#include <SiStripTemplate.h>
Public Member Functions | |
float | chi2xavg (int i) |
averaage x chi^2 in 4 charge bins | |
float | chi2xavgc2m (int i) |
1st pass chi2 min search: average x-chisq for merged clusters | |
float | chi2xavgone () |
//!< average x chi^2 for 1 strip clusters | |
float | chi2xmin (int i) |
minimum y chi^2 in 4 charge bins | |
float | chi2xminc2m (int i) |
1st pass chi2 min search: minimum x-chisq for merged clusters | |
float | chi2xminone () |
//!< minimum of x chi^2 for 1 strip clusters | |
float | clslenx () |
x-size of smaller interpolated template in strips | |
int | cxtemp () |
Return central pixel of x-template pixels above readout threshold. | |
float | dxone () |
mean offset/correction for one strip x-clusters | |
bool | interpolate (int id, float cotalpha, float cotbeta) |
bool | interpolate (int id, float cotalpha, float cotbeta, float locBy) |
float | kappavav () |
kappa parameter for Vavilov distribution | |
float | lorxwidth () |
signed lorentz x-width (microns) | |
float | mpvvav () |
most probable charge in Vavilov distribution (not actually for larger kappa) | |
bool | pushfile (int filenum) |
bool | pushfile (const SiPixelTemplateDBObject &dbobject) |
float | qavg () |
average cluster charge for this set of track angles | |
int | qbin (int id, float cotalpha, float cotbeta, float qclus) |
float | qmin () |
minimum cluster charge for valid hit (keeps 99.9% of simulated hits) | |
float | qmin (int i) |
minimum cluster charge for valid hit (keeps 99.9% or 99.8% of simulated hits) | |
float | qscale () |
charge scaling factor | |
float | s50 () |
1/2 of the strip threshold signal in electrons | |
float | sigmavav () |
"sigma" scale fctor for Vavilov distribution | |
SiStripTemplate () | |
Default constructor. | |
float | sxmax () |
average strip signal for x-projection of cluster | |
float | sxone () |
rms for one strip x-clusters | |
void | sxtemp (float xhit, std::vector< float > &cluster) |
void | vavilov2_pars (double &mpv, double &sigma, double &kappa) |
void | vavilov_pars (double &mpv, double &sigma, double &kappa) |
float | xavg (int i) |
average x-bias of reconstruction binned in 4 charge bins | |
float | xavgbcn (int i) |
1st pass chi2 min search: average x-bias of reconstruction binned in 4 charge bins | |
float | xavgc2m (int i) |
1st pass chi2 min search: average x-bias of reconstruction binned in 4 charge bins | |
float | xflcorr (int binq, float qflx) |
float | xgsig (int i) |
average sigma_x from Gaussian fit binned in 4 charge bins | |
float | xgsigbcn (int i) |
1st pass chi2 min search: average sigma_x from Gaussian fit binned in 4 charge bins | |
float | xgsigc2m (int i) |
1st pass chi2 min search: average sigma_x from Gaussian fit binned in 4 charge bins | |
float | xgx0 (int i) |
average x0 from Gaussian fit binned in 4 charge bins | |
float | xgx0bcn (int i) |
1st pass chi2 min search: average x0 from Gaussian fit binned in 4 charge bins | |
float | xgx0c2m (int i) |
1st pass chi2 min search: average x0 from Gaussian fit binned in 4 charge bins | |
float | xrms (int i) |
average x-rms of reconstruction binned in 4 charge bins | |
float | xrmsbcn (int i) |
1st pass chi2 min search: average x-rms of reconstruction binned in 4 charge bins | |
float | xrmsc2m (int i) |
1st pass chi2 min search: average x-rms of reconstruction binned in 4 charge bins | |
void | xsigma2 (int fxstrp, int lxstrp, float sxthr, float xsum[BSXSIZE], float xsig2[BSXSIZE]) |
float | xsize () |
strip x-size (microns) | |
void | xtemp (int fxbin, int lxbin, float xtemplate[41][BSXSIZE]) |
void | xtemp3d (int j, int k, std::vector< float > &xtemplate) |
