#include <GlobalDigisAnalyzer.h>
Definition at line 115 of file GlobalDigisAnalyzer.h.
typedef std::vector<double> GlobalDigisAnalyzer::DoubleVector |
Definition at line 120 of file GlobalDigisAnalyzer.h.
typedef std::vector<float> GlobalDigisAnalyzer::FloatVector |
Definition at line 119 of file GlobalDigisAnalyzer.h.
typedef std::vector<int> GlobalDigisAnalyzer::IntVector |
Definition at line 121 of file GlobalDigisAnalyzer.h.
typedef std::map<uint32_t,float,std::less<uint32_t> > GlobalDigisAnalyzer::MapType |
Definition at line 122 of file GlobalDigisAnalyzer.h.
GlobalDigisAnalyzer::GlobalDigisAnalyzer | ( | const edm::ParameterSet & | iPSet | ) | [explicit] |
Definition at line 13 of file GlobalDigisAnalyzer.cc.
References DQMStore::book1D(), DQMStore::bookProfile(), dbe, ECalbarrelADCtoGeV_, ECalEBSrc_, ECalEESrc_, ECalendcapADCtoGeV_, ECalESSrc_, ECalgainConv_, fName, frequency, getAllProvenances, edm::ParameterSet::getParameter(), edm::ParameterSet::getUntrackedParameter(), HCalDigi_, HCalSrc_, hitsProducer, i, edm::InputTag::instance(), j, edm::InputTag::label(), mehCSCStripADC, mehCSCStripn, mehCSCWiren, mehCSCWireTime, mehDtMuonLayer, mehDtMuonn, mehDtMuonTime, mehDtMuonTimevLayer, mehEcalAEE, mehEcalMaxPos, mehEcalMultvAEE, mehEcaln, mehEcalSHE, mehEcalSHEvAEESHE, mehEScalADC, mehEScaln, mehHcalAEE, mehHcalAEESHE, mehHcaln, mehHcalSHE, mehHcalSHEvAEE, mehRPCMuonn, mehRPCRes, mehSiPixelADC, mehSiPixelCol, mehSiPixeln, mehSiPixelRow, mehSiStripADC, mehSiStripn, mehSiStripStrip, MuCSCStripSrc_, MuCSCWireSrc_, MuDTSrc_, MuRPCSrc_, cppFunctionSkipper::operator, printProvenanceInfo, MonitorElement::setAxisTitle(), DQMStore::setCurrentFolder(), DQMStore::setVerbose(), DQMStore::showDirStructure(), SiPxlSrc_, SiStripSrc_, and verbosity.
: fName(""), verbosity(0), frequency(0), label(""), getAllProvenances(false), printProvenanceInfo(false), hitsProducer(""), theCSCStripPedestalSum(0), theCSCStripPedestalCount(0), count(0) { std::string MsgLoggerCat = "GlobalDigisAnalyzer_GlobalDigisAnalyzer"; // get information from parameter set fName = iPSet.getUntrackedParameter<std::string>("Name"); verbosity = iPSet.getUntrackedParameter<int>("Verbosity"); frequency = iPSet.getUntrackedParameter<int>("Frequency"); edm::ParameterSet m_Prov = iPSet.getParameter<edm::ParameterSet>("ProvenanceLookup"); getAllProvenances = m_Prov.getUntrackedParameter<bool>("GetAllProvenances"); printProvenanceInfo = m_Prov.getUntrackedParameter<bool>("PrintProvenanceInfo"); hitsProducer = iPSet.getParameter<std::string>("hitsProducer"); //get Labels to use to extract information ECalEBSrc_ = iPSet.getParameter<edm::InputTag>("ECalEBSrc"); ECalEESrc_ = iPSet.getParameter<edm::InputTag>("ECalEESrc"); ECalESSrc_ = iPSet.getParameter<edm::InputTag>("ECalESSrc"); HCalSrc_ = iPSet.getParameter<edm::InputTag>("HCalSrc"); HCalDigi_ = iPSet.getParameter<edm::InputTag>("HCalDigi"); SiStripSrc_ = iPSet.getParameter<edm::InputTag>("SiStripSrc"); SiPxlSrc_ = iPSet.getParameter<edm::InputTag>("SiPxlSrc"); MuDTSrc_ = iPSet.getParameter<edm::InputTag>("MuDTSrc"); MuCSCStripSrc_ = iPSet.getParameter<edm::InputTag>("MuCSCStripSrc"); MuCSCWireSrc_ = iPSet.getParameter<edm::InputTag>("MuCSCWireSrc"); MuRPCSrc_ = iPSet.getParameter<edm::InputTag>("MuRPCSrc"); // use value of first digit to determine default output level (inclusive) // 0 is none, 1 is basic, 2 is fill output, 3 is gather output verbosity %= 10; // print out Parameter Set information being used if (verbosity >= 0) { edm::LogInfo(MsgLoggerCat) << "\n===============================\n" << "Initialized as EDAnalyzer with parameter values:\n" << " Name = " << fName << "\n" << " Verbosity = " << verbosity << "\n" << " Frequency = " << frequency << "\n" << " GetProv = " << getAllProvenances << "\n" << " PrintProv = " << printProvenanceInfo << "\n" << " ECalEBSrc = " << ECalEBSrc_.label() << ":" << ECalEBSrc_.instance() << "\n" << " ECalEESrc = " << ECalEESrc_.label() << ":" << ECalEESrc_.instance() << "\n" << " ECalESSrc = " << ECalESSrc_.label() << ":" << ECalESSrc_.instance() << "\n" << " HCalSrc = " << HCalSrc_.label() << ":" << HCalSrc_.instance() << "\n" << " HCalDigi = " << HCalDigi_.label() << ":" << HCalDigi_.instance() << "\n" << " SiStripSrc = " << SiStripSrc_.label() << ":" << SiStripSrc_.instance() << "\n" << " SiPixelSrc = " << SiPxlSrc_.label() << ":" << SiPxlSrc_.instance() << "\n" << " MuDTSrc = " << MuDTSrc_.label() << ":" << MuDTSrc_.instance() << "\n" << " MuCSCStripSrc = " << MuCSCStripSrc_.label() << ":" << MuCSCStripSrc_.instance() << "\n" << " MuCSCWireSrc = " << MuCSCWireSrc_.label() << ":" << MuCSCWireSrc_.instance() << "\n" << " MuRPCSrc = " << MuRPCSrc_.label() << ":" << MuRPCSrc_.instance() << "\n" << "===============================\n"; } //Put in analyzer stuff here.... Pasted from Rec Hits... dbe = 0; dbe = edm::Service<DQMStore>().operator->(); if (dbe) { if (verbosity > 0 ) { dbe->setVerbose(1); } else { dbe->setVerbose(0); } } if (dbe) { if (verbosity > 0 ) dbe->showDirStructure(); } //monitor elements //Si Strip if (dbe) { std::string SiStripString[19] = {"TECW1", "TECW2", "TECW3", "TECW4", "TECW5", "TECW6", "TECW7", "TECW8", "TIBL1", "TIBL2", "TIBL3", "TIBL4", "TIDW1", "TIDW2", "TIDW3", "TOBL1", "TOBL2", "TOBL3", "TOBL4"}; for(int i = 0; i<19; ++i) { mehSiStripn[i]=0; mehSiStripADC[i]=0; mehSiStripStrip[i]=0; } std::string hcharname, hchartitle; dbe->setCurrentFolder("GlobalDigisV/SiStrips"); for(int amend = 0; amend < 19; ++amend) { hcharname = "hSiStripn_"+SiStripString[amend]; hchartitle= SiStripString[amend]+" Digis"; mehSiStripn[amend] = dbe->book1D(hcharname,hchartitle,5000,0.,10000.); mehSiStripn[amend]->setAxisTitle("Number of Digis",1); mehSiStripn[amend]->setAxisTitle("Count",2); hcharname = "hSiStripADC_"+SiStripString[amend]; hchartitle= SiStripString[amend]+" ADC"; mehSiStripADC[amend] = dbe->book1D(hcharname,hchartitle,150,0.0,300.); mehSiStripADC[amend]->setAxisTitle("ADC",1); mehSiStripADC[amend]->setAxisTitle("Count",2); hcharname = "hSiStripStripADC_"+SiStripString[amend]; hchartitle= SiStripString[amend]+" Strip"; mehSiStripStrip[amend] = dbe->book1D(hcharname,hchartitle,200,0.0,800.); mehSiStripStrip[amend]->setAxisTitle("Strip Number",1); mehSiStripStrip[amend]->setAxisTitle("Count",2); } //HCal std::string HCalString[4] = {"HB", "HE", "HO","HF"}; float calnUpper[4] = {30000.,30000.,30000.,20000.}; float calnLower[4]={0.,0.,0.,0.}; float SHEUpper[4]={1.,1.,1.,1.}; float SHEvAEEUpper[4] = {5000, 5000, 5000, 5000}; float SHEvAEELower[4] = {-5000, -5000, -5000, -5000}; int SHEvAEEnBins[4] = {200,200,200,200}; double ProfileUpper[4] = {1.,1.,1.,1.