()),
136  RooFit::Strategy(minimizerStrategy_),
137  RooFit::Minos(minos_ == "all")
138  );
139  }
140  if (fitOut.get() ) fitOut->WriteTObject(res_prefit, "nuisances_prefit_res");
141  if (fitOut.get() ) fitOut->WriteTObject(nuis->snapshot(), "nuisances_prefit");
142 
143  nuisancePdf.reset();
144  globalData.reset();
145  delete res_prefit;
146 
147  } else if (nuis) {
148  if (fitOut.get() ) fitOut->WriteTObject(nuis->snapshot(), "nuisances_prefit");
149  }
150  }
151 
152  RooFitResult *res_b = 0, *res_s = 0;
153  const RooCmdArg &constCmdArg_s = withSystematics ? RooFit::Constrain(*mc_s->GetNuisanceParameters()) : RooFit::NumCPU(1); // use something dummy
154  const RooCmdArg &minosCmdArg = minos_ == "poi" ? RooFit::Minos(*mc_s->GetParametersOfInterest()) : RooFit::Minos(minos_ != "none");
155  w->loadSnapshot("clean");
156  r->setVal(0.0); r->setConstant(true);
157 
158  // Setup Nll before calling fits;
159  if (currentToy_<1) nll.reset(mc_s->GetPdf()->createNLL(data,constCmdArg_s,RooFit::Extended(mc_s->GetPdf()->canBeExtended())));
160  // Get the nll value on the prefit
161  double nll0 = nll->getVal();
162 
163  if (justFit_) {
164  // skip b-only fit
165  } else if (minos_ != "all") {
166  RooArgList minos;
167  res_b = doFit(*mc_s->GetPdf(), data, minos, constCmdArg_s, /*hesse=*/true,/*reuseNLL*/ true);
168  nll_bonly_=nll->getVal()-nll0;
169  } else {
170  CloseCoutSentry sentry(verbose < 2);
171  res_b = mc_s->GetPdf()->fitTo(data,
172  RooFit::Save(1),
173  RooFit::Minimizer(ROOT::Math::MinimizerOptions::DefaultMinimizerType().c_str(), ROOT::Math::MinimizerOptions::DefaultMinimizerAlgo().c_str()),
174  RooFit::Strategy(minimizerStrategy_),
175  RooFit::Extended(mc_s->GetPdf()->canBeExtended()),
176  constCmdArg_s, minosCmdArg
177  );
178  if (res_b) nll_bonly_ = nll->getVal() - nll0;
179 
180  }
181 
182  if (res_b) {
183  if (verbose > 1) res_b->Print("V");
184  if (fitOut.get()) {
185  if (currentToy_< 1) fitOut->WriteTObject(res_b,"fit_b");
186  setFitResultTrees(mc_s->GetNuisanceParameters(),nuisanceParameters_);
187  setFitResultTrees(mc_s->GetGlobalObservables(),globalObservables_);
188  fitStatus_ = res_b->status();
189  }
190  numbadnll_=res_b->numInvalidNLL();
191 
192  if (makePlots_) {
193  std::vector<RooPlot *> plots = utils::makePlots(*mc_b->GetPdf(), data, signalPdfNames_.c_str(), backgroundPdfNames_.c_str(), rebinFactor_);
194  for (std::vector<RooPlot *>::iterator it = plots.begin(), ed = plots.end(); it != ed; ++it) {
195  c1->cd(); (*it)->Draw();
196  c1->Print((out_+"/"+(*it)->GetName()+"_fit_b.png").c_str());
197  if (fitOut.get() && currentToy_< 1) fitOut->WriteTObject(*it, (std::string((*it)->GetName())+"_fit_b").c_str());
198  }
199  }
200 
201  if (saveNormalizations_ && currentToy_<1) {
202  RooArgSet *norms = new RooArgSet();
203  norms->setName("norm_fit_b");
204  getNormalizations(mc_s->GetPdf(), *mc_s->GetObservables(), *norms);
205  if (fitOut.get()) fitOut->WriteTObject(norms, "norm_fit_b");
206  delete norms;
207  }
208 
209  if (makePlots_ && currentToy_<1) {
210  TH2 *corr = res_b->correlationHist();
211  c1->SetLeftMargin(0.25); c1->SetBottomMargin(0.25);
212  corr->SetTitle("Correlation matrix of fit parameters");
