CMS 3D CMS Logo

Public Types | Public Member Functions | Private Member Functions | Private Attributes | Friends

ParticleKinematicLinearizedTrackState Class Reference

#include <ParticleKinematicLinearizedTrackState.h>

Inheritance diagram for ParticleKinematicLinearizedTrackState:
LinearizedTrackState< 6 > ReferenceCounted

List of all members.

Public Types

typedef
ReferenceCountingPointer
< LinearizedTrackState< 6 > > 
RefCountedLinearizedTrackState

Public Member Functions

TrackCharge charge () const
virtual void checkParameters (AlgebraicVectorN &parameters) const
std::vector
< ReferenceCountingPointer
< LinearizedTrackState< 6 > > > 
components () const
const AlgebraicVector6constantTerm () const
RefCountedRefittedTrackState createRefittedTrackState (const GlobalPoint &vertexPosition, const AlgebraicVectorM &vectorParameters, const AlgebraicSymMatrix77 &covarianceMatrix) const
bool hasError () const
const GlobalPointlinearizationPoint () const
virtual const AlgebraicMatrix64momentumJacobian () const
bool operator== (LinearizedTrackState< 6 > &other) const
const AlgebraicVector6parametersFromExpansion () const
RefCountedKinematicParticle particle () const
 ParticleKinematicLinearizedTrackState ()
virtual const AlgebraicMatrix63positionJacobian () const
AlgebraicSymMatrix66 predictedStateError () const
AlgebraicSymMatrix44 predictedStateMomentumError () const
AlgebraicVectorM predictedStateMomentumParameters () const
AlgebraicVector6 predictedStateParameters () const
AlgebraicSymMatrix66 predictedStateWeight (int &error) const
virtual AlgebraicVectorN refittedParamFromEquation (const RefCountedRefittedTrackState &theRefittedState) const
virtual
ReferenceCountingPointer
< LinearizedTrackState< 6 > > 
stateWithNewLinearizationPoint (const GlobalPoint &newLP) const
virtual reco::TransientTrack track () const
double weightInMixture () const

Private Member Functions

void computeChargedJacobians () const
void computeJacobians () const
void computeNeutralJacobians () const
 ParticleKinematicLinearizedTrackState (const GlobalPoint &linP, RefCountedKinematicParticle &prt)

Private Attributes

TransientTrackKinematicStateBuilder builder
bool errorAvailable
bool impactPointAvailable
bool jacobiansAvailable
RefCountedKinematicParticle part
TrackCharge theCharge
AlgebraicVector6 theConstantTerm
AlgebraicVector6 theExpandedParams
GlobalPoint theLinPoint
AlgebraicMatrix64 theMomentumJacobian
AlgebraicMatrix63 thePositionJacobian
PerigeeKinematicState thePredState

Friends

class ParticleKinematicLinearizedTrackStateFactory

Detailed Description

Definition at line 13 of file ParticleKinematicLinearizedTrackState.h.


Member Typedef Documentation

Definition at line 18 of file ParticleKinematicLinearizedTrackState.h.


Constructor & Destructor Documentation

ParticleKinematicLinearizedTrackState::ParticleKinematicLinearizedTrackState ( ) [inline]

Definition at line 20 of file ParticleKinematicLinearizedTrackState.h.

References jacobiansAvailable.

 {jacobiansAvailable = false;}
ParticleKinematicLinearizedTrackState::ParticleKinematicLinearizedTrackState ( const GlobalPoint linP,
RefCountedKinematicParticle prt 
) [inline, private]

Constructor with the linearization point and the track. Private, can only be used by LinearizedTrackFactory.

Definition at line 124 of file ParticleKinematicLinearizedTrackState.h.

              : theLinPoint(linP), part(prt), jacobiansAvailable(false),
              theCharge(prt->currentState().particleCharge())  ,impactPointAvailable(false)
           
    {}

Member Function Documentation

TrackCharge ParticleKinematicLinearizedTrackState::charge ( void  ) const [virtual]

Method returning the impact point measurement

Implements LinearizedTrackState< 6 >.

Definition at line 54 of file ParticleKinematicLinearizedTrackState.cc.

Referenced by LinearizedTrackState< 6 >::createRefittedTrackState().

