#include <MultiTrajectoryStateMode.h>
Public Member Functions | |
int | chargeFromMode (const TrajectoryStateOnSurface tsos) const |
bool | momentumFromModeCartesian (const TrajectoryStateOnSurface tsos, GlobalVector &momentum) const |
bool | momentumFromModeLocal (const TrajectoryStateOnSurface tsos, GlobalVector &momentum) const |
bool | momentumFromModeP (const TrajectoryStateOnSurface tsos, double &momentum) const |
bool | momentumFromModePPhiEta (const TrajectoryStateOnSurface tsos, GlobalVector &momentum) const |
bool | momentumFromModeQP (const TrajectoryStateOnSurface tsos, double &momentum) const |
bool | positionFromModeCartesian (const TrajectoryStateOnSurface tsos, GlobalPoint &position) const |
bool | positionFromModeLocal (const TrajectoryStateOnSurface tsos, GlobalPoint &position) const |
Definition at line 11 of file MultiTrajectoryStateMode.h.
int MultiTrajectoryStateMode::chargeFromMode | ( | const TrajectoryStateOnSurface | tsos | ) | const |
Charge from 1D mode calculation in q/p. Q=0 in case of failure.
Definition at line 331 of file MultiTrajectoryStateMode.cc.
References TrajectoryStateOnSurface::isValid(), GaussianSumUtilities1D::mean(), SingleGaussianState1D::mean(), GaussianSumUtilities1D::mode(), GaussianSumUtilities1D::modeIsValid(), MultiGaussianStateTransform::multiState1D(), and query::result.
{ // // clear result vector and check validity of the TSOS // if ( !tsos.isValid() ) { edm::LogInfo("MultiTrajectoryStateMode") << "Cannot calculate mode from invalid TSOS"; return 0; } // // mode computation for local co-ordinates q/p // extraction of multi-state using helper class MultiGaussianState1D state1D = MultiGaussianStateTransform::multiState1D(tsos,0); GaussianSumUtilities1D utils(state1D); // mode (in case of failure: mean) double result = utils.mode().mean(); if ( !utils.modeIsValid() ) result = utils.mean(); return result>0. ? 1 : -1; }
bool MultiTrajectoryStateMode::momentumFromModeCartesian | ( | const TrajectoryStateOnSurface | tsos, |
GlobalVector & | momentum | ||
) | const |
Cartesian momentum from 1D mode calculation in cartesian co-ordinates. Return value true for success.
Definition at line 13 of file MultiTrajectoryStateMode.cc.
References makeMuonMisalignmentScenario::components, TrajectoryStateOnSurface::components(), TrajectoryStateOnSurface::isValid(), SingleGaussianState1D::mean(), and GaussianSumUtilities1D::mode().
Referenced by PFTrackTransformer::addPointsAndBrems(), GsfElectronAlgo::ElectronData::calculateMode(), MultiTrajectoryStateTransform::innerMomentumFromMode(), MultiTrajectoryStateTransform::outerMomentumFromMode(), EgammaHLTPixelMatchElectronAlgo::process(), and PFElecTkProducer::resolveGsfTracks().
{ // // clear result vector and check validity of the TSOS // momentum = GlobalVector(0.,0.,0.); if ( !tsos.isValid() ) { edm::LogInfo("MultiTrajectoryStateMode") << "Cannot calculate mode from invalid TSOS"; return false; } // // 1D mode computation for px, py and pz // std::vector<TrajectoryStateOnSurface> components(tsos.components()); unsigned int numb = components.size(); // vectors of components in x, y and z std::vector<SingleGaussianState1D> pxStates; pxStates.reserve(numb); std::vector<SingleGaussianState1D> pyStates; pyStates.reserve(numb); std::vector<SingleGaussianState1D> pzStates; pzStates.reserve(numb); // iteration over components for ( std::vector<TrajectoryStateOnSurface>::const_iterator ic=components.begin(); ic!=components.end(); ++ic ) { // extraction of parameters and variances GlobalVector mom(ic->globalMomentum()); AlgebraicSymMatrix66 cov(ic->cartesianError().matrix()); pxStates.push_back(SingleGaussianState1D(mom.x(),cov(3,3),ic->weight())); pyStates.push_back(SingleGaussianState1D(mom.y(),cov(4,4),ic->weight())); pzStates.push_back(SingleGaussianState1D(mom.z(),cov(5,5),ic->weight())); } // // transformation in 1D multi-states and creation of utility classes // MultiGaussianState1D pxState(pxStates); MultiGaussianState1D pyState(pyStates); MultiGaussianState1D pzState(pzStates); GaussianSumUtilities1D pxUtils(pxState); GaussianSumUtilities1D pyUtils(pyState); GaussianSumUtilities1D pzUtils(pzState); // // cartesian momentum vector from modes // momentum = GlobalVector(pxUtils.mode().mean(),pyUtils.mode().mean(),pzUtils.mode().mean()); return true; }
bool MultiTrajectoryStateMode::momentumFromModeLocal | ( | const TrajectoryStateOnSurface | tsos, |
GlobalVector & | momentum | ||
) | const |
Cartesian momentum from 1D mode calculation in local co-ordinates (q/p, dx/dz, dy/dz). Return value true for success.