213  gStyle->SetPaintTextFormat(res_b->floatParsFinal().getSize() > 10 ? ".1f" : ".2f");
214  gStyle->SetOptStat(0);
215  corr->SetMarkerSize(res_b->floatParsFinal().getSize() > 10 ? 2 : 1);
216  corr->Draw("COLZ TEXT");
217  c1->Print((out_+"/covariance_fit_b.png").c_str());
218  c1->SetLeftMargin(0.16); c1->SetBottomMargin(0.13);
219  if (fitOut.get()) fitOut->WriteTObject(corr, "covariance_fit_b");
220  }
221  }
222  else {
223  fitStatus_=-1;
224  numbadnll_=-1;
225  }
226  mu_=r->getVal();
227  if (t_fit_b_) t_fit_b_->Fill();
228  // no longer need res_b
229  delete res_b;
230 
231  if (!reuseParams_) w->loadSnapshot("clean"); // Reset, also ensures nll_prefit is same in call to doFit for b and s+b
232  r->setVal(preFitValue_); r->setConstant(false);
233  if (minos_ != "all") {
234  RooArgList minos; if (minos_ == "poi") minos.add(*r);
235  res_s = doFit(*mc_s->GetPdf(), data, minos, constCmdArg_s, /*hesse=*/!noErrors_,/*reuseNLL*/ true);
236  nll_sb_ = nll->getVal()-nll0;
237  } else {
238  CloseCoutSentry sentry(verbose < 2);
239  res_s = mc_s->GetPdf()->fitTo(data,
240  RooFit::Save(1),
241  RooFit::Minimizer(ROOT::Math::MinimizerOptions::DefaultMinimizerType().c_str(), ROOT::Math::MinimizerOptions::DefaultMinimizerAlgo().c_str()),
242  RooFit::Strategy(minimizerStrategy_),
243  RooFit::Extended(mc_s->GetPdf()->canBeExtended()),
244  constCmdArg_s, minosCmdArg
245  );
246  if (res_s) nll_sb_= nll->getVal()-nll0;
247 
248  }
249  if (res_s) {
250  limit = r->getVal();
251  limitErr = r->getError();
252  if (verbose > 1) res_s->Print("V");
253  if (fitOut.get()){
254  if (currentToy_<1) fitOut->WriteTObject(res_s, "fit_s");
255 
256  setFitResultTrees(mc_s->GetNuisanceParameters(),nuisanceParameters_);
257  setFitResultTrees(mc_s->GetGlobalObservables(),globalObservables_);
258  fitStatus_ = res_s->status();
259  numbadnll_ = res_s->numInvalidNLL();
260 
261  // Additionally store the nll_sb - nll_bonly (=0.5*q0)
263  }
264 
265  if (makePlots_) {
266  std::vector<RooPlot *> plots = utils::makePlots(*mc_s->GetPdf(), data, signalPdfNames_.c_str(), backgroundPdfNames_.c_str(), rebinFactor_);
267  for (std::vector<RooPlot *>::iterator it = plots.begin(), ed = plots.end(); it != ed; ++it) {
268  c1->cd(); (*it)->Draw();
269  c1->Print((out_+"/"+(*it)->GetName()+"_fit_s.png").c_str());
270  if (fitOut.get() && currentToy_< 1) fitOut->WriteTObject(*it, (std::string((*it)->GetName())+"_fit_s").c_str());
271  }
272  }
273 
274  if (saveNormalizations_&& currentToy_< 1) {
275  RooArgSet *norms = new RooArgSet();
276  norms->setName("norm_fit_s");
277  getNormalizations(mc_s->GetPdf(), *mc_s->GetObservables(), *norms);
278  if (fitOut.get() ) fitOut->WriteTObject(norms, "norm_fit_s");
279  delete norms;
280  }
281 
282  if (makePlots_&& currentToy_< 1) {
283  TH2 *corr = res_s->correlationHist();
284  c1->SetLeftMargin(0.25); c1->SetBottomMargin(0.25);
285  corr->SetTitle("Correlation matrix of fit parameters");
286  gStyle->SetPaintTextFormat(res_s->floatParsFinal().getSize() > 10 ? ".1f" : ".2f");
287  gStyle->SetOptStat(0);
288  corr->SetMarkerSize(res_s->floatParsFinal().getSize() > 10 ? 2 : 1);
289  corr->Draw("COLZ TEXT");
290  c1->Print((out_+"/covariance_fit_s.png").c_str());
