Go to the source code of this file.
Functions | |
Float_t | Fit_MaximumPoint (TH2F *h2, Int_t Ireturn=0) |
Double_t | Pol2 (Double_t *x, Double_t *par) |
Double_t | Pol2_Special (Double_t *x, Double_t *par) |
Float_t Fit_MaximumPoint | ( | TH2F * | h2, |
Int_t | Ireturn = 0 |
||
) |
Definition at line 24 of file fitMaximumPoint.cc.
References a, b, trackerHits::c, gather_cfg::cout, pyrootRender::da, EcalCondDB::db, python::connectstrParser::f1, fitWZ::gMinuit, i, Pol2(), Pol2_Special(), and mathSSE::sqrt().
{ // xxx //==================================================== //==================================================== // ------------------------------------------- // 1) Clean beam profile // o all bins: only bins > 2 entries // o per x-bin: only bins > 75% of maximum // ------------------------------------------- // get some caracteristics Int_t x_nbins = h2->GetXaxis()->GetNbins(); Float_t x_max = h2->GetXaxis()->GetXmax(); Float_t x_min = h2->GetXaxis()->GetXmin(); Float_t delta_x = h2->GetXaxis()->GetBinWidth(10); Int_t y_nbins = h2->GetYaxis()->GetNbins(); Float_t y_max = h2->GetYaxis()->GetXmax(); Float_t y_min = h2->GetYaxis()->GetXmin(); Float_t delta_y = h2->GetYaxis()->GetBinWidth(10); TH2F *IHBeamProf_clean_1 = new TH2F("IHBeamProf_clean_1", "Max sam versus X (clean) ", x_nbins, x_min, x_max, y_nbins, y_min, y_max); TH2F *IHBeamProf_clean_2 = new TH2F("IHBeamProf_clean_2", "Max sam versus X (clean) ", x_nbins, x_min, x_max, y_nbins, y_min, y_max); // [1a] Only keep bins with more than 2 entries // Also remember for each x-bin the maximum bin in y that satisfies this result Int_t y_binmax_high[500] = {1}; for (Int_t ix=1;ix<x_nbins+1;ix++){ for (Int_t iy=1;iy<y_nbins+1;iy++){ Int_t Nevts_clean = 0; if( h2->GetBinContent(ix,iy) > 1 ) { IHBeamProf_clean_1->SetBinContent(ix,iy, h2->GetBinContent(ix,iy)); if( iy > y_binmax_high[ix] ){ y_binmax_high[ix] = iy; } } } } // [1b] Only keep events with more than 85% of the maximum Int_t y_binmax_low[500] = {1}; for (Int_t ix=1;ix<x_nbins+1;ix++){ y_binmax_low[ix] = (Int_t)( 0.85*(Float_t)( y_binmax_high[ix])); for (Int_t iy=y_binmax_low[ix];iy<y_binmax_high[ix]+1;iy++){ IHBeamProf_clean_2->SetBinContent(ix,iy,IHBeamProf_clean_1->GetBinContent(ix,iy)); } } // ----------------------------------------------------------------------- // 2) Find region to fit // o Make profile by compuing means in every bin (error = RMS/sqrt(N)) // o Find maximum // ----------------------------------------------------------------------- TH1F *IHBeamProf_clean_3 = new TH1F((h2->GetName()+(TString("_clprof"))).Data(), "Meam Energy versus X (clean) ", x_nbins, x_min, x_max); // [2a] Make TH1F containing the mean values TH1F *h_temp = new TH1F("h_temp"," Energy distribution for single bin in X", y_nbins, y_min, y_max); for (Int_t ix=1;ix<x_nbins+1;ix++){ double Nevt_slice = 0; //Int_t Nevt_slice = 0; for (Int_t iy=1;iy<y_nbins+1;iy++){ Int_t Nevt_tmp = (int)IHBeamProf_clean_2->GetBinContent(ix,iy); Nevt_slice += Nevt_tmp; h_temp->SetBinContent(iy,Nevt_tmp); } Float_t Y_mean = h_temp->GetMean(); Float_t Y_rms = h_temp->GetRMS(); Float_t Y_mean_error = (Nevt_slice>0) ? Y_rms/sqrt(Nevt_slice) : 