CMS 3D CMS Logo

Public Member Functions | Public Attributes | Private Attributes

CMSCGEN Class Reference

#include <CMSCGEN.h>

List of all members.

Public Member Functions

 CMSCGEN ()
double cos_theta ()
double dNdEmudEnu (double Enu, double Emu, double theta)
double flux ()
int generate ()
int generateNuMu ()
int initialize (double, double, double, double, CLHEP::HepRandomEngine *, bool, bool)
int initialize (double, double, double, double, int, bool, bool)
int initializeNuMu (double, double, double, double, double, double, double, double, double, CLHEP::HepRandomEngine *)
int initializeNuMu (double, double, double, double, double, double, double, double, double, int)
double momentum_times_charge ()
 ~CMSCGEN ()

Public Attributes

double AR
double dNdEmudEnuMax
double negabs
double negfrac
double ProdAlt
double Rnunubar
double sigma

Private Attributes

double b0
double b0c [3]
double b1
double b1c [3]
double b2
double b2c [3]
double c
double c1
double c2
double cemax
double cmax
double cmax_in
double cmax_max
double cmax_min
double cmin
double cmin_in
double corr [101]
bool delRanGen
double enumax
double enumin
int initialization
double integrated_flux
double Lfac
double Lmax
double Lmin
double pe [9]
double pmax
double pmin
double pmin_max
double pmin_min
double pq
CLHEP::HepRandomEngine * RanGen2
bool TIFOnly_const
bool TIFOnly_lin
double xemax
double xemin

Detailed Description

Definition at line 30 of file CMSCGEN.h.


Constructor & Destructor Documentation

CMSCGEN::CMSCGEN ( )

Definition at line 13 of file CMSCGEN.cc.

                 : initialization(0), RanGen2(0), delRanGen(false)
{
}
CMSCGEN::~CMSCGEN ( )

Definition at line 17 of file CMSCGEN.cc.

References delRanGen, and RanGen2.

{
  if (delRanGen)
    delete RanGen2;
}

Member Function Documentation

double CMSCGEN::cos_theta ( )

Definition at line 462 of file CMSCGEN.cc.

References c, gather_cfg::cout, and initialization.

Referenced by CosmicMuonGenerator::nextEvent().

{
  
  if(initialization==1)
    { 
      // here convert between coordinate systems:
      return -c;
    }
  else
    {
      std::cout << " >>> CMSCGEN <<< warning: not initialized" << std::endl;
      return -0.9999;
    }

}
double CMSCGEN::dNdEmudEnu ( double  Enu,
double  Emu,
double  theta 
)

Definition at line 577 of file CMSCGEN.cc.

References alpha, AR, funct::cos(), epsilon, N_A, funct::pow(), ProdAlt, Rearth, sigma, funct::sin(), and SurfaceOfEarth.

Referenced by generateNuMu(), and initializeNuMu().

                                                                {
  double cthetaNu = 1. + ctheta; //swap cos(theta) from down to up range
  double thetas = asin(sin(acos(cthetaNu))*(Rearth-SurfaceOfEarth)/(Rearth+ProdAlt));
  double costhetas = cos(thetas);
  double dNdEnudW = 0.0286*pow(Enu,-2.7)*(1./(1.+(6.*Enu*costhetas)/115.)+0.213/(1.+(1.44*Enu*costhetas)/850.)); //cm^2*s*sr*GeV
  double dNdEmudEnu = N_A*sigma/alpha*dNdEnudW*1./(1.+Emu/epsilon)*
    (Enu-Emu+AR/3*(Enu*Enu*Enu-Emu*Emu*Emu)/(Enu*Enu));
  return dNdEmudEnu;
}
double CMSCGEN::flux ( )

Definition at line 478 of file CMSCGEN.cc.

References gather_cfg::cout, initialization, and integrated_flux.