{return part->initialState().particleCharge();}
virtual void ParticleKinematicLinearizedTrackState::checkParameters ( AlgebraicVectorN parameters) const [inline, virtual]

Reimplemented from LinearizedTrackState< 6 >.

std::vector< ReferenceCountingPointer< LinearizedTrackState< 6 > > > ParticleKinematicLinearizedTrackState::components ( ) const [virtual]

Implements LinearizedTrackState< 6 >.

Definition at line 151 of file ParticleKinematicLinearizedTrackState.cc.

{
 std::vector<ReferenceCountingPointer<LinearizedTrackState<6> > > res;
 res.reserve(1);
 res.push_back(RefCountedLinearizedTrackState( 
                        const_cast< ParticleKinematicLinearizedTrackState*>(this)));
 return res;
}
void ParticleKinematicLinearizedTrackState::computeChargedJacobians ( ) const [private]

Method calculating the track parameters and the Jacobians for charged particles.

Definition at line 192 of file ParticleKinematicLinearizedTrackState.cc.

References abs, funct::cos(), KinematicState::globalMomentum(), KinematicState::globalPosition(), M_PI, PV3DBase< T, PVType, FrameType >::perp(), PV3DBase< T, PVType, FrameType >::phi(), funct::sin(), mathSSE::sqrt(), funct::tan(), theConstantTerm, theExpandedParams, theLinPoint, theMomentumJacobian, thePositionJacobian, thePredState, PerigeeKinematicState::theState(), PV3DBase< T, PVType, FrameType >::theta(), PV3DBase< T, PVType, FrameType >::x(), X, PV3DBase< T, PVType, FrameType >::y(), PV3DBase< T, PVType, FrameType >::z(), and z.

Referenced by computeJacobians().

{
 GlobalPoint paramPt(theLinPoint);
 
 double field  = part->currentState().magneticField()->inInverseGeV(thePredState.theState().globalPosition()).z();
 double signTC = -part->currentState().particleCharge();
 
 double thetaAtEP = thePredState.theState().globalMomentum().theta();
 double phiAtEP   = thePredState.theState().globalMomentum().phi();
 double ptAtEP = thePredState.theState().globalMomentum().perp();
 double transverseCurvatureAtEP = field / ptAtEP*signTC;

 double x_v = thePredState.theState().globalPosition().x();
 double y_v = thePredState.theState().globalPosition().y();
 double z_v = thePredState.theState().globalPosition().z();
 double X = x_v - paramPt.x() - sin(phiAtEP) / transverseCurvatureAtEP;
 double Y = y_v - paramPt.y() + cos(phiAtEP) / transverseCurvatureAtEP;
 double SS = X*X + Y*Y;
 double S = sqrt(SS);
 
// The track parameters at the expansion point
  theExpandedParams[0] = transverseCurvatureAtEP;
  theExpandedParams[1] = thetaAtEP;
  theExpandedParams[3] = 1/transverseCurvatureAtEP  - signTC * S;
  
  theExpandedParams[5] = part->currentState().mass();
  
  double phiFEP;
  if (std::abs(X)>std::abs(Y)) {
    double signX = (X>0.0? +1.0:-1.0);
    phiFEP = -signTC * signX*acos(signTC*Y/S);
  } else {
    phiFEP = asin(-signTC*X/S);
    if ((signTC*Y)<0.0)
      phiFEP = M_PI - phiFEP;
  }
  if (phiFEP>M_PI) phiFEP-= 2*M_PI;
  theExpandedParams[2] = phiFEP;
  theExpandedParams[4] = z_v - paramPt.z() - 
        (phiAtEP - theExpandedParams[2]) / tan(thetaAtEP)/transverseCurvatureAtEP;
                
  thePositionJacobian(2, 0) = - Y / (SS);
  thePositionJacobian(2, 1) = X / (SS);
  thePositionJacobian(3, 0) = - signTC * X / S;
  thePositionJacobian(3, 1) = - signTC * Y / S;
  thePositionJacobian(4, 0) = thePositionJacobian(2, 0)/tan(thetaAtEP)/transverseCurvatureAtEP;
  thePositionJacobian(4, 1) = thePositionJacobian(2, 1)/tan(thetaAtEP)/transverseCurvatureAtEP;
  thePositionJacobian(4, 2) = 1;
 