}; for(int i =0; i<4; ++i) { mehHcaln[i]=0; mehHcalAEE[i]=0; mehHcalSHE[i]=0; mehHcalAEESHE[i]=0; mehHcalSHEvAEE[i]=0; } dbe->setCurrentFolder("GlobalDigisV/HCals"); for(int amend = 0; amend < 4; ++amend) { hcharname = "hHcaln_"+HCalString[amend]; hchartitle= HCalString[amend]+" digis"; mehHcaln[amend] = dbe->book1D(hcharname,hchartitle, 10000, calnLower[amend], calnUpper[amend]); mehHcaln[amend]->setAxisTitle("Number of Digis",1); mehHcaln[amend]->setAxisTitle("Count",2); hcharname = "hHcalAEE_"+HCalString[amend]; hchartitle= HCalString[amend]+"Cal AEE"; mehHcalAEE[amend] = dbe->book1D(hcharname,hchartitle, 60, -10., 50.); mehHcalAEE[amend]->setAxisTitle("Analog Equivalent Energy",1); mehHcalAEE[amend]->setAxisTitle("Count",2); hcharname = "hHcalSHE_"+HCalString[amend]; hchartitle= HCalString[amend]+"Cal SHE"; mehHcalSHE[amend] = dbe->book1D(hcharname,hchartitle, 1000, 0.0, SHEUpper[amend]); mehHcalSHE[amend]->setAxisTitle("Simulated Hit Energy",1); mehHcalSHE[amend]->setAxisTitle("Count",2); hcharname = "hHcalAEESHE_"+HCalString[amend]; hchartitle= HCalString[amend]+"Cal AEE/SHE"; mehHcalAEESHE[amend] = dbe->book1D(hcharname, hchartitle, SHEvAEEnBins[amend], SHEvAEELower[amend], SHEvAEEUpper[amend]); mehHcalAEESHE[amend]->setAxisTitle("ADC / SHE",1); mehHcalAEESHE[amend]->setAxisTitle("Count",2); hcharname = "hHcalSHEvAEE_"+HCalString[amend]; hchartitle= HCalString[amend]+"Cal SHE vs. AEE"; mehHcalSHEvAEE[amend] = dbe->bookProfile(hcharname,hchartitle, 60, -10., 50., 100, 0., (float)ProfileUpper[amend],""); mehHcalSHEvAEE[amend]->setAxisTitle("AEE / SHE",1); mehHcalSHEvAEE[amend]->setAxisTitle("SHE",2); } //Ecal std::string ECalString[2] = {"EB","EE"}; for(int i =0; i<2; ++i) { mehEcaln[i]=0; mehEcalAEE[i]=0; mehEcalSHE[i]=0; mehEcalMaxPos[i]=0; mehEcalMultvAEE[i]=0; mehEcalSHEvAEESHE[i]=0; } dbe->setCurrentFolder("GlobalDigisV/ECals"); for(int amend = 0; amend < 2; ++amend) { hcharname = "hEcaln_"+ECalString[amend]; hchartitle= ECalString[amend]+" digis"; mehEcaln[amend] = dbe->book1D(hcharname,hchartitle, 3000, 0., 40000.); mehEcaln[amend]->setAxisTitle("Number of Digis",1); mehEcaln[amend]->setAxisTitle("Count",2); hcharname = "hEcalAEE_"+ECalString[amend]; hchartitle= ECalString[amend]+"Cal AEE"; mehEcalAEE[amend] = dbe->book1D(hcharname,hchartitle, 1000, 0., 100.); mehEcalAEE[amend]->setAxisTitle("Analog Equivalent Energy",1); mehEcalAEE[amend]->setAxisTitle("Count",2); hcharname = "hEcalSHE_"+ECalString[amend]; hchartitle= ECalString[amend]+"Cal SHE"; mehEcalSHE[amend] = dbe->book1D(hcharname,hchartitle, 500, 0., 50.); mehEcalSHE[amend]->setAxisTitle("Simulated Hit Energy",1); mehEcalSHE[amend]->setAxisTitle("Count",2); hcharname = "hEcalMaxPos_"+ECalString[amend]; hchartitle= ECalString[amend]+"Cal MaxPos"; mehEcalMaxPos[amend] = dbe->book1D(hcharname,hchartitle,10, 0., 10.); mehEcalMaxPos[amend]->setAxisTitle("Maximum Position",1); mehEcalMaxPos[amend]->setAxisTitle("Count",2); hcharname = "hEcalSHEvAEESHE_"+ECalString[amend]; hchartitle= ECalString[amend]+"Cal SHE vs. AEE/SHE"; mehEcalSHEvAEESHE[amend] = dbe->bookProfile(hcharname,hchartitle,1000, 0., 100., 500, 0., 50.,""); mehEcalSHEvAEESHE[amend]->setAxisTitle("AEE / SHE",1); mehEcalSHEvAEESHE[amend]->setAxisTitle("SHE",2); hcharname = "hEcalMultvAEE_"+ECalString[amend]; hchartitle= ECalString[amend]+"Cal Multi vs. AEE"; mehEcalMultvAEE[amend] = dbe->bookProfile(hcharname,hchartitle, 1000, 0., 100., 4000, 0., 40000.,""); mehEcalMultvAEE[amend]->setAxisTitle("Analog Equivalent Energy",1); mehEcalMultvAEE[amend]->setAxisTitle("Number of Digis",2); } mehEScaln = 0; hcharname = "hEcaln_ES"; hchartitle= "ESCAL digis"; mehEScaln = dbe->book1D(hcharname,hchartitle, 1000, 0., 5000.); mehEScaln->setAxisTitle("Number of Digis",1); mehEScaln->setAxisTitle("Count",2); std::string ADCNumber[3] = {"0", "1", "2"}; for(int i =0; i<3; ++i) { mehEScalADC[i] = 0; hcharname = "hEcalADC"+ADCNumber[i]+"_ES"; hchartitle= "ESCAL ADC"+ADCNumber[i]; mehEScalADC[i] = dbe->book1D(hcharname,hchartitle, 1500, 0., 1500.); mehEScalADC[i]->setAxisTitle("ADC"+ADCNumber[i],1); mehEScalADC[i]->setAxisTitle("Count",2); } //Si Pixels ***DONE*** std::string SiPixelString[7] = {"BRL1", "BRL2", "BRL3", "FWD1n", "FWD1p", "FWD2n", "FWD2p"}; for(int j =0; j<7; ++j) { mehSiPixeln[j]=0; mehSiPixelADC[j]=0; mehSiPixelRow[j]=0; mehSiPixelCol[j]=0; } dbe->setCurrentFolder("GlobalDigisV/SiPixels"); for(int amend = 0; amend < 7; ++amend) { hcharname = "hSiPixeln_"+SiPixelString[amend]; hchartitle= SiPixelString[amend]+" Digis"; if(amend<3) mehSiPixeln[amend] = dbe->book1D(hcharname,hchartitle,500,0.,1000.); else mehSiPixeln[amend] = dbe->book1D(hcharname,hchartitle,500,0.,1000.); mehSiPixeln[amend]->setAxisTitle("Number of Digis",1); mehSiPixeln[amend]->setAxisTitle("Count",2); hcharname = "hSiPixelADC_"+SiPixelString[amend]; hchartitle= SiPixelString[amend]+" ADC"; mehSiPixelADC[amend] = dbe->book1D(hcharname,hchartitle,150,0.0,300.); mehSiPixelADC[amend]->setAxisTitle("ADC",1); mehSiPixelADC[amend]->setAxisTitle("Count",2); hcharname = "hSiPixelRow_"+SiPixelString[amend]; hchartitle= SiPixelString[amend]+" Row"; mehSiPixelRow[amend] = dbe->book1D(hcharname,hchartitle,100,0.0,100.); mehSiPixelRow[amend]->setAxisTitle("Row Number",1); mehSiPixelRow[amend]->setAxisTitle("Count",2); hcharname = "hSiPixelColumn_"+SiPixelString[amend]; hchartitle= SiPixelString[amend]+" Column"; mehSiPixelCol[amend] = dbe->book1D(hcharname,hchartitle,200,0.0,500.); mehSiPixelCol[amend]->setAxisTitle("Column Number",1); mehSiPixelCol[amend]->setAxisTitle("Count",2); } //Muons dbe->setCurrentFolder("GlobalDigisV/Muons"); //DT std::string MuonString[4] = {"MB1", "MB2", "MB3", "MB4"}; for(int i =0; i < 4; ++i) { mehDtMuonn[i] = 0; mehDtMuonLayer[i] = 0; mehDtMuonTime[i] = 0; mehDtMuonTimevLayer[i] = 0; } for(int j = 0; j < 4; ++j) { hcharname = "hDtMuonn_"+MuonString[j]; hchartitle= MuonString[j]+" digis"; mehDtMuonn[j] = dbe->book1D(hcharname,hchartitle,250, 0., 500.); mehDtMuonn[j]->setAxisTitle("Number of Digis",1); mehDtMuonn[j]->setAxisTitle("Count",2); hcharname = "hDtLayer_"+MuonString[j]; hchartitle= MuonString[j]+" Layer"; mehDtMuonLayer[j] = dbe->book1D(hcharname,hchartitle,12, 1., 13.); mehDtMuonLayer[j]->setAxisTitle("4 * (SuperLayer - 1) + Layer",1); mehDtMuonLayer[j]->setAxisTitle("Count",2); hcharname = "hDtMuonTime_"+MuonString[j]; hchartitle= MuonString[j]+" Time"; mehDtMuonTime[j] = dbe->book1D(hcharname,hchartitle,300, 400., 1000.); mehDtMuonTime[j]->setAxisTitle("Time",1); mehDtMuonTime[j]->setAxisTitle("Count",2); hcharname = "hDtMuonTimevLayer_"+MuonString[j]; hchartitle= MuonString[j]+" Time vs. Layer"; mehDtMuonTimevLayer[j] = dbe->bookProfile(hcharname,hchartitle,12, 1., 13., 300, 400., 1000.,""); mehDtMuonTimevLayer[j]->setAxisTitle("4 * (SuperLayer - 1) + Layer",1); mehDtMuonTimevLayer[j]->setAxisTitle("Time",2); } //CSC mehCSCStripn = 0; hcharname = "hCSCStripn"; hchartitle = "CSC Strip digis"; mehCSCStripn = dbe->book1D(hcharname,hchartitle,250, 0., 500.); mehCSCStripn->setAxisTitle("Number of Digis",1); mehCSCStripn->setAxisTitle("Count",2); mehCSCStripADC = 0; hcharname = "hCSCStripADC"; hchartitle = "CSC Strip ADC"; mehCSCStripADC = dbe->book1D(hcharname,hchartitle, 110, 0., 1100.); mehCSCStripADC->setAxisTitle("ADC",1); mehCSCStripADC->setAxisTitle("Count",2); mehCSCWiren = 0; hcharname = "hCSCWiren"; hchartitle = "CSC Wire digis"; mehCSCWiren = dbe->book1D(hcharname,hchartitle,250, 0., 500.); mehCSCWiren->setAxisTitle("Number of Digis",1); mehCSCWiren->setAxisTitle("Count",2); mehCSCWireTime = 0; hcharname = "hCSCWireTime"; hchartitle = "CSC Wire Time"; mehCSCWireTime = dbe->book1D(hcharname,hchartitle,10, 0., 10.); mehCSCWireTime->setAxisTitle("Time",1); mehCSCWireTime->setAxisTitle("Count",2); // RPC mehRPCMuonn = 0; hcharname = "hRPCMuonn"; hchartitle = "RPC digis"; mehCSCStripn = dbe->book1D(hcharname,hchartitle,250, 0., 500.); mehCSCStripn->setAxisTitle("Number of Digis",1); mehCSCStripn->setAxisTitle("Count",2); std::string MuonRPCString[5] = {"Wmin2", "Wmin1", "W0", "Wpu1", "Wpu2"}; for(int i =0; i < 5; ++i) { mehRPCRes[i] = 0; } for(int j = 0; j < 5; ++j) { hcharname = "hRPCRes_"+MuonRPCString[j]; hchartitle= MuonRPCString[j]+" Digi - Sim"; mehRPCRes[j] = dbe->book1D(hcharname,hchartitle,200, -8., 8.); mehRPCRes[j]->setAxisTitle("Digi - Sim center of strip x",1); mehRPCRes[j]->setAxisTitle("Count",2); } } // set default constants // ECal ECalgainConv_[0] = 0.; ECalgainConv_[1] = 1.; ECalgainConv_[2] = 2.; ECalgainConv_[3] = 12.; ECalbarrelADCtoGeV_ = 0.035; ECalendcapADCtoGeV_ = 0.06; }
GlobalDigisAnalyzer::~GlobalDigisAnalyzer | ( | ) | [virtual] |
Definition at line 403 of file GlobalDigisAnalyzer.cc.