{
  
  if(initialization==1)
    { 
      return integrated_flux;
    }
  else
    {
      std::cout << " >>> CMSCGEN <<< warning: not initialized" << std::endl;
      return -0.9999;
    }
  
}
int CMSCGEN::generate ( )

Definition at line 256 of file CMSCGEN.cc.

References b0, b0c, b1, b1c, b2, b2c, c, cemax, cmax, cmin, corr, gather_cfg::cout, alignCSCRings::e, initialization, gen::k, dttmaxenums::L, Lfac, Lmin, siStripFEDMonitor_P5_cff::Max, siStripFEDMonitor_P5_cff::Min, pe, pq, diffTwoXMLs::r1, diffTwoXMLs::r2, RanGen2, mathSSE::sqrt(), TIFOnly_const, TIFOnly_lin, xemax, xemin, and z.

Referenced by CosmicMuonGenerator::nextEvent().

{

  if(initialization==0)
    {
      std::cout << " >>> CMSCGEN <<< warning: not initialized" << std::endl;
      return -1;
    }
  
  // note: use historical notation (fortran version l3cgen.f)

  //
  // +++ determine x = 1/e**2
  //
  //  explanation: the energy distribution 
  //        dn/d(1/e**2) = dn/de * e**3 = dn/dlog10(e) * e**2
  //     is parametrized by a polynomial. accordingly xe = 1/e**2 is sampled
  //     and e calculated 
  //
  //     need precise random variable with high precison since for 
  //     emin = 3 GeV energies around 3000 GeV are very rare!
  //

  double r1, r2, r3;
  double xe, e, ce, L, L2;
  int k;    
  double prob; 
  
  double c_max;
  double z, z_max;
  
  while (1)
    {
      prob = RanGen2->flat();
      r1 = double(prob);
      prob = RanGen2->flat();
      r2 = double(prob);
      
      xe = xemin+r1*(xemax-xemin);
      
      if( (1./sqrt(xe)<3) && TIFOnly_const == true) { //generate constant energy dependence for E<2GeV, only used for TIF
        //compute constant to match to CMSCGEN spectrum
        e=3.;      
        L = log10(e);
        L2 = L*L;
        
        ce = (((((((pe[8]*L
                    +pe[7])*L
                   +pe[6])*L
                  +pe[5])*L
                 +pe[4])*L
                +pe[3])*L
               +pe[2])*L
              +pe[1])*L
          +pe[0];
        
        k = int ((L-Lmin)*Lfac+1.);
        k = TMath::Max(1,TMath::Min(k,100));
        ce = ce * corr[k];
        
        e = 1./sqrt(xe);  
        if(r2 < ( e*e*e*ce/(cemax*3.*3.*3.) )) break;
      
      }else if( (1./sqrt(xe)<3) && TIFOnly_lin == true) { //generate linear energy dependence for E<2GeV, only used for TIF
        //compute constant to match to CMSCGEN spectrum
        e=3.;      
        L = log10(e);
        L2 = L*L;
        
        ce = (((((((pe[8]*L
                    +pe[7])*L
                   +pe[6])*L
                  +pe[5])*L
                 +pe[4])*L
                +pe[3])*L
               +pe[2])*L
              +pe[1])*L
          +pe[0];
      
        k = int ((L-Lmin)*Lfac+1.);
        k = TMath::Max(1,TMath::Min(k,100));
        ce = ce * corr[k];
      
        e = 1./sqrt(xe);  
        if(r2 < ( e*e*e*e*ce/(cemax*3.*3.*3.*3.) )) break;
      
      }else{ //this is real CMSCGEN energy-dependence

        e = 1./sqrt(xe);       
        L = log10(e);
        L2 = L*L;
        
        ce = (((((((pe[8]*L
                    +pe[7])*L
                   +pe[6])*L
                  +pe[5])*L
                 +pe[4])*L
                +pe[3])*L
               +pe[2])*L
              +pe[1])*L
          +pe[0];
        
        k = int ((L-Lmin)*Lfac+1.);
        k = TMath::Max(1,TMath::Min(k,100));
        ce = ce * corr[k];
        
        if(cemax*r2 < ce) break;