//debug code - to be removed later 
//   cout<<"parameters for momentum jacobian: X "<<X<<endl;
//   cout<<"parameters for momentum jacobian: Y "<<Y<<endl;
//   cout<<"parameters for momentum jacobian: SS "<<SS<<endl;
//   cout<<"parameters for momentum jacobian: PhiAtEP "<<phiAtEP<<endl;
//   cout<<"parameters for momentum jacobian: curv "<<transverseCurvatureAtEP<<endl;
//   cout<<"sin phi Atep "<<sin(phiAtEP)<<endl;
//   cout<<"cos phi at EP "<<cos(phiAtEP)<<endl;
//   cout<<"upper  part is "<<X*cos(phiAtEP) + Y*sin(phiAtEP) <<endl;  
//   cout<<"lower part is"<<SS*transverseCurvatureAtEP*transverseCurvatureAtEP<<endl;

  theMomentumJacobian(0, 0) = 1;
  theMomentumJacobian(1, 1) = 1;

  theMomentumJacobian(2, 0) = -
        (X*cos(phiAtEP) + Y*sin(phiAtEP))/
        (SS*transverseCurvatureAtEP*transverseCurvatureAtEP);

  theMomentumJacobian(2, 2) = (Y*cos(phiAtEP) - X*sin(phiAtEP)) / 
        (SS*transverseCurvatureAtEP);

  theMomentumJacobian(3, 0) = 
        (signTC * (Y*cos(phiAtEP) - X*sin(phiAtEP)) / S - 1)/
        (transverseCurvatureAtEP*transverseCurvatureAtEP);
  
  theMomentumJacobian(3, 2) = signTC *(X*cos(phiAtEP) + Y*sin(phiAtEP))/
        (S*transverseCurvatureAtEP);
  
  theMomentumJacobian(4, 0) = (phiAtEP - theExpandedParams(2)) /
        tan(thetaAtEP)/(transverseCurvatureAtEP*transverseCurvatureAtEP)+
        theMomentumJacobian(2, 0) / tan(thetaAtEP)/transverseCurvatureAtEP;

  theMomentumJacobian(4, 1) = (phiAtEP - theExpandedParams(2)) *
        (1 + 1/(tan(thetaAtEP)*tan(thetaAtEP)))/transverseCurvatureAtEP;

  theMomentumJacobian(4, 2) = (theMomentumJacobian(2, 2) - 1) / 
                                tan(thetaAtEP)/transverseCurvatureAtEP;
                                
                                        
  theMomentumJacobian(5, 3) = 1;
  
// And finally the residuals:
  AlgebraicVector3 expansionPoint;
  expansionPoint[0] = thePredState.theState().globalPosition().x();
  expansionPoint[1] = thePredState.theState().globalPosition().y();
  expansionPoint[2] = thePredState.theState().globalPosition().z(); 
  AlgebraicVector4 momentumAtExpansionPoint;
  momentumAtExpansionPoint[0] = transverseCurvatureAtEP;  // Transverse Curv
  momentumAtExpansionPoint[1] = thetaAtEP;
  momentumAtExpansionPoint[2] = phiAtEP; 
  momentumAtExpansionPoint[3] = theExpandedParams[5];

  theConstantTerm = AlgebraicVector6( theExpandedParams -
                  thePositionJacobian * expansionPoint -
                  theMomentumJacobian * momentumAtExpansionPoint );
}
void ParticleKinematicLinearizedTrackState::computeJacobians ( ) const [private]

Method calculating the track parameters and the Jacobians.

Definition at line 81 of file ParticleKinematicLinearizedTrackState.cc.

References abs, builder, computeChargedJacobians(), computeNeutralJacobians(), alignCSCRings::e, jacobiansAvailable, theCharge, theLinPoint, and thePredState.

Referenced by constantTerm(), hasError(), momentumJacobian(), parametersFromExpansion(), positionJacobian(), predictedStateError(), predictedStateMomentumError(), predictedStateMomentumParameters(), predictedStateParameters(), and predictedStateWeight().

{
 GlobalPoint paramPt(theLinPoint);
 thePredState = builder(part->currentState(), paramPt); 
//  bool valid = thePredState.isValid();
//  if (!valid) std::cout <<"Help!!!!!!!!! State is invalid\n";
//  if (!valid) return;
 if (std::abs(theCharge)<1e-5) {

//neutral track
  computeNeutralJacobians();
 }else{

//charged track
  computeChargedJacobians();
 } 
 jacobiansAvailable = true;
}
void ParticleKinematicLinearizedTrackState::computeNeutralJacobians ( ) const [private]

Method calculating the track parameters and the Jacobians for neutral particles.