Definition at line 107 of file MultiTrajectoryStateMode.cc.
References TrajectoryStateOnSurface::isValid(), TrajectoryStateOnSurface::localParameters(), SingleGaussianState1D::mean(), GaussianSumUtilities1D::mean(), GaussianSumUtilities1D::mode(), GaussianSumUtilities1D::modeIsValid(), MultiGaussianStateTransform::multiState1D(), LocalTrajectoryParameters::pzSign(), query::result, mathSSE::sqrt(), TrajectoryStateOnSurface::surface(), and Surface::toGlobal().
{ // // clear result vector and check validity of the TSOS // momentum = GlobalVector(0.,0.,0.); if ( !tsos.isValid() ) { edm::LogInfo("MultiTrajectoryStateMode") << "Cannot calculate mode from invalid TSOS"; return false; } // // mode computation for local co-ordinates q/p, dx/dz, dy/dz // double qpMode(0); double dxdzMode(0); double dydzMode(0); // // first 3 elements of local parameters = q/p, dx/dz, dy/dz // for ( unsigned int iv=0; iv<3; ++iv ) { // extraction of multi-state using helper class MultiGaussianState1D state1D = MultiGaussianStateTransform::multiState1D(tsos,iv); GaussianSumUtilities1D utils(state1D); // mode (in case of failure: mean) double result = utils.mode().mean(); if ( !utils.modeIsValid() ) result = utils.mean(); if ( iv==0 ) qpMode = result; else if ( iv==1 ) dxdzMode = result; else dydzMode = result; } // local momentum vector from dx/dz, dy/dz and q/p + sign of local pz LocalVector localP(dxdzMode,dydzMode,1.); localP *= tsos.localParameters().pzSign()/fabs(qpMode) /sqrt(dxdzMode*dxdzMode+dydzMode*dydzMode+1.); // conversion to global coordinates momentum = tsos.surface().toGlobal(localP); return true; }
bool MultiTrajectoryStateMode::momentumFromModeP | ( | const TrajectoryStateOnSurface | tsos, |
double & | momentum | ||
) | const |
Momentum from 1D mode calculation in p. Return value true for sucess.
Definition at line 178 of file MultiTrajectoryStateMode.cc.
References MultiGaussianState1D::components(), i, TrajectoryStateOnSurface::isValid(), SingleGaussianState1D::mean(), GaussianSumUtilities1D::mean(), GaussianSumUtilities1D::mode(), GaussianSumUtilities1D::modeIsValid(), MultiGaussianStateTransform::multiState1D(), AlCaHLTBitMon_ParallelJobs::p, SingleGaussianState1D::variance(), and SingleGaussianState1D::weight().
{ // // clear result vector and check validity of the TSOS // momentum = 0.; if ( !tsos.isValid() ) { edm::LogInfo("MultiTrajectoryStateMode") << "Cannot calculate mode from invalid TSOS"; return false; } // // first element of local parameters = q/p // // extraction of multi-state using helper class MultiGaussianState1D qpMultiState = MultiGaussianStateTransform::multiState1D(tsos,0); std::vector<SingleGaussianState1D> states(qpMultiState.components()); // transform from q/p to p for ( unsigned int i=0; i<states.size(); ++i ) { SingleGaussianState1D& qpState = states[i]; double wgt = qpState.weight(); double qp = qpState.mean(); double varQp = qpState.variance(); double p = 1./fabs(qp); double varP = p*p*p*p*varQp; states[i] = SingleGaussianState1D(p,varP,wgt); } MultiGaussianState1D pMultiState(states); GaussianSumUtilities1D utils(pMultiState); // mode (in case of failure: mean) momentum = utils.mode().mean(); if ( !utils.modeIsValid() ) momentum = utils.mean(); return true; }
bool MultiTrajectoryStateMode::momentumFromModePPhiEta | ( | const TrajectoryStateOnSurface | tsos, |
GlobalVector & | momentum | ||
) | const |
Cartesian momentum from 1D mode calculation in p, phi, eta. Return value true for success.
Definition at line 252 of file MultiTrajectoryStateMode.cc.