      } //end of CMSCGEN energy-dependence
    } //end of while
  
  pq = e;
  
  //
  // +++ charge ratio 1.280
  //
  prob = RanGen2->flat();
  r3 = double(prob);
  
  double charg = 1.;
  if(r3 < 0.439) charg=-1.;
  
  pq = pq*charg;
  
  //
  //  +++ determine cos(angle)
  //
  //  simple trial and rejection method
  //
  
  // first calculate energy dependent coefficients b_i

  if(TIFOnly_const == true && e<3.){ //forTIF (when E<2GeV use angles of 2GeV cosmic)
    L = log10(3.);
    L2 = L*L;
  }
  if(TIFOnly_lin == true && e<3.){ //forTIF (when E<2GeV use angles of 2GeV cosmic)
    L = log10(3.);
    L2 = L*L; 
  }
  
  b0 = b0c[0] + b0c[1] * L + b0c[2]* L2;
  b1 = b1c[0] + b1c[1] * L + b1c[2]* L2;
  b2 = b2c[0] + b2c[1] * L + b2c[2]* L2;
  
  //
  // need to know the maximum of z(c)
  //
  // first calculate c for which c distribution z(c) = maximum 
  // 
  // (note: maximum of curve is NOT always at c = -1, but never at c = -0.1)   
  //
  
  // try extremal value (from z'(c) = 0), but only if z''(c) < 0  
  //
  // z'(c) = b1 + b2 * c   =>  at c_max = - b1 / (2 b_2) is z'(c) = 0
  //
  // z''(c) = b2 
  
  c_max = -1.;
  
  if(b2<0.) {
    c_max = - 0.5 * b1/b2;
    if(c_max < -1.) c_max = -1.;
    if(c_max > -0.1) c_max = -0.1;
  } 
  
  z_max = b0 + b1 * c_max + b2 * c_max * c_max;

  // again cut out explicitly regions of zero flux 
  double c_cut = -0.42 + L*0.35;
  if (c_cut > cmax) c_cut = cmax; 
  
  // now we throw dice:
  
  while (1)
    {
      prob = RanGen2->flat();
      r1 = double(prob);
      prob = RanGen2->flat();
      r2 = double(prob);
      c = cmin + (c_cut-cmin)*r1;    
      z = b0 + b1 * c + b2 * c*c;
      if (z > z_max*r2) break;
    }    
  
  return 0;
  
}
int CMSCGEN::generateNuMu ( )

Definition at line 588 of file CMSCGEN.cc.

References c, cmax, cmin, gather_cfg::cout, dNdEmudEnu(), dNdEmudEnuMax, enumax, enumin, initialization, pmax, pmin, pq, RanGen2, scaleCards::rate, and Rnunubar.

Referenced by CosmicMuonGenerator::nextEvent().

                          {
  if(initialization==0) 
    {
      std::cout << " >>> CMSCGEN <<< warning: not initialized" << std::endl;
      return -1;
    }
  
  double ctheta, Emu;
  while (1) {
    ctheta = cmin + (cmax-cmin)*RanGen2->flat();
    Emu = pmin + (pmax-pmin)*RanGen2->flat();
    double Enu = enumin + (enumax-enumin)*RanGen2->flat();
    double rate = dNdEmudEnu(Enu, Emu, ctheta);
    if (rate > dNdEmudEnuMax*RanGen2->flat()) break;
  }

  c = -ctheta; //historical sign convention

  pq = Emu;
  //
  // +++ nu/nubar ratio (~1.2)
  //
  double charg = 1.; //nubar -> mu+
  if (RanGen2->flat() > Rnunubar/(1.+Rnunubar))
    charg = -1.; //neutrino -> mu-

  pq = pq*charg;
 
  
  //int flux += this event rate

  return 1;
}
int CMSCGEN::initialize ( double  pmin_in,
double  pmax_in,
double  thetamin_in,
double  thetamax_in,
int  RanSeed,
bool  TIFOnly_constant,
bool  TIFOnly_linear 
)

Definition at line 247 of file CMSCGEN.cc.

