#include <TrackKinematicStatePropagator.h>
Public Member Functions | |
virtual KinematicStatePropagator * | clone () const |
virtual std::pair < HelixBarrelPlaneCrossingByCircle, BoundPlane::BoundPlanePointer > | planeCrossing (const FreeTrajectoryState &par, const GlobalPoint &point) const |
virtual KinematicState | propagateToTheTransversePCA (const KinematicState &state, const GlobalPoint &referencePoint) const |
TrackKinematicStatePropagator () | |
virtual | ~TrackKinematicStatePropagator () |
Private Types | |
typedef Point3DBase< double, GlobalTag > | GlobalPointDouble |
typedef Vector3DBase< double, GlobalTag > | GlobalVectorDouble |
Private Member Functions | |
virtual KinematicState | propagateToTheTransversePCACharged (const KinematicState &state, const GlobalPoint &referencePoint) const |
virtual KinematicState | propagateToTheTransversePCANeutral (const KinematicState &state, const GlobalPoint &referencePoint) const |
Propagator for TransientTrack based KinematicStates. Does not include the material.
Definition at line 18 of file TrackKinematicStatePropagator.h.
typedef Point3DBase< double, GlobalTag> TrackKinematicStatePropagator::GlobalPointDouble [private] |
Definition at line 53 of file TrackKinematicStatePropagator.h.
typedef Vector3DBase< double, GlobalTag> TrackKinematicStatePropagator::GlobalVectorDouble [private] |
Definition at line 54 of file TrackKinematicStatePropagator.h.
TrackKinematicStatePropagator::TrackKinematicStatePropagator | ( | ) | [inline] |
virtual TrackKinematicStatePropagator::~TrackKinematicStatePropagator | ( | ) | [inline, virtual] |
Definition at line 24 of file TrackKinematicStatePropagator.h.
{}
virtual KinematicStatePropagator* TrackKinematicStatePropagator::clone | ( | void | ) | const [inline, virtual] |
Clone method reimplemented from abstract class
Implements KinematicStatePropagator.
Definition at line 40 of file TrackKinematicStatePropagator.h.
References TrackKinematicStatePropagator().
{return new TrackKinematicStatePropagator(*this);}
pair< HelixBarrelPlaneCrossingByCircle, BoundPlane::BoundPlanePointer > TrackKinematicStatePropagator::planeCrossing | ( | const FreeTrajectoryState & | par, |
const GlobalPoint & | point | ||
) | const [virtual] |
Definition at line 23 of file TrackKinematicStatePropagator.cc.
References anyDirection, newFWLiteAna::build, FreeTrajectoryState::charge(), MagneticField::inInverseGeV(), GlobalTrajectoryParameters::magneticField(), FreeTrajectoryState::momentum(), FreeTrajectoryState::parameters(), pos, FreeTrajectoryState::position(), makeMuonMisalignmentScenario::rot, FreeTrajectoryState::transverseCurvature(), Vector3DBase< T, FrameTag >::unit(), PV3DBase< T, PVType, FrameType >::x(), X, PV3DBase< T, PVType, FrameType >::y(), and PV3DBase< T, PVType, FrameType >::z().
{ GlobalPoint inPos = state.position(); GlobalVector inMom = state.momentum(); double kappa = state.transverseCurvature(); double fac = 1./state.charge()/state.parameters().magneticField().inInverseGeV(point).z(); GlobalVectorDouble xOrig2Centre = GlobalVectorDouble(fac * inMom.y(), -fac * inMom.x(), 0.); GlobalVectorDouble xOrigProj = GlobalVectorDouble(inPos.x(), inPos.y(), 0.); GlobalVectorDouble xRefProj = GlobalVectorDouble(point.x(), point.y(), 0.); GlobalVectorDouble deltax = xRefProj-xOrigProj-xOrig2Centre; GlobalVectorDouble ndeltax = deltax.unit(); PropagationDirection direction = anyDirection; Surface::PositionType pos(point); // Need to define plane with orientation as the ImpactPointSurface GlobalVector X(ndeltax.x(), ndeltax.y(), ndeltax.z()); GlobalVector Y(0.,0.,1.); Surface::RotationType rot(X,Y); BoundPlane::BoundPlanePointer plane = BoundPlane::build(pos,rot,OpenBounds()); HelixBarrelPlaneCrossingByCircle planeCrossing(HelixPlaneCrossing::PositionType(inPos.x(), inPos.y(), inPos.z()), HelixPlaneCrossing::DirectionType(inMom.x(), inMom.y(), inMom.z()), kappa, direction); return std::pair<HelixBarrelPlaneCrossingByCircle,BoundPlane::BoundPlanePointer>(planeCrossing,plane); }
KinematicState TrackKinematicStatePropagator::propagateToTheTransversePCA | ( | const KinematicState & | state, |
const GlobalPoint & | referencePoint | ||
) | const [virtual] |
Propagation to the point of closest approach in transverse plane to the given point
Implements KinematicStatePropagator.