Definition at line 299 of file ParticleKinematicLinearizedTrackState.cc.

References funct::cos(), KinematicState::globalMomentum(), KinematicState::globalPosition(), PV3DBase< T, PVType, FrameType >::perp(), PV3DBase< T, PVType, FrameType >::phi(), funct::sin(), funct::tan(), theConstantTerm, theExpandedParams, theLinPoint, theMomentumJacobian, thePositionJacobian, thePredState, PerigeeKinematicState::theState(), PV3DBase< T, PVType, FrameType >::theta(), PV3DBase< T, PVType, FrameType >::x(), X, PV3DBase< T, PVType, FrameType >::y(), and PV3DBase< T, PVType, FrameType >::z().

Referenced by computeJacobians().

{
 GlobalPoint paramPt(theLinPoint);
 double thetaAtEP = thePredState.theState().globalMomentum().theta();
 double phiAtEP   = thePredState.theState().globalMomentum().phi();
 double ptAtEP = thePredState.theState().globalMomentum().perp();


 double x_v = thePredState.theState().globalPosition().x();
 double y_v = thePredState.theState().globalPosition().y();
 double z_v = thePredState.theState().globalPosition().z();
 double X = x_v - paramPt.x(); 
 double Y = y_v - paramPt.y();
  
// The track parameters at the expansion point
  theExpandedParams[0] = 1 / ptAtEP;
  theExpandedParams[1] = thetaAtEP;
  theExpandedParams[2] = phiAtEP;
  theExpandedParams[3] = X*sin(phiAtEP) - Y*cos(phiAtEP);
  theExpandedParams[4] = z_v - paramPt.z() - 
        (X*cos(phiAtEP) + Y*sin(phiAtEP)) / tan(thetaAtEP);
  theExpandedParams[5] = part->currentState().mass();
  
// The Jacobian: (all at the expansion point)
// [i,j]
// i = 0: rho = 1/pt , 1: theta, 2: phi_p, 3: epsilon, 4: z_p
// j = 0: x_v, 1: y_v, 2: z_v
 thePositionJacobian(3, 0) =   sin(phiAtEP);
 thePositionJacobian(3, 1) = - cos(phiAtEP);
 thePositionJacobian(4, 0) = - cos(phiAtEP)/tan(thetaAtEP);
 thePositionJacobian(4, 1) = - sin(phiAtEP)/tan(thetaAtEP);
 thePositionJacobian(4, 2) = 1;

// [i,j]
// i = 0: rho = 1/pt , 1: theta, 2: phi_p, 3: epsilon, 4: z_p
// j = 0: rho = 1/pt , 1: theta, 2: phi_v
 theMomentumJacobian(0, 0) = 1;
 theMomentumJacobian(1, 1) = 1;
 theMomentumJacobian(2, 2) = 1;

 theMomentumJacobian(3, 2) = X*cos(phiAtEP) + Y*sin(phiAtEP); 
 theMomentumJacobian(4, 1) = theMomentumJacobian(3,2)*
        (1 + 1/(tan(thetaAtEP)*tan(thetaAtEP)));

 theMomentumJacobian(4, 2) = (X*sin(phiAtEP) - Y*cos(phiAtEP))/tan(thetaAtEP);
 theMomentumJacobian(5, 3) = 1;
 
// And finally the residuals:
 AlgebraicVector3 expansionPoint;
 expansionPoint[0] = thePredState.theState().globalPosition().x();
 expansionPoint[1] = thePredState.theState().globalPosition().y();
 expansionPoint[2] = thePredState.theState().globalPosition().z(); 
 AlgebraicVector4 momentumAtExpansionPoint;
 momentumAtExpansionPoint[0] = 1 / ptAtEP;
 momentumAtExpansionPoint[1] = thetaAtEP;
 momentumAtExpansionPoint[2] = phiAtEP; 
 momentumAtExpansionPoint[3] = theExpandedParams[5];

 theConstantTerm = AlgebraicVector6( theExpandedParams -
                   thePositionJacobian * expansionPoint -
                   theMomentumJacobian * momentumAtExpansionPoint );               
}
const AlgebraicVector6 & ParticleKinematicLinearizedTrackState::constantTerm ( ) const [virtual]

Method returning the constant term of the Taylor expansion of measurement equation

Implements LinearizedTrackState< 6 >.