References delRanGen, and initialize().

{
  CLHEP::HepRandomEngine *rnd = new CLHEP::HepJamesRandom;
  //set seed for Random Generator (seed can be controled by config-file), P.Biallass 2006
  rnd->setSeed(RanSeed, 0);
  delRanGen = true;
  return initialize(pmin_in, pmax_in, thetamin_in, thetamax_in, rnd, TIFOnly_constant, TIFOnly_linear);
}
int CMSCGEN::initialize ( double  pmin_in,
double  pmax_in,
double  thetamin_in,
double  thetamax_in,
CLHEP::HepRandomEngine *  rnd,
bool  TIFOnly_constant,
bool  TIFOnly_linear 
)

Definition at line 23 of file CMSCGEN.cc.

References b0, b0c, b1, b1c, b2, b2c, c1, c2, cemax, cmax, cmax_in, cmax_max, cmax_min, cmin, cmin_in, corr, gather_cfg::cout, delRanGen, initialization, integrated_flux, gen::k, dttmaxenums::L, Lfac, Lmax, Lmin, AlCaHLTBitMon_ParallelJobs::p, p1, p2, pe, pmax, pmin, pmin_max, pmin_min, funct::pow(), RanGen2, alignCSCRings::s, TIFOnly_const, TIFOnly_lin, xemax, and xemin.

Referenced by CosmicMuonGenerator::initialize(), and initialize().

{
  if (delRanGen)
    delete RanGen2;
  RanGen2 = rnd;
  delRanGen = false;

  //set bools for TIFOnly options (E<2GeV with unphysical energy dependence)
  TIFOnly_const = TIFOnly_constant;
  TIFOnly_lin = TIFOnly_linear;


  // units: GeV

  // WARNING: coordinate system: 
  //   - to outside world define z axis downwards, i.e.
  //          muon coming from above, vertically: cos = 1
  //      (used for backward compatibility)
  //   - internally use frame with z axis upwards, i.e.
  //          muon coming from above, vertically: cos = -1
  //     (corresponds to CMS note definition)

  //set cmin and cmax, here convert between coordinate systems:
  cmin_in = - TMath::Cos(thetamin_in);//input angle already converted from Deg to Rad!
  cmax_in = - TMath::Cos(thetamax_in);//input angle already converted from Deg to Rad!


  //allowed energy range
  pmin_min = 3.;
  //pmin_max = 100.;
  pmin_max = 3000.;
  pmax = 3000.;
  //allowed angular range
  //cmax_max = -0.1,
  cmax_max = -0.01,
  cmax_min = -0.9999;

 if(TIFOnly_const == true || TIFOnly_lin == true) pmin_min = 0.; //forTIF

  // set pmin  
  if(pmin_in < pmin_min || pmin_in > pmin_max){ 
    std::cout << " >>> CMSCGEN.initialize <<< warning: illegal pmin_in =" << pmin_in;
    return(-1);
  } else if(pmax_in > pmax ){
    std::cout << " >>> CMSCGEN.initialize <<< warning: illegal pmax_in =" << pmax_in;
    return(-1);
  }else{     
    pmin = pmin_in;
    pmax = pmax_in;
    xemax = 1./(pmin*pmin);
    xemin = 1./(pmax*pmax); 
  }