9999.; IHBeamProf_clean_3->SetBinContent(ix,Y_mean); IHBeamProf_clean_3->SetBinError(ix,Y_mean_error); printf("%d %f %f %d %f\n",ix,Y_mean,Y_rms,Nevt_slice,Y_mean_error); } // [2b] Find maximum Float_t Y_tmp_max = -999.; Float_t x_max_guess = 0.; Int_t x_max_guess_bin = 0; for (Int_t ix=1;ix<x_nbins+1;ix++){ Float_t X_tmp = IHBeamProf_clean_3->GetBinCenter(ix); Float_t Y_tmp = IHBeamProf_clean_3->GetBinContent(ix); Float_t Y_tmp_error = IHBeamProf_clean_3->GetBinError(ix); if( (fabs(X_tmp) < 10.) && (Y_tmp > Y_tmp_max) && (Y_tmp_error < 100.)){ Y_tmp_max = Y_tmp; x_max_guess = X_tmp; x_max_guess_bin = ix; printf("Xtmp = %5.3f Ytmp = %5.3f Ytmp_max = %5.3f\n",X_tmp,Y_tmp,Y_tmp_max); } } printf("Fit: o Start for maximum = %5.3f\n",x_max_guess); // [2c] Define the fit range (0.975% and error should be less than 8\%) Int_t fitbinmin = 9999; Int_t fitbinmax = -9999; Float_t x_tmp,y_tmp,e_tmp,er_tmp; for (Int_t ix = x_max_guess_bin; ix<x_nbins+1;ix++){ fitbinmax = ix; x_tmp = IHBeamProf_clean_3->GetBinCenter(ix); y_tmp = IHBeamProf_clean_3->GetBinContent(ix); e_tmp = IHBeamProf_clean_3->GetBinError(ix); er_tmp = (y_tmp>0.) ? (e_tmp/y_tmp) : 1.00; printf("%3d %f %f %f -- %f %f\n",ix,x_tmp,y_tmp,e_tmp,y_tmp/Y_tmp_max,er_tmp); if( y_tmp < 0.975*Y_tmp_max && er_tmp < 0.008) break; } for (Int_t ix = x_max_guess_bin; ix>1 ;ix--){ fitbinmin = ix; x_tmp = IHBeamProf_clean_3->GetBinCenter(ix); y_tmp = IHBeamProf_clean_3->GetBinContent(ix); e_tmp = IHBeamProf_clean_3->GetBinError(ix); er_tmp = (y_tmp>0.) ? (e_tmp/y_tmp) : 1.00; printf("%3d %f %f %f -- %f %f\n",ix,x_tmp,y_tmp,e_tmp,y_tmp/Y_tmp_max,er_tmp); if( y_tmp < 0.975* Y_tmp_max && er_tmp < 0.008) break; } Double_t posmin_fit = x_min+fitbinmin*delta_x; Double_t posmax_fit = x_min+fitbinmax*delta_x; printf(" o Fit range = %5.3f -- %5.3f -- %5.3f\n",posmin_fit,x_max_guess,posmax_fit); if( fabs(posmax_fit - posmin_fit ) < 4. ){ printf("Something is wrong with this range: returning dummy value\n"); posmin_fit = x_max_guess - 6.0; posmax_fit = x_max_guess + 6.0; return -99.00; } // ------------------------------------------------- // 3) Do the actual fit // o make clone of histogram // ------------------------------------------------- TH1F *h1 = (TH1F *) IHBeamProf_clean_3->Clone(); // 3a] Do the actual fit Double_t fitresults[3] = {0.}; Double_t fitresults_errors[3] = {0.}; TF1 *f1 = new TF1("f1",Pol2,-50.,50.,3); f1->SetParameters( 1.,1.,1.); h1->Fit("f1","Q","",posmin_fit, posmax_fit); for(int i=0 ; i< 3 ; i++) { fitresults[i] = f1->GetParameter(i); fitresults_errors[i] = f1->GetParError(i); } Float_t chi2 = f1->GetChisquare()/f1->GetNDF(); Float_t a = fitresults[2]; Float_t da = fitresults_errors[2]; Float_t b = fitresults[1]; Float_t db = fitresults_errors[1]; Float_t c = fitresults[0]; Float_t dc = fitresults_errors[0]; Float_t x0 = (-1.