{}
void GlobalDigisAnalyzer::analyze | ( | const edm::Event & | iEvent, |
const edm::EventSetup & | iSetup | ||
) | [virtual] |
Implements edm::EDAnalyzer.
Definition at line 438 of file GlobalDigisAnalyzer.cc.
References count, ECalbarrelADCtoGeV_, ECalendcapADCtoGeV_, edm::EventID::event(), fillECal(), fillHCal(), fillMuon(), fillTrk(), frequency, edm::EventSetup::get(), edm::Event::getAllProvenance(), getAllProvenances, EcalADCToGeVConstant::getEBValue(), EcalADCToGeVConstant::getEEValue(), i, edm::EventBase::id(), nevt, printProvenanceInfo, edm::ESHandle< T >::product(), edm::EventID::run(), and verbosity.
{ std::string MsgLoggerCat = "GlobalDigisAnalyzer_analyze"; // keep track of number of events processed ++count; // THIS BLOCK MIGRATED HERE FROM beginJob: // setup calorimeter constants from service edm::ESHandle<EcalADCToGeVConstant> pAgc; iSetup.get<EcalADCToGeVConstantRcd>().get(pAgc); const EcalADCToGeVConstant* agc = pAgc.product(); ECalbarrelADCtoGeV_ = agc->getEBValue(); ECalendcapADCtoGeV_ = agc->getEEValue(); if (verbosity >= 0) { edm::LogInfo(MsgLoggerCat) << "Modified Calorimeter ADCtoGeV constants: barrel = " << ECalbarrelADCtoGeV_ << ", endcap = " << ECalendcapADCtoGeV_; } // get event id information int nrun = iEvent.id().run(); int nevt = iEvent.id().event(); if (verbosity > 0) { edm::LogInfo(MsgLoggerCat) << "Processing run " << nrun << ", event " << nevt << " (" << count << " events total)"; } else if (verbosity == 0) { if (nevt%frequency == 0 || nevt == 1) { edm::LogInfo(MsgLoggerCat) << "Processing run " << nrun << ", event " << nevt << " (" << count << " events total)"; } } // look at information available in the event if (getAllProvenances) { std::vector<const edm::Provenance*> AllProv; iEvent.getAllProvenance(AllProv); if (verbosity >= 0) edm::LogInfo(MsgLoggerCat) << "Number of Provenances = " << AllProv.size(); if (printProvenanceInfo && (verbosity >= 0)) { TString eventout("\nProvenance info:\n"); for (unsigned int i = 0; i < AllProv.size(); ++i) { eventout += "\n ******************************"; eventout += "\n Module : "; eventout += AllProv[i]->moduleLabel(); eventout += "\n ProductID : "; eventout += AllProv[i]->productID().id(); eventout += "\n ClassName : "; eventout += AllProv[i]->className(); eventout += "\n InstanceName : "; eventout += AllProv[i]->productInstanceName(); eventout += "\n BranchName : "; eventout += AllProv[i]->branchName(); } eventout += "\n ******************************\n"; edm::LogInfo(MsgLoggerCat) << eventout << "\n"; printProvenanceInfo = false; } getAllProvenances = false; } // call fill functions // gather Ecal information from event fillECal(iEvent, iSetup); // gather Hcal information from event fillHCal(iEvent, iSetup); // gather Track information from event fillTrk(iEvent, iSetup); // gather Muon information from event fillMuon(iEvent, iSetup); if (verbosity > 0) edm::LogInfo (MsgLoggerCat) << "Done gathering data from event."; if (verbosity > 2) edm::LogInfo (MsgLoggerCat) << "Saving event contents:"; return; }
void GlobalDigisAnalyzer::beginJob | ( | void | ) | [virtual] |
Reimplemented from edm::EDAnalyzer.
Definition at line 405 of file GlobalDigisAnalyzer.cc.
References ECalgainConv_, EcalMGPAGainRatio::gain12Over6(), EcalMGPAGainRatio::gain6Over1(), and verbosity.
{ std::string MsgLoggerCat = "GlobalDigisAnalyzer_beginJob"; EcalMGPAGainRatio * defaultRatios = new EcalMGPAGainRatio(); ECalgainConv_[0] = 0.; ECalgainConv_[1] = 1.; ECalgainConv_[2] = defaultRatios->gain12Over6() ; ECalgainConv_[3] = ECalgainConv_[2]*(defaultRatios->gain6Over1()) ; delete defaultRatios; if (verbosity >= 0) { edm::LogInfo(MsgLoggerCat) << "Modified Calorimeter gain constants: g0 = " << ECalgainConv_[0] << ", g1 = " << ECalgainConv_[1] << ", g2 = " << ECalgainConv_[2] << ", g3 = " << ECalgainConv_[3]; } return; }
void GlobalDigisAnalyzer::endJob | ( | void | ) | [virtual] |
Reimplemented from edm::EDAnalyzer.
Definition at line 429 of file GlobalDigisAnalyzer.cc.
References count, and verbosity.
{ std::string MsgLoggerCat = "GlobalDigisAnalyzer_endJob"; if (verbosity >= 0) edm::LogInfo(MsgLoggerCat) << "Terminating having processed " << count << " events."; return; }
void GlobalDigisAnalyzer::fillECal | ( | const edm::Event & | iEvent, |
const edm::EventSetup & | iSetup | ||
) | [private] |
Definition at line 533 of file GlobalDigisAnalyzer.cc.
References EcalMGPASample::adc(), ESSample::adc(), ECalbarrelADCtoGeV_, ECalEBSrc_, ECalEESrc_, ECalESSrc_, ECalgainConv_, MonitorElement::Fill(), EcalMGPASample::gainId(), edm::Event::getByLabel(), hitsProducer, i, EBDataFrame::id(), EEDataFrame::id(), edm::HandleBase::isValid(), LogDebug, EcalDataFrame::MAXSAMPLES, ESDataFrame::MAXSAMPLES, mehEcalAEE, mehEcalMaxPos, mehEcalMultvAEE, mehEcaln, mehEcalSHE, mehEcalSHEvAEESHE, mehEScalADC, mehEScaln, edm::Handle< T >::product(), DetId::rawId(), compare_using_db::sample, ESDataFrame::size(), EcalDataFrame::size(), and verbosity.
Referenced by analyze().