Definition at line 5 of file ParticleKinematicLinearizedTrackState.cc.

References computeJacobians(), jacobiansAvailable, and theConstantTerm.

Referenced by refittedParamFromEquation().

RefCountedRefittedTrackState ParticleKinematicLinearizedTrackState::createRefittedTrackState ( const GlobalPoint vertexPosition,
const AlgebraicVectorM vectorParameters,
const AlgebraicSymMatrix77 covarianceMatrix 
) const
bool ParticleKinematicLinearizedTrackState::hasError ( void  ) const [virtual]
const GlobalPoint& ParticleKinematicLinearizedTrackState::linearizationPoint ( ) const [inline, virtual]

The point at which the track state has been linearized

Implements LinearizedTrackState< 6 >.

Definition at line 33 of file ParticleKinematicLinearizedTrackState.h.

References theLinPoint.

{ return theLinPoint; }
const AlgebraicMatrix64 & ParticleKinematicLinearizedTrackState::momentumJacobian ( ) const [virtual]

Method returning the Momentum Jacobian from the Taylor expansion (Matrix B)

Implements LinearizedTrackState< 6 >.

Definition at line 17 of file ParticleKinematicLinearizedTrackState.cc.

References computeJacobians(), jacobiansAvailable, and theMomentumJacobian.

Referenced by refittedParamFromEquation().

bool ParticleKinematicLinearizedTrackState::operator== ( LinearizedTrackState< 6 > &  other) const

Definition at line 60 of file ParticleKinematicLinearizedTrackState.cc.

References particle().

{
 const  ParticleKinematicLinearizedTrackState* otherP = 
        dynamic_cast<const  ParticleKinematicLinearizedTrackState*>(&other);
   if (otherP == 0) {
   throw VertexException(" ParticleKinematicLinearizedTrackState:: don't know how to compare myself to non-kinematic track state");
  }
  return (*(otherP->particle()) == *part);}
const AlgebraicVector6 & ParticleKinematicLinearizedTrackState::parametersFromExpansion ( ) const [virtual]

Method returning the parameters of the Taylor expansion

Implements LinearizedTrackState< 6 >.

Definition at line 23 of file ParticleKinematicLinearizedTrackState.cc.

References computeJacobians(), jacobiansAvailable, and theExpandedParams.

RefCountedKinematicParticle ParticleKinematicLinearizedTrackState::particle ( ) const

Definition at line 57 of file ParticleKinematicLinearizedTrackState.cc.

References part.

Referenced by operator==().

{return part;}
const AlgebraicMatrix63 & ParticleKinematicLinearizedTrackState::positionJacobian ( ) const [virtual]

Method returning the Position Jacobian from the Taylor expansion (Matrix A)

Implements LinearizedTrackState< 6 >.

Definition at line 11 of file ParticleKinematicLinearizedTrackState.cc.

References computeJacobians(), jacobiansAvailable, and thePositionJacobian.

Referenced by refittedParamFromEquation().

AlgebraicSymMatrix66 ParticleKinematicLinearizedTrackState::predictedStateError ( ) const [virtual]
AlgebraicSymMatrix44 ParticleKinematicLinearizedTrackState::predictedStateMomentumError ( ) const [virtual]

4x4 error matrix ofe xtended perigee mometum components

Implements LinearizedTrackState< 6 >.

Definition at line 131 of file ParticleKinematicLinearizedTrackState.cc.

References computeJacobians(), error, jacobiansAvailable, PerigeeKinematicState::perigeeError(), thePredState, and ExtendedPerigeeTrajectoryError::weightMatrix().

{ 
 int error;
 if(!jacobiansAvailable) computeJacobians();
 AlgebraicSymMatrix44 res;
 AlgebraicSymMatrix33 m3 = 
        thePredState.perigeeError().weightMatrix(error).Sub<AlgebraicSymMatrix33>(0,0);
 res.Place_at(m3,0,0);
 res(3,0) = thePredState.perigeeError().weightMatrix(error)(5,5);
 res(3,1) = thePredState.perigeeError().weightMatrix(error)(5,0);
 res(3,2) = thePredState.perigeeError().weightMatrix(error)(5,1);
 res(3,3) = thePredState.perigeeError().weightMatrix(error)(5,2);
 return res;
}                                                  
AlgebraicVector4 ParticleKinematicLinearizedTrackState::predictedStateMomentumParameters ( ) const [virtual]
AlgebraicVector6 ParticleKinematicLinearizedTrackState::predictedStateParameters ( ) const [virtual]

Method returning the track state at the point of closest approach to the linearization point, in the transverse plane (a.k.a. transverse impact point). extended perigee predicted parameters

Implements LinearizedTrackState< 6 >.