Definition at line 13 of file TrackKinematicStatePropagator.cc.
References KinematicState::particleCharge().
{ if( state.particleCharge() == 0. ) { return propagateToTheTransversePCANeutral(state, referencePoint); } else { return propagateToTheTransversePCACharged(state, referencePoint); } }
KinematicState TrackKinematicStatePropagator::propagateToTheTransversePCACharged | ( | const KinematicState & | state, |
const GlobalPoint & | referencePoint | ||
) | const [private, virtual] |
Internal private methods, distinguishing between the propagation of neutrals and propagation of cahrged tracks.
Definition at line 55 of file TrackKinematicStatePropagator.cc.
References HelixBarrelPlaneCrossingByCircle::direction(), KinematicState::freeTrajectoryState(), KinematicState::globalMomentum(), KinematicState::globalPosition(), JacobianCurvilinearToCartesian::jacobian(), KinematicState::kinematicParametersError(), LogDebug, PV3DBase< T, PVType, FrameType >::mag(), KinematicState::magneticField(), scaleCards::mass, KinematicState::mass(), KinematicParametersError::matrix(), KinematicState::particleCharge(), HelixBarrelPlaneCrossingByCircle::pathLength(), HelixBarrelPlaneCrossingByCircle::position(), alignCSCRings::s, PV3DBase< T, PVType, FrameType >::x(), Basic3DVector< T >::x(), Basic3DVector< T >::y(), and Basic3DVector< T >::z().
{ //first use the existing FTS propagator to obtain parameters at PCA //in transverse plane to the given point //final parameters and covariance AlgebraicVector7 par; AlgebraicSymMatrix77 cov; //initial parameters as class and vectors: GlobalTrajectoryParameters inPar(state.globalPosition(),state.globalMomentum(), state.particleCharge(), state.magneticField()); ParticleMass mass = state.mass(); GlobalVector inMom = state.globalMomentum(); //making a free trajectory state and looking //for helix barrel plane crossing FreeTrajectoryState fState = state.freeTrajectoryState(); GlobalPoint iP = referencePoint; std::pair<HelixBarrelPlaneCrossingByCircle, BoundPlane::BoundPlanePointer> cros = planeCrossing(fState,iP); HelixBarrelPlaneCrossingByCircle planeCrossing = cros.first; BoundPlane::BoundPlanePointer plane = cros.second; std::pair<bool,double> propResult = planeCrossing.pathLength(*plane); if ( !propResult.first ) { LogDebug("RecoVertex/TrackKinematicStatePropagator") << "Propagation failed! State is invalid\n"; return KinematicState(); } double s = propResult.second; HelixPlaneCrossing::PositionType xGen = planeCrossing.position(s); GlobalPoint nPosition(xGen.x(),xGen.y(),xGen.z()); HelixPlaneCrossing::DirectionType pGen = planeCrossing.direction(s); pGen *= inMom.mag()/pGen.mag(); GlobalVector nMomentum(pGen.x(),pGen.y(),pGen.z()); par(0) = nPosition.x(); par(1) = nPosition.y(); par(2) = nPosition.z(); par(3) = nMomentum.x(); par(4) = nMomentum.y(); par(5) = nMomentum.z(); par(6) = mass; //covariance matrix business //elements of 7x7 covariance matrix responcible for the mass and //mass - momentum projections corellations do change under such a transformation: //special Jacobian needed GlobalTrajectoryParameters fPar(nPosition, nMomentum, state.particleCharge(), state.magneticField()); JacobianCartesianToCurvilinear cart2curv(inPar); JacobianCurvilinearToCartesian curv2cart(fPar); AlgebraicMatrix67 ca2cu; AlgebraicMatrix76 cu2ca; ca2cu.Place_at(cart2curv.jacobian(),0,0); cu2ca.Place_at(curv2cart.jacobian(),0,0); ca2cu(5,6) = 1; cu2ca(6,5) = 1; //now both transformation jacobians: cartesian to curvilinear and back are done //We transform matrix to curv frame, then propagate it and translate it back to //cartesian frame. AlgebraicSymMatrix66 cov1 = ROOT::Math::Similarity(ca2cu, state.kinematicParametersError().matrix()); //propagation jacobian AnalyticalCurvilinearJacobian prop(inPar,nPosition,nMomentum,s); AlgebraicMatrix66 pr; pr(5,5) = 1; pr.Place_at(prop.jacobian(),0,0); //transportation AlgebraicSymMatrix66 cov2 = ROOT::Math::Similarity(pr, cov1); //now geting back to 7-parametrization from curvilinear cov = ROOT::Math::Similarity(cu2ca, cov2); //return parameters as a kiematic state KinematicParameters resPar(par); KinematicParametersError resEr(cov); return KinematicState(resPar,resEr,state.particleCharge(), state.magneticField()); }
KinematicState TrackKinematicStatePropagator::propagateToTheTransversePCANeutral | ( | const KinematicState & | state, |
const GlobalPoint & | referencePoint | ||
) | const [private, virtual] |
Definition at line 140 of file TrackKinematicStatePropagator.cc.