{ std::string MsgLoggerCat = "GlobalDigisAnalyzer_fillECal"; TString eventout; if (verbosity > 0) eventout = "\nGathering info:"; // extract crossing frame from event edm::Handle<CrossingFrame<PCaloHit> > crossingFrame; //extract EB information bool isBarrel = true; edm::Handle<EBDigiCollection> EcalDigiEB; iEvent.getByLabel(ECalEBSrc_, EcalDigiEB); bool validDigiEB = true; if (!EcalDigiEB.isValid()) { LogDebug(MsgLoggerCat) << "Unable to find EcalDigiEB in event!"; validDigiEB = false; } if (validDigiEB) { if ( EcalDigiEB->size() == 0) isBarrel = false; if (isBarrel) { // loop over simhits MapType ebSimMap; const std::string barrelHitsName(hitsProducer+"EcalHitsEB"); iEvent.getByLabel("mix",barrelHitsName,crossingFrame); bool validXFrame = true; if (!crossingFrame.isValid()) { LogDebug(MsgLoggerCat) << "Unable to find cal barrel crossingFrame in event!"; validXFrame = false; } if (validXFrame) { std::auto_ptr<MixCollection<PCaloHit> > barrelHits(new MixCollection<PCaloHit>(crossingFrame.product())); // keep track of sum of simhit energy in each crystal for (MixCollection<PCaloHit>::MixItr hitItr = barrelHits->begin(); hitItr != barrelHits->end(); ++hitItr) { EBDetId ebid = EBDetId(hitItr->id()); uint32_t crystid = ebid.rawId(); ebSimMap[crystid] += hitItr->energy(); } } // loop over digis const EBDigiCollection *barrelDigi = EcalDigiEB.product(); std::vector<double> ebAnalogSignal; std::vector<double> ebADCCounts; std::vector<double> ebADCGains; ebAnalogSignal.reserve(EBDataFrame::MAXSAMPLES); ebADCCounts.reserve(EBDataFrame::MAXSAMPLES); ebADCGains.reserve(EBDataFrame::MAXSAMPLES); int i = 0; for (unsigned int digis=0; digis<EcalDigiEB->size(); ++digis) { ++i; EBDataFrame ebdf = (*barrelDigi)[digis]; int nrSamples = ebdf.size(); EBDetId ebid = ebdf.id () ; double Emax = 0; int Pmax = 0; double pedestalPreSample = 0.; double pedestalPreSampleAnalog = 0.; for (int sample = 0 ; sample < nrSamples; ++sample) { ebAnalogSignal[sample] = 0.; ebADCCounts[sample] = 0.; ebADCGains[sample] = -1.; } // calculate maximum energy and pedestal for (int sample = 0 ; sample < nrSamples; ++sample) { EcalMGPASample thisSample = ebdf[sample]; ebADCCounts[sample] = (thisSample.adc()); ebADCGains[sample] = (thisSample.gainId()); ebAnalogSignal[sample] = (ebADCCounts[sample] * ECalgainConv_[(int)ebADCGains[sample]] * ECalbarrelADCtoGeV_); if (Emax < ebAnalogSignal[sample]) { Emax = ebAnalogSignal[sample]; Pmax = sample; } if ( sample < 3 ) { pedestalPreSample += ebADCCounts[sample] ; pedestalPreSampleAnalog += ebADCCounts[sample] * ECalgainConv_[(int)ebADCGains[sample]] * ECalbarrelADCtoGeV_ ; } } pedestalPreSample /= 3. ; pedestalPreSampleAnalog /= 3. ; // calculate pedestal subtracted digi energy in the crystal double Erec = Emax - pedestalPreSampleAnalog * ECalgainConv_[(int)ebADCGains[Pmax]]; // gather necessary information mehEcalMaxPos[0]->Fill(Pmax); mehEcalSHE[0]->Fill(ebSimMap[ebid.rawId()]); mehEcalAEE[0]->Fill(Erec); //Adding protection against FPE if (ebSimMap[ebid.rawId()]!=0) { mehEcalSHEvAEESHE[0]->Fill(Erec/ebSimMap[ebid.rawId()], ebSimMap[ebid.rawId()]); } //else { // std::cout<<"Would have been an FPE! with ebSimMap[ebid.rawId()]==0\n"; //} mehEcalMultvAEE[0]->Fill(Pmax,(float)i); } if (verbosity > 1) { eventout += "\n Number of EBDigis collected:.............. "; eventout += i; } mehEcaln[0]->Fill((float)i); } } //extract EE information bool isEndCap = true; edm::Handle<EEDigiCollection> EcalDigiEE; iEvent.getByLabel(ECalEESrc_, EcalDigiEE); bool validDigiEE = true; if (!EcalDigiEE.isValid()) { LogDebug(MsgLoggerCat) << "Unable to find EcalDigiEE in event!"; validDigiEE = false; } if (validDigiEE) { if (EcalDigiEE->size() == 0) isEndCap = false; if (isEndCap) { // loop over simhits MapType eeSimMap; const std::string endcapHitsName(hitsProducer+"EcalHitsEE"); iEvent.getByLabel("mix",endcapHitsName,crossingFrame); bool validXFrame = true; if (!crossingFrame.isValid()) { LogDebug(MsgLoggerCat) << "Unable to find cal endcap crossingFrame in event!"; validXFrame = false; } if (validXFrame) { std::auto_ptr<MixCollection<PCaloHit> > endcapHits(new MixCollection<PCaloHit>(crossingFrame.product())); // keep track of sum of simhit energy in each crystal for (MixCollection<PCaloHit>::MixItr hitItr = endcapHits->begin(); hitItr != endcapHits->end(); ++hitItr) { EEDetId eeid = EEDetId(hitItr->id()); uint32_t crystid = eeid.rawId(); eeSimMap[crystid] += hitItr->energy(); } } // loop over digis const EEDigiCollection *endcapDigi = EcalDigiEE.product(); std::vector<double> eeAnalogSignal; std::vector<double> eeADCCounts; std::vector<double> eeADCGains; eeAnalogSignal.reserve(EEDataFrame::MAXSAMPLES); eeADCCounts.reserve(EEDataFrame::MAXSAMPLES); eeADCGains.reserve(EEDataFrame::MAXSAMPLES); int inc = 0; for (unsigned int digis=0; digis<EcalDigiEE->size(); ++digis){ ++inc; EEDataFrame eedf = (*endcapDigi)[digis]; int nrSamples = eedf.size(); EEDetId eeid = eedf.id () ; double Emax = 0; int Pmax = 0; double pedestalPreSample = 0.; double pedestalPreSampleAnalog = 0.; for (int sample = 0 ; sample < nrSamples; ++sample) { eeAnalogSignal[sample] = 0.; eeADCCounts[sample] = 0.; eeADCGains[sample] = -1.; } // calculate maximum enery and pedestal for (int sample = 0 ; sample < nrSamples; ++sample) { EcalMGPASample thisSample = eedf[sample]; eeADCCounts[sample] = (thisSample.adc()); eeADCGains[sample] = (thisSample.gainId()); eeAnalogSignal[sample] = (eeADCCounts[sample] * ECalgainConv_[(int)eeADCGains[sample]] * ECalbarrelADCtoGeV_); if (Emax < eeAnalogSignal[sample]) { Emax = eeAnalogSignal[sample]; Pmax = sample; } if ( sample < 3 ) { pedestalPreSample += eeADCCounts[sample] ; pedestalPreSampleAnalog += eeADCCounts[sample] * ECalgainConv_[(int)eeADCGains[sample]] * ECalbarrelADCtoGeV_ ; } } pedestalPreSample /= 3. ; pedestalPreSampleAnalog /= 3. ; // calculate pedestal subtracted digi energy in the crystal double Erec = Emax - pedestalPreSampleAnalog * ECalgainConv_[(int)eeADCGains[Pmax]]; // gather necessary information mehEcalMaxPos[1]->Fill(Pmax); mehEcalSHE[1]->Fill(eeSimMap[eeid.rawId()]); mehEcalAEE[1]->Fill(Erec); //Adding protection against FPE if (eeSimMap[eeid.rawId()]!=0){ mehEcalSHEvAEESHE[1]->Fill(Erec/eeSimMap[eeid.rawId()], eeSimMap[eeid.rawId()]); } //else{ // std::cout<<"Would have been an FPE! with eeSimMap[eeid.rawId()]==0\n"; //} mehEcalMultvAEE[1]->Fill(Pmax,(float)inc); } if (verbosity > 1) { eventout += "\n Number of EEDigis collected:.............. "; eventout += inc; } mehEcaln[1]->Fill((float)inc); } } //extract ES information bool isPreshower = true; edm::Handle<ESDigiCollection> EcalDigiES; iEvent.getByLabel(ECalESSrc_, EcalDigiES); bool validDigiES = true; if (!EcalDigiES.isValid()) { LogDebug(MsgLoggerCat) << "Unable to find EcalDigiES in event!"; validDigiES = false; } // ONLY WHILE GEOMETRY IS REMOVED validDigiES = false; if (validDigiES) { if (EcalDigiES->size() == 0) isPreshower = false; if (isPreshower) { // loop over simhits const std::string preshowerHitsName(hitsProducer+"EcalHitsES"); iEvent.getByLabel("mix",preshowerHitsName,crossingFrame); bool validXFrame = true; if (!crossingFrame.isValid()) { LogDebug(MsgLoggerCat) << "Unable to find cal preshower crossingFrame in event!"; validXFrame = false; } if (validXFrame) { std::auto_ptr<MixCollection<PCaloHit> > preshowerHits(new MixCollection<PCaloHit>(crossingFrame.product())); // keep track of sum of simhit energy in each crystal MapType esSimMap; for (MixCollection<PCaloHit>::MixItr hitItr = preshowerHits->begin(); hitItr != preshowerHits->end(); ++hitItr) { ESDetId esid = ESDetId(hitItr->id()); uint32_t crystid = esid.rawId(); esSimMap[crystid] += hitItr->energy(); } } // loop over digis const ESDigiCollection *preshowerDigi = EcalDigiES.product(); std::vector<double> esADCCounts; esADCCounts.reserve(ESDataFrame::MAXSAMPLES); int i = 0; for (unsigned int digis=0; digis<EcalDigiES->size(); ++digis) { ++i; ESDataFrame esdf = (*preshowerDigi)[digis]; int nrSamples = esdf.size(); for (int sample = 0 ; sample < nrSamples; ++sample) { esADCCounts[sample] = 0.; } // gether ADC counts for (int sample = 0 ; sample < nrSamples; ++sample) { ESSample thisSample = esdf[sample]; esADCCounts[sample] = (thisSample.adc()); } mehEScalADC[0]->Fill(esADCCounts[0]); mehEScalADC[1]->Fill(esADCCounts[1]); mehEScalADC[2]->Fill(esADCCounts[2]); } if (verbosity > 1) { eventout += "\n Number of ESDigis collected:.............. "; eventout += i; } mehEScaln->Fill((float)i); } } if (verbosity > 0) edm::LogInfo(MsgLoggerCat) << eventout << "\n"; return; }
void GlobalDigisAnalyzer::fillHCal | ( | const edm::Event & | iEvent, |
const edm::EventSetup & | iSetup | ||
) | [private] |
Definition at line 896 of file GlobalDigisAnalyzer.cc.