References makeMuonMisalignmentScenario::components, TrajectoryStateOnSurface::components(), funct::cos(), eta(), create_public_lumi_plots::exp, TrajectoryStateOnSurface::isValid(), SingleGaussianState1D::mean(), GaussianSumUtilities1D::mean(), GaussianSumUtilities1D::mode(), GaussianSumUtilities1D::modeIsValid(), AlCaHLTBitMon_ParallelJobs::p, phi, funct::sin(), and PV3DBase< T, PVType, FrameType >::x().
{ // // clear result vector and check validity of the TSOS // momentum = GlobalVector(0.,0.,0.); if ( !tsos.isValid() ) { edm::LogInfo("MultiTrajectoryStateMode") << "Cannot calculate mode from invalid TSOS"; return false; } // // 1D mode computation for p, phi, eta // std::vector<TrajectoryStateOnSurface> components(tsos.components()); unsigned int numb = components.size(); // vectors of components in p, phi and eta std::vector<SingleGaussianState1D> pStates; pStates.reserve(numb); std::vector<SingleGaussianState1D> phiStates; phiStates.reserve(numb); std::vector<SingleGaussianState1D> etaStates; etaStates.reserve(numb); // covariances in cartesian and p-phi-eta and jacobian AlgebraicMatrix33 jacobian; AlgebraicSymMatrix33 covCart; AlgebraicSymMatrix33 covPPhiEta; // iteration over components for ( std::vector<TrajectoryStateOnSurface>::const_iterator ic=components.begin(); ic!=components.end(); ++ic ) { // parameters GlobalVector mom(ic->globalMomentum()); double px = mom.x(); double py = mom.y(); double pz = mom.z(); double p = mom.mag(); double pt2 = mom.perp2(); double phi = mom.phi(); double eta = mom.eta(); // jacobian jacobian(0,0) = px/p; jacobian(0,1) = py/p; jacobian(0,2) = pz/p; jacobian(1,0) = py/pt2; jacobian(1,1) = -px/pt2; jacobian(1,2) = 0; jacobian(2,0) = px*pz/(pt2*p); jacobian(2,1) = py*pz/(pt2*p); jacobian(2,2) = -1./p; // extraction of the momentum part from the 6x6 cartesian error matrix // and conversion to p-phi-eta covCart = ic->cartesianError().matrix().Sub<AlgebraicSymMatrix33>(3,3); covPPhiEta = ROOT::Math::Similarity(jacobian,covCart); pStates.push_back(SingleGaussianState1D(p,covPPhiEta(0,0),ic->weight())); phiStates.push_back(SingleGaussianState1D(phi,covPPhiEta(1,1),ic->weight())); etaStates.push_back(SingleGaussianState1D(eta,covPPhiEta(2,2),ic->weight())); } // // transformation in 1D multi-states and creation of utility classes // MultiGaussianState1D pState(pStates); MultiGaussianState1D phiState(phiStates); MultiGaussianState1D etaState(etaStates); GaussianSumUtilities1D pUtils(pState); GaussianSumUtilities1D phiUtils(phiState); GaussianSumUtilities1D etaUtils(etaState); // // parameters from mode (in case of failure: mean) // double p = pUtils.modeIsValid() ? pUtils.mode().mean() : pUtils.mean(); double phi = phiUtils.modeIsValid() ? phiUtils.mode().mean() : phiUtils.mean(); double eta = etaUtils.modeIsValid() ? etaUtils.mode().mean() : etaUtils.mean(); // double theta = 2*atan(exp(-eta)); double tanth2 = exp(-eta); double pt = p*2*tanth2/(1+tanth2*tanth2); // p*sin(theta) double pz = p*(1-tanth2*tanth2)/(1+tanth2*tanth2); // p*cos(theta) // conversion to a cartesian momentum vector momentum = GlobalVector(pt*cos(phi),pt*sin(phi),pz); return true; }
bool MultiTrajectoryStateMode::momentumFromModeQP | ( | const TrajectoryStateOnSurface | tsos, |
double & | momentum | ||
) | const |
Momentum from 1D mode calculation in q/p. Return value true for sucess.
Definition at line 148 of file MultiTrajectoryStateMode.cc.
References TrajectoryStateOnSurface::isValid(), GaussianSumUtilities1D::mean(), SingleGaussianState1D::mean(), GaussianSumUtilities1D::mode(), GaussianSumUtilities1D::modeIsValid(), and MultiGaussianStateTransform::multiState1D().