291  c1->SetLeftMargin(0.16); c1->SetBottomMargin(0.13);
292  if (fitOut.get() ) fitOut->WriteTObject(corr, "covariance_fit_s");
293  }
294  } else {
295  fitStatus_=-1;
296  numbadnll_=-1;
297  nll_nll0_ = -1;
298  }
299  mu_=r->getVal();
300  if (t_fit_sb_) t_fit_sb_->Fill();
301 
302  if (res_s) {
303  RooRealVar *rf = dynamic_cast<RooRealVar*>(res_s->floatParsFinal().find(r->GetName()));
304  double bestFitVal = rf->getVal();
305 
306  double hiErr = +(rf->hasRange("err68") ? rf->getMax("err68") - bestFitVal : rf->getAsymErrorHi());
307  double loErr = -(rf->hasRange("err68") ? rf->getMin("err68") - bestFitVal : rf->getAsymErrorLo());
308  double maxError = std::max<double>(std::max<double>(hiErr, loErr), rf->getError());
309 
310  if (fabs(hiErr) < 0.001*maxError) hiErr = -bestFitVal + rf->getMax();
311  if (fabs(loErr) < 0.001*maxError) loErr = +bestFitVal - rf->getMin();
312 
313  double hiErr95 = +(do95_ && rf->hasRange("err95") ? rf->getMax("err95") - bestFitVal : 0);
314  double loErr95 = -(do95_ && rf->hasRange("err95") ? rf->getMin("err95") - bestFitVal : 0);
315 
316  limit = bestFitVal; limitErr = 0;
317  if (!noErrors_) Combine::commitPoint(/*expected=*/true, /*quantile=*/0.5);
318  limit = bestFitVal - loErr; limitErr = 0;
319  if (!noErrors_) Combine::commitPoint(/*expected=*/true, /*quantile=*/0.16);
320  limit = bestFitVal + hiErr; limitErr = 0;
321  if (!noErrors_) Combine::commitPoint(/*expected=*/true, /*quantile=*/0.84);
322  if (do95_ && rf->hasRange("err95") && !noErrors_) {
323  limit = rf->getMax("err95"); Combine::commitPoint(/*expected=*/true, /*quantile=*/0.975);
324  limit = rf->getMin("err95"); Combine::commitPoint(/*expected=*/true, /*quantile=*/0.025);
325  }
326 
327  limit = bestFitVal;
328  limitErr = maxError;
329  std::cout << "\n --- MaxLikelihoodFit ---" << std::endl;
330  std::cout << "Best fit " << r->GetName() << ": " << rf->getVal() << " "<< -loErr << "/+" << +hiErr << " (68% CL)" << std::endl;
331  if (do95_) {
332  std::cout << " " << r->GetName() << ": " << rf->getVal() << " "<< -loErr95 << "/+" << +hiErr95 << " (95% CL)" << std::endl;
333  }
334  } else {
335  std::cout << "\n --- MaxLikelihoodFit ---" << std::endl;
336  std::cout << "Fit failed." << std::endl;
337  }
338 
339  if (currentToy_==nToys-1 || nToys==0 ) {
340 
341  if (fitOut.get()) {
342  fitOut->cd();
343  t_fit_sb_->Write(); t_fit_b_->Write();
344  fitOut.release()->Close();
345  }
346 
347  }
348  bool fitreturn = (res_s!=0);
349  delete res_s;
350 
351  std::cout << "nll S+B -> "<<nll_sb_ << " nll B -> " << nll_bonly_ <<std::endl;
352  return fitreturn;
353 }
354 
355 void MaxLikelihoodFit::getNormalizations(RooAbsPdf *pdf, const RooArgSet &obs, RooArgSet &out) {
356  RooSimultaneous *sim = dynamic_cast<RooSimultaneous *>(pdf);
357  if (sim != 0) {
358  RooAbsCategoryLValue &cat = const_cast<RooAbsCategoryLValue &>(sim->indexCat());
359  for (int i = 0, n = cat.numBins((const char *)0); i < n; ++i) {
360  cat.setBin(i);
361  RooAbsPdf *pdfi = sim->getPdf(cat.getLabel());
362  if (pdfi) getNormalizations(pdfi, obs, out);
363  }
364  return;
365  }
366  RooProdPdf *prod = dynamic_cast<RooProdPdf *>(pdf);
367  if (prod != 0) {
368  RooArgList list(prod->pdfList());