Definition at line 29 of file ParticleKinematicLinearizedTrackState.cc.

References computeJacobians(), jacobiansAvailable, PerigeeKinematicState::perigeeParameters(), thePredState, and ExtendedPerigeeTrajectoryParameters::vector().

AlgebraicSymMatrix66 ParticleKinematicLinearizedTrackState::predictedStateWeight ( int &  error) const [virtual]

Full predicted weight matrix

Implements LinearizedTrackState< 6 >.

Definition at line 35 of file ParticleKinematicLinearizedTrackState.cc.

References computeJacobians(), i, jacobiansAvailable, PerigeeKinematicState::perigeeError(), thePredState, ExtendedPerigeeTrajectoryError::weightMatrix(), and z.

{
  if(!jacobiansAvailable) computeJacobians();
  int i = 0;
  AlgebraicSymMatrix66 z = thePredState.perigeeError().weightMatrix(i);
  error = i;
  return z;  
//   return thePredState.perigeeError().weightMatrix(error);
}
AlgebraicVector6 ParticleKinematicLinearizedTrackState::refittedParamFromEquation ( const RefCountedRefittedTrackState theRefittedState) const [virtual]

Method returning the parameters of the Taylor expansion evaluated with the refitted state.

Implements LinearizedTrackState< 6 >.

Definition at line 161 of file ParticleKinematicLinearizedTrackState.cc.

References constantTerm(), M_PI, momentumJacobian(), positionJacobian(), and predictedStateMomentumParameters().

{
  AlgebraicVectorM momentum = theRefittedState->momentumVector();
  if ((momentum(2)*predictedStateMomentumParameters()(2) <  0)&&(std::fabs(momentum(2))>M_PI/2) ) {
    if (predictedStateMomentumParameters()(2) < 0.) momentum(2)-= 2*M_PI;
    if (predictedStateMomentumParameters()(2) > 0.) momentum(2)+= 2*M_PI;
  }

  AlgebraicVector3 vertexPosition;
  vertexPosition(0) = theRefittedState->position().x();
  vertexPosition(1) = theRefittedState->position().y();
  vertexPosition(2) = theRefittedState->position().z();
  AlgebraicVector6 param = constantTerm() + 
                       positionJacobian() * vertexPosition +
                       momentumJacobian() * momentum;

  if (param(2) >  M_PI) param(2)-= 2*M_PI;
  if (param(2) < -M_PI) param(2)+= 2*M_PI;

  return param;
}
ReferenceCountingPointer< LinearizedTrackState< 6 > > ParticleKinematicLinearizedTrackState::stateWithNewLinearizationPoint ( const GlobalPoint newLP) const [virtual]

Returns a new linearized state with respect to a new linearization point. A new object of the same type is returned, without change to the existing one.

Implements LinearizedTrackState< 6 >.

Definition at line 102 of file ParticleKinematicLinearizedTrackState.cc.

reco::TransientTrack ParticleKinematicLinearizedTrackState::track ( void  ) const [virtual]

Implements LinearizedTrackState< 6 >.

Definition at line 362 of file ParticleKinematicLinearizedTrackState.cc.

{
  throw VertexException(" ParticleKinematicLinearizedTrackState:: no TransientTrack to return");
}
double ParticleKinematicLinearizedTrackState::weightInMixture ( ) const [virtual]

Implements LinearizedTrackState< 6 >.

Definition at line 146 of file ParticleKinematicLinearizedTrackState.cc.

{return 1.;}

Friends And Related Function Documentation

Definition at line 17 of file ParticleKinematicLinearizedTrackState.h.


Member Data Documentation

Definition at line 147 of file ParticleKinematicLinearizedTrackState.h.

Referenced by computeJacobians().

Definition at line 149 of file ParticleKinematicLinearizedTrackState.h.

Definition at line 159 of file ParticleKinematicLinearizedTrackState.h.

Definition at line 146 of file ParticleKinematicLinearizedTrackState.h.

Referenced by particle().

Definition at line 157 of file ParticleKinematicLinearizedTrackState.h.

Referenced by computeJacobians().