References HcalCoderDb::adc2fC(), MonitorElement::Fill(), edm::EventSetup::get(), edm::Event::getByLabel(), HCalDigi_, HCalSrc_, ihf, edm::ESHandleBase::isValid(), edm::HandleBase::isValid(), LogDebug, mehHcalAEE, mehHcalAEESHE, mehHcaln, mehHcalSHE, mehHcalSHEvAEE, HcalCalibrations::pedestal(), edm::Handle< T >::product(), DetId::rawId(), sdHcalBrl, sdHcalEC, sdHcalFwd, sdHcalOut, CaloSamples::size(), and verbosity.
Referenced by analyze().
{ std::string MsgLoggerCat = "GlobalDigisAnalyzer_fillHCal"; TString eventout; if (verbosity > 0) eventout = "\nGathering info:"; // get calibration info edm::ESHandle<HcalDbService> HCalconditions; iSetup.get<HcalDbRecord>().get(HCalconditions); if (!HCalconditions.isValid()) { edm::LogWarning(MsgLoggerCat) << "Unable to find HCalconditions in event!"; return; } const HcalQIEShape *shape = HCalconditions->getHcalShape(); //HcalCalibrations calibrations; CaloSamples tool; // extract simhit info edm::Handle<edm::PCaloHitContainer> hcalHits; iEvent.getByLabel(HCalSrc_,hcalHits); bool validhcalHits = true; if (!hcalHits.isValid()) { LogDebug(MsgLoggerCat) << "Unable to find hcalHits in event!"; validhcalHits = false; } MapType fHBEnergySimHits; MapType fHEEnergySimHits; MapType fHOEnergySimHits; MapType fHFEnergySimHits; if (validhcalHits) { const edm::PCaloHitContainer *simhitResult = hcalHits.product(); for (std::vector<PCaloHit>::const_iterator simhits = simhitResult->begin(); simhits != simhitResult->end(); ++simhits) { HcalDetId detId(simhits->id()); uint32_t cellid = detId.rawId(); if (detId.subdet() == sdHcalBrl){ fHBEnergySimHits[cellid] += simhits->energy(); } if (detId.subdet() == sdHcalEC){ fHEEnergySimHits[cellid] += simhits->energy(); } if (detId.subdet() == sdHcalOut){ fHOEnergySimHits[cellid] += simhits->energy(); } if (detId.subdet() == sdHcalFwd){ fHFEnergySimHits[cellid] += simhits->energy(); } } } // get HBHE information edm::Handle<edm::SortedCollection<HBHEDataFrame> > hbhe; iEvent.getByLabel(HCalDigi_,hbhe); bool validHBHE = true; if (!hbhe.isValid()) { LogDebug(MsgLoggerCat) << "Unable to find HBHEDataFrame in event!"; validHBHE = false; } if (validHBHE) { edm::SortedCollection<HBHEDataFrame>::const_iterator ihbhe; int iHB = 0; int iHE = 0; for (ihbhe = hbhe->begin(); ihbhe != hbhe->end(); ++ihbhe) { HcalDetId cell(ihbhe->id()); if ((cell.subdet() == sdHcalBrl) || (cell.subdet() == sdHcalEC)) { //HCalconditions->makeHcalCalibration(cell, &calibrations); const HcalCalibrations& calibrations = HCalconditions->getHcalCalibrations(cell); const HcalQIECoder *channelCoder = HCalconditions->getHcalCoder(cell); HcalCoderDb coder(*channelCoder, *shape); coder.adc2fC(*ihbhe, tool); // get HB info if (cell.subdet() == sdHcalBrl) { ++iHB; float fDigiSum = 0.0; for (int ii = 0; ii < tool.size(); ++ii) { // default ped is 4.5 int capid = (*ihbhe)[ii].capid(); fDigiSum += (tool[ii] - calibrations.pedestal(capid)); } mehHcalSHE[0]->Fill(fHFEnergySimHits[cell.rawId()]); mehHcalAEE[0]->Fill(fDigiSum); //Adding protection against FPE if (fHFEnergySimHits[cell.rawId()]!=0){ mehHcalAEESHE[0]->Fill(fDigiSum/fHFEnergySimHits[cell.rawId()]); } //else { // std::cout<<"It would have been an FPE! with fHFEnergySimHits[cell.rawId()]==0!\n"; //} mehHcalSHEvAEE[0]->Fill(fDigiSum, fHFEnergySimHits[cell.rawId()]); } // get HE info if (cell.subdet() == sdHcalEC) { ++iHE; float fDigiSum = 0.0; for (int ii = 0; ii < tool.size(); ++ii) { int capid = (*ihbhe)[ii].capid(); fDigiSum += (tool[ii]-calibrations.pedestal(capid)); } mehHcalSHE[1]->Fill(fHFEnergySimHits[cell.rawId()]); mehHcalAEE[1]->Fill(fDigiSum); //Adding protection against FPE if (fHFEnergySimHits[cell.rawId()]!=0){ mehHcalAEESHE[1]->Fill(fDigiSum/fHFEnergySimHits[cell.rawId()]); } //else{ // std::cout<<"It would have been an FPE! with fHFEnergySimHits[cell.rawId()]==0!\n"; //} mehHcalSHEvAEE[1]->Fill(fDigiSum, fHFEnergySimHits[cell.rawId()]); } } } if (verbosity > 1) { eventout += "\n Number of HBDigis collected:.............. "; eventout += iHB; } mehHcaln[0]->Fill((float)iHB); if (verbosity > 1) { eventout += "\n Number of HEDigis collected:.............. "; eventout += iHE; } mehHcaln[1]->Fill((float)iHE); } // get HO information edm::Handle<edm::SortedCollection<HODataFrame> > ho; iEvent.getByLabel(HCalDigi_,ho); bool validHO = true; if (!ho.isValid()) { LogDebug(MsgLoggerCat) << "Unable to find HODataFrame in event!"; validHO = false; } if (validHO) { edm::SortedCollection<HODataFrame>::const_iterator iho; int iHO = 0; for (iho = ho->begin(); iho != ho->end(); ++iho) { HcalDetId cell(iho->id()); if (cell.subdet() == sdHcalOut) { //HCalconditions->makeHcalCalibration(cell, &calibrations); const HcalCalibrations& calibrations = HCalconditions->getHcalCalibrations(cell); const HcalQIECoder *channelCoder = HCalconditions->getHcalCoder(cell); HcalCoderDb coder (*channelCoder, *shape); coder.adc2fC(*iho, tool); ++iHO; float fDigiSum = 0.0; for (int ii = 0; ii < tool.size(); ++ii) { // default ped is 4.5 int capid = (*iho)[ii].capid(); fDigiSum += (tool[ii] - calibrations.pedestal(capid)); } mehHcalSHE[2]->Fill(fHFEnergySimHits[cell.rawId()]); mehHcalAEE[2]->Fill(fDigiSum); //Adding protection against FPE if (fHFEnergySimHits[cell.rawId()]!=0){ mehHcalAEESHE[2]->Fill(fDigiSum/fHFEnergySimHits[cell.rawId()]); } //else{ // std::cout<<"It would have been an FPE! with fHFEnergySimHits[cell.rawId()]==0!\n"; //} mehHcalSHEvAEE[2]->Fill(fDigiSum, fHFEnergySimHits[cell.rawId()]); } } if (verbosity > 1) { eventout += "\n Number of HODigis collected:.............. "; eventout += iHO; } mehHcaln[2]->Fill((float)iHO); } // get HF information edm::Handle<edm::SortedCollection<HFDataFrame> > hf; iEvent.getByLabel(HCalDigi_,hf); bool validHF = true; if (!hf.isValid()) { LogDebug(MsgLoggerCat) << "Unable to find HFDataFrame in event!"; validHF = false; } if (validHF) { edm::SortedCollection<HFDataFrame>::const_iterator ihf; int iHF = 0; for (ihf = hf->begin(); ihf != hf->end(); ++ihf) { HcalDetId cell(ihf->id()); if (cell.subdet() == sdHcalFwd) { //HCalconditions->makeHcalCalibration(cell, &calibrations); const HcalCalibrations& calibrations = HCalconditions->getHcalCalibrations(cell); const HcalQIECoder *channelCoder = HCalconditions->getHcalCoder(cell); HcalCoderDb coder (*channelCoder, *shape); coder.adc2fC(*ihf, tool); ++iHF; float fDigiSum = 0.0; for (int ii = 0; ii < tool.size(); ++ii) { // default ped is 1.73077 int capid = (*ihf)[ii].capid(); fDigiSum += (tool[ii] - calibrations.pedestal(capid)); } mehHcalSHE[3]->Fill(fHFEnergySimHits[cell.rawId()]); mehHcalAEE[3]->Fill(fDigiSum); //Adding protection against FPE if (fHFEnergySimHits[cell.rawId()]!=0){ mehHcalAEESHE[3]->Fill(fDigiSum/fHFEnergySimHits[cell.rawId()]); } //else{ // std::cout<<"It would have been an FPE! with fHFEnergySimHits[cell.rawId()]==0!\n"; //} mehHcalSHEvAEE[3]->Fill(fDigiSum, fHFEnergySimHits[cell.rawId()]); } } if (verbosity > 1) { eventout += "\n Number of HFDigis collected:.............. "; eventout += iHF; } mehHcaln[3]->Fill((float)iHF); } if (verbosity > 0) edm::LogInfo(MsgLoggerCat) << eventout << "\n"; return; }
void GlobalDigisAnalyzer::fillMuon | ( | const edm::Event & | iEvent, |
const edm::EventSetup & | iSetup | ||
) | [private] |
Definition at line 1419 of file GlobalDigisAnalyzer.cc.