References funct::cos(), KinematicState::freeTrajectoryState(), KinematicState::globalMomentum(), KinematicState::globalPosition(), JacobianCurvilinearToCartesian::jacobian(), KinematicState::kinematicParametersError(), KinematicState::magneticField(), KinematicState::mass(), KinematicParametersError::matrix(), KinematicState::particleCharge(), phi, alignCSCRings::s, funct::sin(), funct::tan(), theta(), PV3DBase< T, PVType, FrameType >::x(), PV3DBase< T, PVType, FrameType >::y(), and PV3DBase< T, PVType, FrameType >::z().
{ //new parameters vector and covariance: AlgebraicVector7 par; AlgebraicSymMatrix77 cov; //AlgebraicVector7 inStatePar = state.kinematicParameters().vector(); GlobalTrajectoryParameters inPar(state.globalPosition(),state.globalMomentum(), state.particleCharge(), state.magneticField()); //first making a free trajectory state and propagating it according //to the algorithm provided by Thomas Speer and Wolfgang Adam FreeTrajectoryState fState = state.freeTrajectoryState(); GlobalPoint xvecOrig = fState.position(); double phi = fState.momentum().phi(); double theta = fState.momentum().theta(); double xOrig = xvecOrig.x(); double yOrig = xvecOrig.y(); double zOrig = xvecOrig.z(); double xR = referencePoint.x(); double yR = referencePoint.y(); double s2D = (xR - xOrig) * cos(phi) + (yR - yOrig) * sin(phi); double s = s2D / sin(theta); double xGen = xOrig + s2D*cos(phi); double yGen = yOrig + s2D*sin(phi); double zGen = zOrig + s2D/tan(theta); GlobalPoint xPerigee = GlobalPoint(xGen, yGen, zGen); //new parameters GlobalVector pPerigee = fState.momentum(); par(0) = xPerigee.x(); par(1) = xPerigee.y(); par(2) = xPerigee.z(); par(3) = pPerigee.x(); par(4) = pPerigee.y(); par(5) = pPerigee.z(); // par(6) = inStatePar(7); par(6) = state.mass(); //covariance matrix business: //everything lake it was before: jacobains are smart enouhg to //distinguish between neutral and charged states themselves GlobalTrajectoryParameters fPar(xPerigee, pPerigee, state.particleCharge(), state.magneticField()); JacobianCartesianToCurvilinear cart2curv(inPar); JacobianCurvilinearToCartesian curv2cart(fPar); AlgebraicMatrix67 ca2cu; AlgebraicMatrix76 cu2ca; ca2cu.Place_at(cart2curv.jacobian(),0,0); cu2ca.Place_at(curv2cart.jacobian(),0,0); ca2cu(5,6) = 1; cu2ca(6,5) = 1; //now both transformation jacobians: cartesian to curvilinear and back are done //We transform matrix to curv frame, then propagate it and translate it back to //cartesian frame. AlgebraicSymMatrix66 cov1 = ROOT::Math::Similarity(ca2cu, state.kinematicParametersError().matrix()); //propagation jacobian AnalyticalCurvilinearJacobian prop(inPar,xPerigee,pPerigee,s); AlgebraicMatrix66 pr; pr(5,5) = 1; pr.Place_at(prop.jacobian(),0,0); //transportation AlgebraicSymMatrix66 cov2 = ROOT::Math::Similarity(pr, cov1); //now geting back to 7-parametrization from curvilinear cov = ROOT::Math::Similarity(cu2ca, cov2); //return parameters as a kiematic state KinematicParameters resPar(par); KinematicParametersError resEr(cov); return KinematicState(resPar,resEr,state.particleCharge(), state.magneticField()); }