369  for (int i = 0, n = list.getSize(); i < n; ++i) {
370  RooAbsPdf *pdfi = (RooAbsPdf *) list.at(i);
371  if (pdfi->dependsOn(obs)) getNormalizations(pdfi, obs, out);
372  }
373  return;
374  }
375  RooAddPdf *add = dynamic_cast<RooAddPdf *>(pdf);
376  if (add != 0) {
377  RooArgList list(add->coefList());
378  for (int i = 0, n = list.getSize(); i < n; ++i) {
379  RooAbsReal *coeff = (RooAbsReal *) list.at(i);
380  out.addOwned(*(new RooConstVar(coeff->GetName(), "", coeff->getVal())));
381  }
382  return;
383  }
384 }
385 
386 //void MaxLikelihoodFit::setFitResultTrees(const RooArgSet *args, std::vector<double> *vals){
387 void MaxLikelihoodFit::setFitResultTrees(const RooArgSet *args, double * vals){
388 
389  TIterator* iter(args->createIterator());
390  int count=0;
391 
392  for (TObject *a = iter->Next(); a != 0; a = iter->Next()) {
393  RooRealVar *rrv = dynamic_cast<RooRealVar *>(a);
394  std::string name = rrv->GetName();
395  vals[count]=rrv->getVal();
396  count++;
397  }
398  delete iter;
399  return;
400 }
401 
402 void MaxLikelihoodFit::createFitResultTrees(const RooStats::ModelConfig &mc){
403 
404  // Initiate the arrays to store parameters
405 
406  // create TTrees to store fit results:
407  t_fit_b_ = new TTree("tree_fit_b","tree_fit_b");
408  t_fit_sb_ = new TTree("tree_fit_sb","tree_fit_sb");
409 
410  t_fit_b_->Branch("fit_status",&fitStatus_,"fit_status/Int_t");
411  t_fit_sb_->Branch("fit_status",&fitStatus_,"fit_status/Int_t");
412 
413  t_fit_b_->Branch("mu",&mu_,"mu/Double_t");
414  t_fit_sb_->Branch("mu",&mu_,"mu/Double_t");
415 
416  t_fit_b_->Branch("numbadnll",&numbadnll_,"numbadnll/Int_t");
417  t_fit_sb_->Branch("numbadnll",&numbadnll_,"numbadnll/Int_t");
418 
419  t_fit_b_->Branch("nll_min",&nll_bonly_,"nll_min/Double_t");
420  t_fit_sb_->Branch("nll_min",&nll_sb_,"nll_min/Double_t");
421 
422  t_fit_sb_->Branch("nll_nll0",&nll_nll0_,"nll_nll0/Double_t");
423 
424  // fill the maps for the nuisances, and global observables
425  const RooArgSet *cons = mc.GetGlobalObservables();
426  const RooArgSet *nuis = mc.GetNuisanceParameters();
427 
428  globalObservables_ = new double[cons->getSize()];
429  nuisanceParameters_= new double[nuis->getSize()];
430 
431  int count=0;
432  TIterator* iter_c(cons->createIterator());
433  for (TObject *a = iter_c->Next(); a != 0; a = iter_c->Next()) {
434  RooRealVar *rrv = dynamic_cast<RooRealVar *>(a);
435  std::string name = rrv->GetName();
437  t_fit_sb_->Branch(name.c_str(),&(globalObservables_[count]),Form("%s/Double_t",name.c_str()));
438  t_fit_b_->Branch(name.c_str(),&(globalObservables_[count]),Form("%s/Double_t",name.c_str()));
439  count++;
440  }
441 
442  count = 0;
443  TIterator* iter_n(nuis->createIterator());
444  for (TObject *a = iter_n->Next(); a != 0; a = iter_n->Next()) {
445  RooRealVar *rrv = dynamic_cast<RooRealVar *>(a);
446  std::string name = rrv->GetName();
448  t_fit_sb_->Branch(name.c_str(),&(nuisanceParameters_[count])),Form("%s/Double_t",name.c_str());
449  t_fit_b_->Branch(name.c_str(),&(nuisanceParameters_[count]),Form("%s/Double_t",name.c_str()));
450  count++;
451  }
452  std::cout << "Created Branches" <<std::endl;
453  return;
454 }
void createFitResultTrees(const RooStats::ModelConfig &)