References RPCRoll::centreOfStrip(), MonitorElement::Fill(), HcalObjRepresent::Fill(), edm::EventSetup::get(), edm::Event::getByLabel(), edm::ESHandleBase::isValid(), edm::HandleBase::isValid(), j, prof2calltree::last, LogDebug, mehCSCStripADC, mehCSCStripn, mehCSCWiren, mehCSCWireTime, mehDtMuonLayer, mehDtMuonn, mehDtMuonTime, mehDtMuonTimevLayer, mehRPCMuonn, mehRPCRes, MuCSCStripSrc_, MuCSCWireSrc_, MuDTSrc_, MuRPCSrc_, RPCDetId::region(), RPCDetId::ring(), RPCDetId, RecoTauPiZeroBuilderPlugins_cfi::strips, theCSCStripPedestalCount, theCSCStripPedestalSum, verbosity, and x.
Referenced by analyze().
{ std::string MsgLoggerCat = "GlobalDigisAnalyzer_fillMuon"; TString eventout; if (verbosity > 0) eventout = "\nGathering info:"; // get DT information edm::Handle<DTDigiCollection> dtDigis; iEvent.getByLabel(MuDTSrc_, dtDigis); bool validdtDigis = true; if (!dtDigis.isValid()) { LogDebug(MsgLoggerCat) << "Unable to find dtDigis in event!"; validdtDigis = false; } if (validdtDigis) { int nDt0 = 0; int nDt1 = 0; int nDt2 = 0; int nDt3 = 0; int nDt = 0; DTDigiCollection::DigiRangeIterator detUnitIt; for (detUnitIt = dtDigis->begin(); detUnitIt != dtDigis->end(); ++detUnitIt) { const DTLayerId& id = (*detUnitIt).first; const DTDigiCollection::Range& range = (*detUnitIt).second; for (DTDigiCollection::const_iterator digiIt = range.first; digiIt != range.second; ++digiIt) { ++nDt; DTWireId wireId(id,(*digiIt).wire()); if (wireId.station() == 1) { mehDtMuonLayer[0]->Fill(id.layer()); mehDtMuonTime[0]->Fill((*digiIt).time()); mehDtMuonTimevLayer[0]->Fill(id.layer(),(*digiIt).time()); ++nDt0; } if (wireId.station() == 2) { mehDtMuonLayer[1]->Fill(id.layer()); mehDtMuonTime[1]->Fill((*digiIt).time()); mehDtMuonTimevLayer[1]->Fill(id.layer(),(*digiIt).time()); ++nDt1; } if (wireId.station() == 3) { mehDtMuonLayer[2]->Fill(id.layer()); mehDtMuonTime[2]->Fill((*digiIt).time()); mehDtMuonTimevLayer[2]->Fill(id.layer(),(*digiIt).time()); ++nDt2; } if (wireId.station() == 4) { mehDtMuonLayer[3]->Fill(id.layer()); mehDtMuonTime[3]->Fill((*digiIt).time()); mehDtMuonTimevLayer[3]->Fill(id.layer(),(*digiIt).time()); ++nDt3; } } } mehDtMuonn[0]->Fill((float)nDt0); mehDtMuonn[1]->Fill((float)nDt1); mehDtMuonn[2]->Fill((float)nDt2); mehDtMuonn[3]->Fill((float)nDt3); if (verbosity > 1) { eventout += "\n Number of DtMuonDigis collected:.......... "; eventout += nDt; } } // get CSC Strip information edm::Handle<CSCStripDigiCollection> strips; iEvent.getByLabel(MuCSCStripSrc_, strips); bool validstrips = true; if (!strips.isValid()) { LogDebug(MsgLoggerCat) << "Unable to find muon strips in event!"; validstrips = false; } if (validstrips) { int nStrips = 0; for (CSCStripDigiCollection::DigiRangeIterator j = strips->begin(); j != strips->end(); ++j) { std::vector<CSCStripDigi>::const_iterator digiItr = (*j).second.first; std::vector<CSCStripDigi>::const_iterator last = (*j).second.second; for ( ; digiItr != last; ++digiItr) { ++nStrips; // average pedestals std::vector<int> adcCounts = digiItr->getADCCounts(); theCSCStripPedestalSum += adcCounts[0]; theCSCStripPedestalSum += adcCounts[1]; theCSCStripPedestalCount += 2; // if there are enough pedestal statistics if (theCSCStripPedestalCount > 100) { float pedestal = theCSCStripPedestalSum / theCSCStripPedestalCount; if (adcCounts[5] > (pedestal + 100)) mehCSCStripADC->Fill(adcCounts[4] - pedestal); } } } if (verbosity > 1) { eventout += "\n Number of CSCStripDigis collected:........ "; eventout += nStrips; } mehCSCStripn->Fill((float)nStrips); } // get CSC Wire information edm::Handle<CSCWireDigiCollection> wires; iEvent.getByLabel(MuCSCWireSrc_, wires); bool validwires = true; if (!wires.isValid()) { LogDebug(MsgLoggerCat) << "Unable to find muon wires in event!"; validwires = false; } if (validwires) { int nWires = 0; for (CSCWireDigiCollection::DigiRangeIterator j = wires->begin(); j != wires->end(); ++j) { std::vector<CSCWireDigi>::const_iterator digiItr = (*j).second.first; std::vector<CSCWireDigi>::const_iterator endDigi = (*j).second.second; for ( ; digiItr != endDigi; ++digiItr) { ++nWires; mehCSCWireTime->Fill(digiItr->getTimeBin()); } } if (verbosity > 1) { eventout += "\n Number of CSCWireDigis collected:......... "; eventout += nWires; } mehCSCWiren->Fill((float)nWires); } // get RPC information // Get the RPC Geometry edm::ESHandle<RPCGeometry> rpcGeom; iSetup.get<MuonGeometryRecord>().get(rpcGeom); if (!rpcGeom.isValid()) { edm::LogWarning(MsgLoggerCat) << "Unable to find RPCGeometryRecord in event!"; return; } edm::Handle<edm::PSimHitContainer> rpcsimHit; iEvent.getByLabel("g4SimHits", "MuonRPCHits", rpcsimHit); bool validrpcsim = true; if (!rpcsimHit.isValid()) { LogDebug(MsgLoggerCat) << "Unable to find rpcsimHit in event!"; validrpcsim = false; } edm::Handle<RPCDigiCollection> rpcDigis; iEvent.getByLabel(MuRPCSrc_, rpcDigis); bool validrpcdigi = true; if (!rpcDigis.isValid()) { LogDebug(MsgLoggerCat) << "Unable to find rpcDigis in event!"; validrpcdigi = false; } // ONLY UNTIL PROBLEM WITH RPC DIGIS IS FIGURED OUT validrpcdigi = false; // Loop on simhits edm::PSimHitContainer::const_iterator rpcsimIt; std::map<RPCDetId, std::vector<double> > allsims; if (validrpcsim) { for (rpcsimIt = rpcsimHit->begin(); rpcsimIt != rpcsimHit->end(); rpcsimIt++) { RPCDetId Rsid = (RPCDetId)(*rpcsimIt).detUnitId(); int ptype = rpcsimIt->particleType(); if (ptype == 13 || ptype == -13) { std::vector<double> buff; if (allsims.find(Rsid) != allsims.end() ){ buff= allsims[Rsid]; } buff.push_back(rpcsimIt->localPosition().x()); allsims[Rsid]=buff; } } } // CRASH HAPPENS SOMEWHERE HERE IN FOR DECLARATION // WHAT IS WRONG WITH rpcDigis????? if (validrpcdigi) { int nRPC = 0; RPCDigiCollection::DigiRangeIterator rpcdetUnitIt; for (rpcdetUnitIt = rpcDigis->begin(); rpcdetUnitIt != rpcDigis->end(); ++rpcdetUnitIt) { const RPCDetId Rsid = (*rpcdetUnitIt).first; const RPCRoll* roll = dynamic_cast<const RPCRoll* >( rpcGeom->roll(Rsid)); const RPCDigiCollection::Range& range = (*rpcdetUnitIt).second; std::vector<double> sims; if (allsims.find(Rsid) != allsims.end() ){ sims = allsims[Rsid]; } int ndigi = 0; for (RPCDigiCollection::const_iterator rpcdigiIt = range.first; rpcdigiIt != range.second; ++rpcdigiIt) { ++ndigi; ++nRPC; } if (sims.size() == 1 && ndigi == 1){ double dis = roll->centreOfStrip(range.first->strip()).x()-sims[0]; if (Rsid.region() == 0 ){ if (Rsid.ring() == -2) mehRPCRes[0]->Fill((float)dis); else if (Rsid.ring() == -1) mehRPCRes[1]->Fill((float)dis); else if (Rsid.ring() == 0) mehRPCRes[2]->Fill((float)dis); else if (Rsid.ring() == 1) mehRPCRes[3]->Fill((float)dis); else if (Rsid.ring() == 2) mehRPCRes[4]->Fill((float)dis); } } } if (verbosity > 1) { eventout += "\n Number of RPCDigis collected:.............. "; eventout += nRPC; } mehRPCMuonn->Fill(float(nRPC)); } if (verbosity > 0) edm::LogInfo(MsgLoggerCat) << eventout << "\n"; return; }
void GlobalDigisAnalyzer::fillTrk | ( | const edm::Event & | iEvent, |
const edm::EventSetup & | iSetup | ||
) | [private] |
Definition at line 1162 of file GlobalDigisAnalyzer.cc.