  // set cmax and cmin
  if(cmax_in < cmax_min || cmax_in > cmax_max)
    { 
      std::cout << " >>> CMSCGEN.initialize <<< warning: illegal cmax_in =" << cmax_in;
      return(-1);
    }
  else 
    {
      cmax = cmax_in;
      cmin = cmin_in;
    }


  initialization = 1;

  if(TIFOnly_const == true || TIFOnly_lin == true) pmin_min = 3.; //forTIF

  //  Lmin = log10(pmin_min);
  Lmin = log10(pmin);
  Lmax = log10(pmax);
  Lfac = 100./(Lmax-Lmin);

  //
  // +++ coefficients for energy spectrum
  //

  pe[0] = -1.;
  pe[1] = 6.22176;
  pe[2] = -13.9404;
  pe[3] = 18.1643;
  pe[4] = -9.22784;
  pe[5] = 1.99234;
  pe[6] = -0.156434;
  pe[7] = 0.;
  pe[8] = 0.;

  //
  // +++ coefficients for cos theta distribution
  //

  b0c[0] = 0.6639;
  b0c[1] = -0.9587;
  b0c[2] = 0.2772;
  
  b1c[0] = 5.820;
  b1c[1] = -6.864;
  b1c[2] = 1.367;
  
  b2c[0] = 10.39;
  b2c[1] = -8.593;
  b2c[2] = 1.547;
  
  //
  // +++ calculate correction table for different cos theta dependence!
  //     reference range: c1  to  c2 
  //
  //  explanation: the parametrization of the energy spectrum as used above
  //    is the integral over the c = cos(zenith angle) range -1...-0.1 
  //    since the c distribution depends on energy, the integrated energy
  //    spectrum depends on this range. Here a correction factor is determined,
  //    based on the linear c dependence of the c distribution.
  //    The correction is calculated for 100 bins in L = log10(energy).
  //
  // +++ in same loop calculate integrated flux 
  //      (integrated over angles and momentum)

  c1 = -1.;
  c2 = -0.1;
  
  double cemax0 = 1.0;
  double L, L2; 
  double s;
  double p, p1, p2;
  double integral_here, integral_ref;
  double c_cut;

  integrated_flux = 0.;
  
  for(int k=1; k<=100; k++)
    {
      L = Lmin + (k-0.5)/Lfac;
      L2 = L*L;   
      p = pow(10,L);
      p1 = pow(10,L-0.5/Lfac);
      p2 = pow(10,L+0.5/Lfac);
      
      b0 = b0c[0] + b0c[1] * L + b0c[2]* L2;
      b1 = b1c[0] + b1c[1] * L + b1c[2]* L2;
      b2 = b2c[0] + b2c[1] * L + b2c[2]* L2;

      // cut out explicitly regions of zero flux 
      // (for low momentum and near horizontal showers)
      // since parametrization for z distribution doesn't work here
      // (can become negative) 
      
      c_cut = -0.42 + L*0.35;
      
      if (c_cut > c2) c_cut = c2; 
      
      integral_ref = b0 * (c_cut - c1) 
        + b1/2. * (c_cut*c_cut - c1*c1) 
        + b2/3. * (c_cut*c_cut*c_cut - c1*c1*c1);
      
      if (c_cut > cmax) c_cut = cmax; 
      
      integral_here = b0 * (c_cut - cmin) 
        + b1/2. * (c_cut*c_cut - cmin*cmin) 
        + b2/3. * (c_cut*c_cut*c_cut - cmin*cmin*cmin);
  
      corr[k] = integral_here/integral_ref;
      
      s = (((((((pe[8]*L
                 +pe[7])*L
                +pe[6])*L
               +pe[5])*L
              +pe[4])*L
             +pe[3])*L
            +pe[2])*L
           +pe[1])*L
        +pe[0];
    
      integrated_flux += 1./pow(p,3) * s * corr[k] * (p2-p1);

      /*
        std::cout << k << " " 
        << corr[k] << " " 
        << p << " " 
        << s << " " 
        << p1 << " " 
        << p2 << " " 
        << integrated_flux << " " 
        << std::endl;
      */
      