*b)/(2*a); printf(" a = %7.2f b = %7.2f c = %7.2f\n",a,b,c); printf(" da = %7.2f db = %7.2f dc = %7.2f\n",da,db,dc); cout << "risultati del fit polinomiale: " << fitresults[0] << " " << fitresults[1] << " " << fitresults[2] << endl; char myProfTitle[200]; sprintf(myProfTitle, h2->GetTitle()); strcat(myProfTitle,"_prof"); h1->Write(myProfTitle); //h1->Write(); //write the profile // ---------------------------- // 4) Compute uncertainty on x0 // ---------------------------- // [4a] compute dxo using the covariance matrix // covariance matrix Double_t CovMat[3][3]; gMinuit->mnemat(&CovMat[0][0],3); Float_t v11 = CovMat[0][0]; Float_t v12 = CovMat[0][1]; Float_t v13 = CovMat[0][2]; Float_t v21 = CovMat[1][0]; Float_t v22 = CovMat[1][1]; Float_t v23 = CovMat[1][2]; Float_t v31 = CovMat[2][0]; Float_t v32 = CovMat[2][1]; Float_t v33 = CovMat[2][2]; printf("Covariance Matrix: v11 = %f v12 = %f v13 = %f\n",CovMat[0][0],CovMat[0][1],CovMat[0][2]); printf(" v21 = %f v22 = %f v23 = %f\n",CovMat[1][0],CovMat[1][1],CovMat[1][2]); printf(" v31 = %f v32 = %f v33 = %f\n",CovMat[2][0],CovMat[2][1],CovMat[2][2]); // jacobiaan Float_t j1 = b/(2*a*a); Float_t j2 = -1./(2*a); // determinant covariance martix Float_t det = v11*(v33*v22-v32*v23)-v21*(v33*v12-v32*v13)+v31*(v23*v12-v22*v13); printf("Determinant = %f\n",det); // inverse matrix Float_t v11_i = v33*v22-v32*v23; Float_t v12_i = -(v33*v12-v32*v13); Float_t v13_i = v23*v12-v22*v13; Float_t v21_i = -(v33*v21-v31*v23); Float_t v22_i = v33*v11-v31*v13 ; Float_t v23_i = -(v23*v11-v21*v13) ; Float_t v31_i = v32*v21-v31*v22; Float_t v32_i = -(v32*v11-v31*v12); Float_t v33_i = v22*v11-v21*v12; // variance Float_t var = j1*(j1*v11_i+j2*v12_i)+j2*(j1*v21_i+j2*v22_i); var /= det; Float_t dx0 = sqrt(var); printf("Type 1 fit: o x0 = %f +/- %f\n",x0,dx0); // --------------------- // 5) Second type of fit // --------------------- // 5a] Do the actual fit TH1F *h0 = (TH1F *) IHBeamProf_clean_3->Clone(); Double_t fitresults0[3] = {0.}; Double_t fitresults0_errors[3] = {0.}; TF1 *f0 = new TF1("f0",Pol2_Special,-50.,50.,3); f0->SetParameters( -1.,x_max_guess,5000.); h0->Fit("f0","Q","",posmin_fit, posmax_fit); for(int i=0 ; i< 3 ; i++) { fitresults0[i] = f0->GetParameter(i); fitresults0_errors[i] = f0->GetParError(i); } Float_t a0 = fitresults0[2]; Float_t da0 = fitresults0_errors[2]; Float_t b0 = fitresults0[1]; Float_t db0 = fitresults0_errors[1]; Float_t c0 = fitresults0[0]; Float_t dc0 = fitresults0_errors[0]; Double_t CovMat0[3][3]; gMinuit->mnemat(&CovMat0[0][0],3); //printf("Cov0[1][1] = %f\n",CovMat0[1][1]); Float_t db0cov = sqrt(CovMat0[1][1]); printf("Type 2 fit: o x0 = %f +/- %f %f \n",b0,db0,db0cov); delete IHBeamProf_clean_1; delete IHBeamProf_clean_2; delete IHBeamProf_clean_3; delete h_temp; delete f1; delete f0; if(Ireturn == 10) {return x0;} if(Ireturn == 11) {return dx0;} if(Ireturn == 20) {return b0;} if(Ireturn == 21) {return db0cov;} if(Ireturn == 30) {return chi2;} if(Ireturn == 99) {return c0;} }
Double_t Pol2 | ( | Double_t * | x, |
Double_t * | par | ||
) |
Definition at line 1 of file fitMaximumPoint.cc.
Referenced by Fit_MaximumPoint().
{ //polynoom(2) Double_t part0 = par[0]; Double_t part1 = par[1]*x[0]; Double_t part2 = par[2]*x[0]*x[0]; Double_t fitval = part0 + part1 + part2; return fitval; }
Double_t Pol2_Special | ( | Double_t * | x, |
Double_t * | par | ||
) |
Definition at line 11 of file fitMaximumPoint.cc.
Referenced by Fit_MaximumPoint().
{ //polynoom(2) Double_t part0 = par[0]; Double_t part1 = -2.*par[2]*par[1]*x[0]; Double_t part2 = par[2]*x[0]*x[0]; Double_t fitval = part0 + part1 + part2; return fitval; }