References edm::DetSetVector< T >::begin(), begin, PXFDetId::disk(), end, edm::DetSetVector< T >::end(), MonitorElement::Fill(), edm::Event::getByLabel(), i, edm::HandleBase::isValid(), TIBDetId::layer(), TOBDetId::layer(), PXBDetId::layer(), LogDebug, mehSiPixelADC, mehSiPixelCol, mehSiPixeln, mehSiPixelRow, mehSiStripADC, mehSiStripn, mehSiStripStrip, sdPxlBrl, sdPxlFwd, sdSiTEC, sdSiTIB, sdSiTID, sdSiTOB, PXFDetId::side(), SiPxlSrc_, SiStripSrc_, DetId::subdetId(), verbosity, TIDDetId::wheel(), and TECDetId::wheel().
Referenced by analyze().
{ std::string MsgLoggerCat = "GlobalDigisAnalyzer_fillTrk"; TString eventout; if (verbosity > 0) eventout = "\nGathering info:"; // get strip information edm::Handle<edm::DetSetVector<SiStripDigi> > stripDigis; iEvent.getByLabel(SiStripSrc_, stripDigis); bool validstripDigis = true; if (!stripDigis.isValid()) { LogDebug(MsgLoggerCat) << "Unable to find stripDigis in event!"; validstripDigis = false; } if (validstripDigis) { int nStripBrl = 0, nStripFwd = 0; edm::DetSetVector<SiStripDigi>::const_iterator DSViter; for (DSViter = stripDigis->begin(); DSViter != stripDigis->end(); ++DSViter) { unsigned int id = DSViter->id; DetId detId(id); edm::DetSet<SiStripDigi>::const_iterator begin = DSViter->data.begin(); edm::DetSet<SiStripDigi>::const_iterator end = DSViter->data.end(); edm::DetSet<SiStripDigi>::const_iterator iter; // get TIB if (detId.subdetId() == sdSiTIB) { TIBDetId tibid(id); for (iter = begin; iter != end; ++iter) { ++nStripBrl; if (tibid.layer() == 1) { mehSiStripADC[0]->Fill((*iter).adc()); mehSiStripStrip[0]->Fill((*iter).strip()); } if (tibid.layer() == 2) { mehSiStripADC[1]->Fill((*iter).adc()); mehSiStripStrip[1]->Fill((*iter).strip()); } if (tibid.layer() == 3) { mehSiStripADC[2]->Fill((*iter).adc()); mehSiStripStrip[2]->Fill((*iter).strip()); } if (tibid.layer() == 4) { mehSiStripADC[3]->Fill((*iter).adc()); mehSiStripStrip[3]->Fill((*iter).strip()); } } } // get TOB if (detId.subdetId() == sdSiTOB) { TOBDetId tobid(id); for (iter = begin; iter != end; ++iter) { ++nStripBrl; if (tobid.layer() == 1) { mehSiStripADC[4]->Fill((*iter).adc()); mehSiStripStrip[4]->Fill((*iter).strip()); } if (tobid.layer() == 2) { mehSiStripADC[5]->Fill((*iter).adc()); mehSiStripStrip[5]->Fill((*iter).strip()); } if (tobid.layer() == 3) { mehSiStripADC[6]->Fill((*iter).adc()); mehSiStripStrip[6]->Fill((*iter).strip()); } if (tobid.layer() == 4) { mehSiStripADC[7]->Fill((*iter).adc()); mehSiStripStrip[7]->Fill((*iter).strip()); } } } // get TID if (detId.subdetId() == sdSiTID) { TIDDetId tidid(id); for (iter = begin; iter != end; ++iter) { ++nStripFwd; if (tidid.wheel() == 1) { mehSiStripADC[8]->Fill((*iter).adc()); mehSiStripStrip[8]->Fill((*iter).strip()); } if (tidid.wheel() == 2) { mehSiStripADC[9]->Fill((*iter).adc()); mehSiStripStrip[9]->Fill((*iter).strip()); } if (tidid.wheel() == 3) { mehSiStripADC[10]->Fill((*iter).adc()); mehSiStripStrip[10]->Fill((*iter).strip()); } } } // get TEC if (detId.subdetId() == sdSiTEC) { TECDetId tecid(id); for (iter = begin; iter != end; ++iter) { ++nStripFwd; if (tecid.wheel() == 1) { mehSiStripADC[11]->Fill((*iter).adc()); mehSiStripStrip[11]->Fill((*iter).strip()); } if (tecid.wheel() == 2) { mehSiStripADC[12]->Fill((*iter).adc()); mehSiStripStrip[12]->Fill((*iter).strip()); } if (tecid.wheel() == 3) { mehSiStripADC[13]->Fill((*iter).adc()); mehSiStripStrip[13]->Fill((*iter).strip()); } if (tecid.wheel() == 4) { mehSiStripADC[14]->Fill((*iter).adc()); mehSiStripStrip[14]->Fill((*iter).strip()); } if (tecid.wheel() == 5) { mehSiStripADC[15]->Fill((*iter).adc()); mehSiStripStrip[15]->Fill((*iter).strip()); } if (tecid.wheel() == 6) { mehSiStripADC[16]->Fill((*iter).adc()); mehSiStripStrip[16]->Fill((*iter).strip()); } if (tecid.wheel() == 7) { mehSiStripADC[17]->Fill((*iter).adc()); mehSiStripStrip[17]->Fill((*iter).strip()); } if (tecid.wheel() == 8) { mehSiStripADC[18]->Fill((*iter).adc()); mehSiStripStrip[18]->Fill((*iter).strip()); } } } } // end loop over DataSetVector if (verbosity > 1) { eventout += "\n Number of BrlStripDigis collected:........ "; eventout += nStripBrl; } for(int i = 0; i < 8; ++i) { mehSiStripn[i]->Fill((float)nStripBrl); } if (verbosity > 1) { eventout += "\n Number of FrwdStripDigis collected:....... "; eventout += nStripFwd; } for(int i = 8; i < 19; ++i) { mehSiStripn[i]->Fill((float)nStripFwd); } } // get pixel information edm::Handle<edm::DetSetVector<PixelDigi> > pixelDigis; iEvent.getByLabel(SiPxlSrc_, pixelDigis); bool validpixelDigis = true; if (!pixelDigis.isValid()) { LogDebug(MsgLoggerCat) << "Unable to find pixelDigis in event!"; validpixelDigis = false; } if (validpixelDigis) { int nPxlBrl = 0, nPxlFwd = 0; edm::DetSetVector<PixelDigi>::const_iterator DPViter; for (DPViter = pixelDigis->begin(); DPViter != pixelDigis->end(); ++DPViter) { unsigned int id = DPViter->id; DetId detId(id); edm::DetSet<PixelDigi>::const_iterator begin = DPViter->data.begin(); edm::DetSet<PixelDigi>::const_iterator end = DPViter->data.end(); edm::DetSet<PixelDigi>::const_iterator iter; // get Barrel pixels if (detId.subdetId() == sdPxlBrl) { PXBDetId bdetid(id); for (iter = begin; iter != end; ++iter) { ++nPxlBrl; if (bdetid.layer() == 1) { mehSiPixelADC[0]->Fill((*iter).adc()); mehSiPixelRow[0]->Fill((*iter).row()); mehSiPixelCol[0]->Fill((*iter).column()); } if (bdetid.layer() == 2) { mehSiPixelADC[1]->Fill((*iter).adc()); mehSiPixelRow[1]->Fill((*iter).row()); mehSiPixelCol[1]->Fill((*iter).column()); } if (bdetid.layer() == 3) { mehSiPixelADC[2]->Fill((*iter).adc()); mehSiPixelRow[2]->Fill((*iter).row()); mehSiPixelCol[2]->Fill((*iter).column()); } } } // get Forward pixels if (detId.subdetId() == sdPxlFwd) { PXFDetId fdetid(id); for (iter = begin; iter != end; ++iter) { ++nPxlFwd; if (fdetid.disk() == 1) { if (fdetid.side() == 1) { mehSiPixelADC[4]->Fill((*iter).adc()); mehSiPixelRow[4]->Fill((*iter).row()); mehSiPixelCol[4]->Fill((*iter).column()); } if (fdetid.side() == 2) { mehSiPixelADC[3]->Fill((*iter).adc()); mehSiPixelRow[3]->Fill((*iter).row()); mehSiPixelCol[3]->Fill((*iter).column()); } } if (fdetid.disk() == 2) { if (fdetid.side() == 1) { mehSiPixelADC[6]->Fill((*iter).adc()); mehSiPixelRow[6]->Fill((*iter).row()); mehSiPixelCol[6]->Fill((*iter).column()); } if (fdetid.side() == 2) { mehSiPixelADC[5]->Fill((*iter).adc()); mehSiPixelRow[5]->Fill((*iter).row()); mehSiPixelCol[5]->Fill((*iter).column()); } } } } } if (verbosity > 1) { eventout += "\n Number of BrlPixelDigis collected:........ "; eventout += nPxlBrl; } for(int i = 0; i < 3; ++i) { mehSiPixeln[i]->Fill((float)nPxlBrl); } if (verbosity > 1) { eventout += "\n Number of FrwdPixelDigis collected:....... "; eventout += nPxlFwd; } for(int i = 3; i < 7; ++i) { mehSiPixeln[i]->Fill((float)nPxlFwd); } } if (verbosity > 0) edm::LogInfo(MsgLoggerCat) << eventout << "\n"; return; }
unsigned int GlobalDigisAnalyzer::count [private] |
Definition at line 236 of file GlobalDigisAnalyzer.h.