      // std::cout << k << " " << corr[k] << " " << std::endl;
    }

  integrated_flux *= 1.27E3;
  std::cout << " >>> CMSCGEN.initialize <<< " <<
    " Integrated flux = " << integrated_flux << " /m**2/s " << std::endl;
  
  //  find approximate peak value, for Monte Carlo sampling
  //      peak is near L = 2 

  double ce;
  
  ce = (((((((pe[8]*2.
              +pe[7])*2.
             +pe[6])*2.
            +pe[5])*2.
           +pe[4])*2.
          +pe[3])*2.
         +pe[2])*2.
        +pe[1])*2.
    +pe[0];

  // normalize to 0.5 (not 1) to have some margin if peak is not at L=2
  //
  ce = 0.5/ce;

  for (int k=0; k<9; k++)
    {
      pe[k] = pe[k]*ce;
    }

  cemax = cemax0*corr[50];      

  return initialization;
}
int CMSCGEN::initializeNuMu ( double  pmin_in,
double  pmax_in,
double  thetamin_in,
double  thetamax_in,
double  Enumin_in,
double  Enumax_in,
double  Phimin_in,
double  Phimax_in,
double  ProdAlt_in,
int  RanSeed 
)

Definition at line 567 of file CMSCGEN.cc.

References delRanGen, and initializeNuMu().

{
  CLHEP::HepRandomEngine *rnd = new CLHEP::HepJamesRandom;
  //set seed for Random Generator (seed can be controled by config-file), P.Biallass 2006
  rnd->setSeed(RanSeed, 0);
  delRanGen = true;
  return initializeNuMu(pmin_in, pmax_in, thetamin_in, thetamax_in, Enumin_in, Enumax_in, Phimin_in, Phimax_in, ProdAlt_in, rnd);
}
int CMSCGEN::initializeNuMu ( double  pmin_in,
double  pmax_in,
double  thetamin_in,
double  thetamax_in,
double  Enumin_in,
double  Enumax_in,
double  Phimin_in,
double  Phimax_in,
double  ProdAlt_in,
CLHEP::HepRandomEngine *  rnd 
)

Definition at line 495 of file CMSCGEN.cc.

References AR, cmax, cmin, gather_cfg::cout, delRanGen, dNdEmudEnu(), dNdEmudEnuMax, alignCSCRings::e, enumax, enumin, i, initialization, integrated_flux, negabs, negfrac, pmax, pmin, ProdAlt, RanGen2, scaleCards::rate, Rnunubar, and sigma.

Referenced by CosmicMuonGenerator::initialize(), and initializeNuMu().

{
  if (delRanGen)
    delete RanGen2;
  RanGen2 = rnd;
  delRanGen = false;

  ProdAlt = ProdAlt_in;

  Rnunubar = 1.2;

  sigma = (0.72*Rnunubar+0.09)/(1+Rnunubar)*1.e-38; //cm^2GeV^-1

  AR = (0.69+0.06*Rnunubar)/(0.09+0.72*Rnunubar);


  //set smin and smax, here convert between coordinate systems:
  pmin = pmin_in;
  pmax = pmax_in;
  cmin = TMath::Cos(thetamin_in);//input angle already converted from Deg to Rad!
  cmax = TMath::Cos(thetamax_in);//input angle already converted from Deg to Rad!
  enumin = (Enumin_in < 10.) ? 10. : Enumin_in; //no nu's below 10GeV
  enumax = Enumax_in;