virtual void applyOptions(const boost::program_options::variables_map &vm)
void applyOptionsBase(const boost::program_options::variables_map &vm)
int i
Definition: DBlmapReader.cc:9
double * nuisanceParameters_
void setFitResultTrees(const RooArgSet *, double *)
std::vector< RooPlot * > makePlots(const RooAbsPdf &pdf, const RooAbsData &data, const char *signalSel=0, const char *backgroundSel=0, float rebinFactor=1.0)
make plots, if possible
Definition: utils.cc:403
static bool saveNormalizations_
virtual void setNToys(const int)
void tdrStyle()
set style for plots
Definition: tdrstyle.cc:4
bool withSystematics
Definition: Combine.cc:68
void add(const std::vector< const T * > &source, std::vector< const T * > &dest)
std::auto_ptr< TFile > fitOut
RooAbsPdf * makeNuisancePdf(RooStats::ModelConfig &model, const char *name="nuisancePdf")
Definition: utils.cc:200
static bool do95_
static bool reuseParams_
Definition: sim.h:19
static bool justFit_
static std::string backgroundPdfNames_
RooFitResult * doFit(RooAbsPdf &pdf, RooAbsData &data, RooRealVar &r, const RooCmdArg &constrain, bool doHesse=true, int ndim=1, bool reuseNLL=false)
static float rebinFactor_
static void commitPoint(bool expected, float quantile)
Save a point into the output tree. Usually if expected = false, quantile should be set to -1 (except ...
Definition: Combine.cc:557
static float preFitValue_
std::auto_ptr< RooAbsReal > nll
static bool noErrors_
static int minimizerStrategy_
JetCorrectorParameters corr
Definition: classes.h:9
virtual void setToyNumber(const int)
tuple out
Definition: dbtoconf.py:99
static std::string minos_
static bool makePlots_
virtual bool runSpecific(RooWorkspace *w, RooStats::ModelConfig *mc_s, RooStats::ModelConfig *mc_b, RooAbsData &data, double &limit, double &limitErr, const double *hint)
static std::string signalPdfNames_
dictionary args
char data[epos_bytes_allocation]
Definition: EPOS_Wrapper.h:82
static std::string out_
static std::string name_
double a
Definition: hdecay.h:121
tuple cout
Definition: gather_cfg.py:121
double * globalObservables_
boost::program_options::options_description options_
Definition: LimitAlgo.h:31
virtual const std::string & name() const
void getNormalizations(RooAbsPdf *pdf, const RooArgSet &obs, RooArgSet &out)
How EventSelector::AcceptEvent() decides whether to accept an event for output otherwise it is excluding the probing of A single or multiple positive and the trigger will pass if any such matching triggers are PASS or EXCEPTION[A criterion thatmatches no triggers at all is detected and causes a throw.] A single negative with an expectation of appropriate bit checking in the decision and the trigger will pass if any such matching triggers are FAIL or EXCEPTION A wildcarded negative criterion that matches more than one trigger in the trigger list("!*","!HLTx*"if it matches 2 triggers or more) will accept the event if all the matching triggers are FAIL.It will reject the event if any of the triggers are PASS or EXCEPTION(this matches the behavior of"!*"before the partial wildcard feature was incorporated).Triggers which are in the READY state are completely ignored.(READY should never be returned since the trigger paths have been run
T w() const