{ // // clear result vector and check validity of the TSOS // momentum = 0.; if ( !tsos.isValid() ) { edm::LogInfo("MultiTrajectoryStateMode") << "Cannot calculate mode from invalid TSOS"; return false; } // // mode computation for local co-ordinates q/p, dx/dz, dy/dz // double qpMode(0); // // first element of local parameters = q/p // // extraction of multi-state using helper class MultiGaussianState1D state1D = MultiGaussianStateTransform::multiState1D(tsos,0); GaussianSumUtilities1D utils(state1D); // mode (in case of failure: mean) qpMode = utils.mode().mean(); if ( !utils.modeIsValid() ) qpMode = utils.mean(); momentum = 1./fabs(qpMode); return true; }
bool MultiTrajectoryStateMode::positionFromModeCartesian | ( | const TrajectoryStateOnSurface | tsos, |
GlobalPoint & | position | ||
) | const |
Cartesian position from 1D mode calculation in cartesian co-ordinates. Return value true for success.
Definition at line 60 of file MultiTrajectoryStateMode.cc.
References makeMuonMisalignmentScenario::components, TrajectoryStateOnSurface::components(), TrajectoryStateOnSurface::isValid(), SingleGaussianState1D::mean(), GaussianSumUtilities1D::mode(), and pos.
Referenced by PFTrackTransformer::addPointsAndBrems(), and GsfElectronAlgo::ElectronData::calculateMode().
{ // // clear result vector and check validity of the TSOS // position = GlobalPoint(0.,0.,0.); if ( !tsos.isValid() ) { edm::LogInfo("MultiTrajectoryStateMode") << "Cannot calculate mode from invalid TSOS"; return false; } // // 1D mode computation for x, y and z // std::vector<TrajectoryStateOnSurface> components(tsos.components()); unsigned int numb = components.size(); // vectors of components in x, y and z std::vector<SingleGaussianState1D> xStates; xStates.reserve(numb); std::vector<SingleGaussianState1D> yStates; yStates.reserve(numb); std::vector<SingleGaussianState1D> zStates; zStates.reserve(numb); // iteration over components for ( std::vector<TrajectoryStateOnSurface>::const_iterator ic=components.begin(); ic!=components.end(); ++ic ) { // extraction of parameters and variances GlobalPoint pos(ic->globalPosition()); AlgebraicSymMatrix66 cov(ic->cartesianError().matrix()); xStates.push_back(SingleGaussianState1D(pos.x(),cov(0,0),ic->weight())); yStates.push_back(SingleGaussianState1D(pos.y(),cov(1,1),ic->weight())); zStates.push_back(SingleGaussianState1D(pos.z(),cov(2,2),ic->weight())); } // // transformation in 1D multi-states and creation of utility classes // MultiGaussianState1D xState(xStates); MultiGaussianState1D yState(yStates); MultiGaussianState1D zState(zStates); GaussianSumUtilities1D xUtils(xState); GaussianSumUtilities1D yUtils(yState); GaussianSumUtilities1D zUtils(zState); // // cartesian position vector from modes // position = GlobalPoint(xUtils.mode().mean(),yUtils.mode().mean(),zUtils.mode().mean()); return true; }
bool MultiTrajectoryStateMode::positionFromModeLocal | ( | const TrajectoryStateOnSurface | tsos, |
GlobalPoint & | position | ||
) | const |
Cartesian position from 1D mode calculation in local co-ordinates (x, y). Return value true for success.
Definition at line 215 of file MultiTrajectoryStateMode.cc.
References TrajectoryStateOnSurface::isValid(), GaussianSumUtilities1D::mean(), SingleGaussianState1D::mean(), GaussianSumUtilities1D::mode(), GaussianSumUtilities1D::modeIsValid(), MultiGaussianStateTransform::multiState1D(), query::result, TrajectoryStateOnSurface::surface(), and Surface::toGlobal().
{ // // clear result vector and check validity of the TSOS // position = GlobalPoint(0.,0.,0.); if ( !tsos.isValid() ) { edm::LogInfo("MultiTrajectoryStateMode") << "Cannot calculate mode from invalid TSOS"; return false; } // // mode computation for local co-ordinates x, y // double xMode(0); double yMode(0); // // last 2 elements of local parameters = x, y // for ( unsigned int iv=3; iv<5; ++iv ) { // extraction of multi-state using helper class MultiGaussianState1D state1D = MultiGaussianStateTransform::multiState1D(tsos,iv); GaussianSumUtilities1D utils(state1D); // mode (in case of failure: mean) double result = utils.mode().mean(); if ( !utils.modeIsValid() ) result = utils.mean(); if ( iv==3 ) xMode = result; else yMode = result; } // local position vector from x, y LocalPoint localP(xMode,yMode,0.); // conversion to global coordinates position = tsos.surface().toGlobal(localP); return true; }