  //do initial run of flux rate to determine Maximum
  integrated_flux = 0.;
  dNdEmudEnuMax = 0.;
  negabs = 0.;
  negfrac = 0.;
  int trials = 100000;
  for (int i=0; i<trials; ++i) {
    double ctheta = cmin + (cmax-cmin)*RanGen2->flat();
    double Emu = pmin + (pmax-pmin)*RanGen2->flat();
    double Enu = enumin + (enumax-enumin)*RanGen2->flat();
    double rate =  dNdEmudEnu(Enu, Emu, ctheta);
    //std::cout << "trial=" << i << " ctheta=" << ctheta << " Emu=" << Emu << " Enu=" << Enu 
    //      << " rate=" << rate << std::endl;
    //std::cout << "cmin=" << cmin << " cmax=" << cmax 
    //      << " pmin=" << pmin << " pmax=" << pmax 
    //      << " enumin=" << enumin << " enumax=" << enumax << std::endl;
    if (rate > 0.) {
      integrated_flux += rate;
      if (rate > dNdEmudEnuMax)
        dNdEmudEnuMax = rate;
    }
    else negabs++;
  }
  negfrac = negabs/trials;
  integrated_flux /= trials;

  std::cout << "CMSCGEN::initializeNuMu: After " << trials << " trials:" << std::endl;
  std::cout << "dNdEmudEnuMax=" << dNdEmudEnuMax << std::endl;
  std::cout << "negfrac=" << negfrac << std::endl;

  //multiply by phase space boundaries
  integrated_flux *= (cmin-cmax);
  integrated_flux *= (Phimax_in-Phimin_in);
  integrated_flux *= (pmax-pmin);
  integrated_flux *= (enumax-enumin);
  //remove negative phase space areas which do not contribute anything
  integrated_flux *= (1.-negfrac);
  std::cout << " >>> CMSCGEN.initializeNuMu <<< " <<
    " Integrated flux = " << integrated_flux << " units??? " << std::endl;


  initialization = 1;

  return initialization;

} 
double CMSCGEN::momentum_times_charge ( )

Definition at line 447 of file CMSCGEN.cc.

References gather_cfg::cout, initialization, and pq.

Referenced by CosmicMuonGenerator::nextEvent().

{
  
  if(initialization==1)
    { 
      return pq;
    }
  else
    {
      std::cout << " >>> CMSCGEN <<< warning: not initialized" << std::endl;
      return -9999.;
    }

}

Member Data Documentation

double CMSCGEN::AR

Definition at line 120 of file CMSCGEN.h.

Referenced by dNdEmudEnu(), and initializeNuMu().

double CMSCGEN::b0 [private]

Definition at line 65 of file CMSCGEN.h.

Referenced by generate(), and initialize().

double CMSCGEN::b0c[3] [private]

Definition at line 74 of file CMSCGEN.h.

Referenced by generate(), and initialize().

double CMSCGEN::b1 [private]

Definition at line 66 of file CMSCGEN.h.

Referenced by generate(), and initialize().

double CMSCGEN::b1c[3] [private]

Definition at line 74 of file CMSCGEN.h.

Referenced by generate(), and initialize().

double CMSCGEN::b2 [private]

Definition at line 67 of file CMSCGEN.h.

Referenced by generate(), and initialize().

double CMSCGEN::b2c[3] [private]

Definition at line 74 of file CMSCGEN.h.

Referenced by generate(), and initialize().

double CMSCGEN::c [private]

Definition at line 47 of file CMSCGEN.h.

Referenced by cos_theta(), generate(), and generateNuMu().

double CMSCGEN::c1 [private]

Definition at line 62 of file CMSCGEN.h.

Referenced by initialize().

double CMSCGEN::c2 [private]

Definition at line 63 of file CMSCGEN.h.

Referenced by initialize().

double CMSCGEN::cemax [private]

Definition at line 71 of file CMSCGEN.h.

Referenced by generate(), and initialize().

double CMSCGEN::cmax [private]

Definition at line 42 of file CMSCGEN.h.

Referenced by generate(), generateNuMu(), initialize(), and initializeNuMu().

double CMSCGEN::cmax_in [private]

Definition at line 44 of file CMSCGEN.h.

Referenced by initialize().

double CMSCGEN::cmax_max [private]

Definition at line 56 of file CMSCGEN.h.

Referenced by initialize().

double CMSCGEN::cmax_min [private]

Definition at line 55 of file CMSCGEN.h.