DQMStore* GlobalDigisAnalyzer::dbe [private] |
Definition at line 155 of file GlobalDigisAnalyzer.h.
Referenced by GlobalDigisAnalyzer().
double GlobalDigisAnalyzer::ECalbarrelADCtoGeV_ [private] |
Definition at line 174 of file GlobalDigisAnalyzer.h.
Referenced by analyze(), fillECal(), and GlobalDigisAnalyzer().
edm::InputTag GlobalDigisAnalyzer::ECalEBSrc_ [private] |
Definition at line 169 of file GlobalDigisAnalyzer.h.
Referenced by fillECal(), and GlobalDigisAnalyzer().
edm::InputTag GlobalDigisAnalyzer::ECalEESrc_ [private] |
Definition at line 170 of file GlobalDigisAnalyzer.h.
Referenced by fillECal(), and GlobalDigisAnalyzer().
double GlobalDigisAnalyzer::ECalendcapADCtoGeV_ [private] |
Definition at line 175 of file GlobalDigisAnalyzer.h.
Referenced by analyze(), and GlobalDigisAnalyzer().
edm::InputTag GlobalDigisAnalyzer::ECalESSrc_ [private] |
Definition at line 171 of file GlobalDigisAnalyzer.h.
Referenced by fillECal(), and GlobalDigisAnalyzer().
std::map<int, double, std::less<int> > GlobalDigisAnalyzer::ECalgainConv_ [private] |
Definition at line 173 of file GlobalDigisAnalyzer.h.
Referenced by beginJob(), fillECal(), and GlobalDigisAnalyzer().
std::string GlobalDigisAnalyzer::fName [private] |
Definition at line 147 of file GlobalDigisAnalyzer.h.
Referenced by GlobalDigisAnalyzer().
int GlobalDigisAnalyzer::frequency [private] |
Definition at line 149 of file GlobalDigisAnalyzer.h.
Referenced by analyze(), and GlobalDigisAnalyzer().
bool GlobalDigisAnalyzer::getAllProvenances [private] |
Definition at line 151 of file GlobalDigisAnalyzer.h.
Referenced by analyze(), and GlobalDigisAnalyzer().
edm::InputTag GlobalDigisAnalyzer::HCalDigi_ [private] |
Definition at line 186 of file GlobalDigisAnalyzer.h.
Referenced by fillHCal(), and GlobalDigisAnalyzer().
edm::InputTag GlobalDigisAnalyzer::HCalSrc_ [private] |
Definition at line 185 of file GlobalDigisAnalyzer.h.
Referenced by fillHCal(), and GlobalDigisAnalyzer().
std::string GlobalDigisAnalyzer::hitsProducer [private] |
Definition at line 153 of file GlobalDigisAnalyzer.h.
Referenced by fillECal(), and GlobalDigisAnalyzer().
std::string GlobalDigisAnalyzer::label [private] |
Definition at line 150 of file GlobalDigisAnalyzer.h.
Definition at line 219 of file GlobalDigisAnalyzer.h.
Referenced by fillMuon(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehCSCStripn [private] |
Definition at line 218 of file GlobalDigisAnalyzer.h.
Referenced by fillMuon(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehCSCWiren [private] |
Definition at line 220 of file GlobalDigisAnalyzer.h.
Referenced by fillMuon(), and GlobalDigisAnalyzer().
Definition at line 221 of file GlobalDigisAnalyzer.h.
Referenced by fillMuon(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehDtMuonLayer[4] [private] |
Definition at line 210 of file GlobalDigisAnalyzer.h.
Referenced by fillMuon(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehDtMuonn[4] [private] |
Definition at line 209 of file GlobalDigisAnalyzer.h.
Referenced by fillMuon(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehDtMuonTime[4] [private] |
Definition at line 211 of file GlobalDigisAnalyzer.h.
Referenced by fillMuon(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehDtMuonTimevLayer[4] [private] |
Definition at line 212 of file GlobalDigisAnalyzer.h.
Referenced by fillMuon(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehEcalAEE[2] [private] |
Definition at line 162 of file GlobalDigisAnalyzer.h.
Referenced by fillECal(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehEcalMaxPos[2] [private] |
Definition at line 164 of file GlobalDigisAnalyzer.h.
Referenced by fillECal(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehEcalMultvAEE[2] [private] |
Definition at line 165 of file GlobalDigisAnalyzer.h.
Referenced by fillECal(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehEcaln[2] [private] |
Definition at line 160 of file GlobalDigisAnalyzer.h.
Referenced by fillECal(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehEcalSHE[2] [private] |
Definition at line 163 of file GlobalDigisAnalyzer.h.
Referenced by fillECal(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehEcalSHEvAEESHE[2] [private] |
Definition at line 166 of file GlobalDigisAnalyzer.h.
Referenced by fillECal(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehEScalADC[3] [private] |
Definition at line 167 of file GlobalDigisAnalyzer.h.
Referenced by fillECal(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehEScaln [private] |
Definition at line 161 of file GlobalDigisAnalyzer.h.
Referenced by fillECal(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehHcalAEE[4] [private] |
Definition at line 180 of file GlobalDigisAnalyzer.h.
Referenced by fillHCal(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehHcalAEESHE[4] [private] |
Definition at line 182 of file GlobalDigisAnalyzer.h.
Referenced by fillHCal(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehHcaln[4] [private] |
Definition at line 179 of file GlobalDigisAnalyzer.h.
Referenced by fillHCal(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehHcalSHE[4] [private] |
Definition at line 181 of file GlobalDigisAnalyzer.h.
Referenced by fillHCal(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehHcalSHEvAEE[4] [private] |
Definition at line 183 of file GlobalDigisAnalyzer.h.
Referenced by fillHCal(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehRPCMuonn [private] |
Definition at line 230 of file GlobalDigisAnalyzer.h.
Referenced by fillMuon(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehRPCRes[5] [private] |
Definition at line 231 of file GlobalDigisAnalyzer.h.
Referenced by fillMuon(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehSiPixelADC[7] [private] |
Definition at line 200 of file GlobalDigisAnalyzer.h.
Referenced by fillTrk(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehSiPixelCol[7] [private] |
Definition at line 202 of file GlobalDigisAnalyzer.h.
Referenced by fillTrk(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehSiPixeln[7] [private] |
Definition at line 199 of file GlobalDigisAnalyzer.h.
Referenced by fillTrk(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehSiPixelRow[7] [private] |
Definition at line 201 of file GlobalDigisAnalyzer.h.
Referenced by fillTrk(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehSiStripADC[19] [private] |
Definition at line 192 of file GlobalDigisAnalyzer.h.
Referenced by fillTrk(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehSiStripn[19] [private] |
Definition at line 191 of file GlobalDigisAnalyzer.h.
Referenced by fillTrk(), and GlobalDigisAnalyzer().
MonitorElement* GlobalDigisAnalyzer::mehSiStripStrip[19] [private] |
Definition at line 193 of file GlobalDigisAnalyzer.h.
Referenced by fillTrk(), and GlobalDigisAnalyzer().
Definition at line 223 of file GlobalDigisAnalyzer.h.
Referenced by fillMuon(), and GlobalDigisAnalyzer().
Definition at line 227 of file GlobalDigisAnalyzer.h.
Referenced by fillMuon(), and GlobalDigisAnalyzer().
edm::InputTag GlobalDigisAnalyzer::MuDTSrc_ [private] |
Definition at line 214 of file GlobalDigisAnalyzer.h.
Referenced by fillMuon(), and GlobalDigisAnalyzer().
edm::InputTag GlobalDigisAnalyzer::MuRPCSrc_ [private] |
Definition at line 233 of file GlobalDigisAnalyzer.h.
Referenced by fillMuon(), and GlobalDigisAnalyzer().
bool GlobalDigisAnalyzer::printProvenanceInfo [private] |
Definition at line 152 of file GlobalDigisAnalyzer.h.
Referenced by analyze(), and GlobalDigisAnalyzer().
edm::InputTag GlobalDigisAnalyzer::SiPxlSrc_ [private] |
Definition at line 204 of file GlobalDigisAnalyzer.h.
Referenced by fillTrk(), and GlobalDigisAnalyzer().
Definition at line 195 of file GlobalDigisAnalyzer.h.
Referenced by fillTrk(), and GlobalDigisAnalyzer().
int GlobalDigisAnalyzer::theCSCStripPedestalCount [private] |
Definition at line 225 of file GlobalDigisAnalyzer.h.
Referenced by fillMuon().
float GlobalDigisAnalyzer::theCSCStripPedestalSum [private] |
Definition at line 224 of file GlobalDigisAnalyzer.h.
Referenced by fillMuon().
int GlobalDigisAnalyzer::verbosity [private] |
Definition at line 148 of file GlobalDigisAnalyzer.h.
Referenced by analyze(), beginJob(), endJob(), fillECal(), fillHCal(), fillMuon(), fillTrk(), and GlobalDigisAnalyzer().