Referenced by initialize().

double CMSCGEN::cmin [private]

Definition at line 41 of file CMSCGEN.h.

Referenced by generate(), generateNuMu(), initialize(), and initializeNuMu().

double CMSCGEN::cmin_in [private]

Definition at line 43 of file CMSCGEN.h.

Referenced by initialize().

double CMSCGEN::corr[101] [private]

Definition at line 75 of file CMSCGEN.h.

Referenced by generate(), and initialize().

bool CMSCGEN::delRanGen [private]

Definition at line 79 of file CMSCGEN.h.

Referenced by initialize(), initializeNuMu(), and ~CMSCGEN().

Definition at line 122 of file CMSCGEN.h.

Referenced by generateNuMu(), and initializeNuMu().

double CMSCGEN::enumax [private]

Definition at line 87 of file CMSCGEN.h.

Referenced by generateNuMu(), and initializeNuMu().

double CMSCGEN::enumin [private]

Definition at line 86 of file CMSCGEN.h.

Referenced by generateNuMu(), and initializeNuMu().

int CMSCGEN::initialization [private]
double CMSCGEN::integrated_flux [private]

Definition at line 69 of file CMSCGEN.h.

Referenced by flux(), initialize(), and initializeNuMu().

double CMSCGEN::Lfac [private]

Definition at line 60 of file CMSCGEN.h.

Referenced by generate(), and initialize().

double CMSCGEN::Lmax [private]

Definition at line 59 of file CMSCGEN.h.

Referenced by initialize().

double CMSCGEN::Lmin [private]

Definition at line 58 of file CMSCGEN.h.

Referenced by generate(), and initialize().

Definition at line 123 of file CMSCGEN.h.

Referenced by initializeNuMu().

Definition at line 123 of file CMSCGEN.h.

Referenced by initializeNuMu().

double CMSCGEN::pe[9] [private]

Definition at line 73 of file CMSCGEN.h.

Referenced by generate(), and initialize().

double CMSCGEN::pmax [private]

Definition at line 40 of file CMSCGEN.h.

Referenced by generateNuMu(), initialize(), and initializeNuMu().

double CMSCGEN::pmin [private]

Definition at line 39 of file CMSCGEN.h.

Referenced by generateNuMu(), initialize(), and initializeNuMu().

double CMSCGEN::pmin_max [private]

Definition at line 53 of file CMSCGEN.h.

Referenced by initialize().

double CMSCGEN::pmin_min [private]

Definition at line 52 of file CMSCGEN.h.

Referenced by initialize().

double CMSCGEN::pq [private]

Definition at line 46 of file CMSCGEN.h.

Referenced by generate(), generateNuMu(), and momentum_times_charge().

Definition at line 118 of file CMSCGEN.h.

Referenced by dNdEmudEnu(), and initializeNuMu().

CLHEP::HepRandomEngine* CMSCGEN::RanGen2 [private]

Definition at line 78 of file CMSCGEN.h.

Referenced by generate(), generateNuMu(), initialize(), initializeNuMu(), and ~CMSCGEN().

Definition at line 117 of file CMSCGEN.h.

Referenced by generateNuMu(), and initializeNuMu().

Definition at line 119 of file CMSCGEN.h.

Referenced by dNdEmudEnu(), and initializeNuMu().

bool CMSCGEN::TIFOnly_const [private]

Definition at line 81 of file CMSCGEN.h.

Referenced by generate(), and initialize().

bool CMSCGEN::TIFOnly_lin [private]

Definition at line 82 of file CMSCGEN.h.

Referenced by generate(), and initialize().

double CMSCGEN::xemax [private]

Definition at line 50 of file CMSCGEN.h.

Referenced by generate(), and initialize().

double CMSCGEN::xemin [private]

Definition at line 49 of file CMSCGEN.h.

Referenced by generate(), and initialize().