void | xtemp3d_int (int nxpix, int &nxbins) |
float | xxratio () |
fractional distance in x between cotalpha templates | |
float | yratio () |
fractional distance in y between cotbeta templates | |
float | ysize () |
strip y-size (microns) | |
float | yxratio () |
fractional distance in y between cotalpha templates slices | |
float | zsize () |
strip z-size or thickness (microns) | |
Private Attributes | |
float | abs_cotb_ |
absolute value of cot beta | |
float | chi2xavg_ [4] |
average x chi^2 in 4 charge bins | |
float | chi2xavgc2m_ [4] |
1st pass chi2 min search: average x-chisq for merged clusters | |
float | chi2xavgone_ |
average x chi^2 for 1 strip clusters | |
float | chi2xmin_ [4] |
minimum of x chi^2 in 4 charge bins | |
float | chi2xminc2m_ [4] |
1st pass chi2 min search: minimum x-chisq for merged clusters | |
float | chi2xminone_ |
minimum of x chi^2 for 1 strip clusters | |
float | clslenx_ |
x-cluster length of smaller interpolated template in strips | |
float | cota_current_ |
current cot alpha | |
float | cotb_current_ |
current cot beta | |
float | dxone_ |
mean offset/correction for one strip x-clusters | |
float | dxtwo_ |
mean offset/correction for one double-strip x-clusters | |
int | id_current_ |
current id | |
int | index_id_ |
current index | |
float | kappavav2_ |
kappa parameter for 2-cluster Vavilov distribution | |
float | kappavav_ |
kappa parameter for Vavilov distribution | |
float | lorxwidth_ |
Lorentz x-width. | |
float | mpvvav2_ |
most probable charge in 2-cluster Vavilov distribution (not actually for larger kappa) | |
float | mpvvav_ |
most probable charge in Vavilov distribution (not actually for larger kappa) | |
float | nxbins_ |
number of bins in each dimension of the x-splitting template | |
float | pixmax_ |
maximum strip charge | |
float | qavg_ |
average cluster charge for this set of track angles | |
float | qavg_avg_ |
average of cluster charge less than qavg | |
float | qmin2_ |
tighter minimum cluster charge for valid hit (keeps 99.8% of simulated hits) | |
float | qmin_ |
minimum cluster charge for valid hit (keeps 99.9% of simulated hits) | |
float | qscale_ |
charge scaling factor | |
float | s50_ |
1/2 of the strip threshold signal in adc units | |
float | sigmavav2_ |
"sigma" scale fctor for 2-cluster Vavilov distribution | |
float | sigmavav_ |
"sigma" scale fctor for Vavilov distribution | |
bool | success_ |
true if cotalpha, cotbeta are inside of the acceptance (dynamically loaded) | |
float | sxmax_ |
average strip signal for x-projection of cluster | |
float | sxone_ |
rms for one strip x-clusters | |
float | sxparmax_ |
maximum strip signal for parameterization of x uncertainties | |
float | sxtwo_ |
rms for one double-strip x-clusters | |
float | syparmax_ |
maximum strip signal for parameterization of y-slice x uncertainties | |
boost::multi_array< float, 2 > | temp2dx_ |
2d-primitive for spltting 3-d template | |
std::vector< SiStripTemplateStore > | theStripTemp_ |
float | xavg_ [4] |
average x-bias of reconstruction binned in 4 charge bins | |
float | xavgbcn_ [4] |
barycenter: average x-bias of reconstruction binned in 4 charge bins | |
float | xavgc2m_ [4] |
1st pass chi2 min search: average x-bias of reconstruction binned in 4 charge bins | |
float | xflparhh_ [4][6] |
Aqfl-parameterized x-correction in 4 charge bins for larger cotbeta, cotalpha. | |
float | xflparhl_ [4][6] |
Aqfl-parameterized x-correction in 4 charge bins for larger cotbeta, smaller cotalpha. | |
float | xflparlh_ [4][6] |
Aqfl-parameterized x-correction in 4 charge bins for smaller cotbeta, larger cotalpha. | |
float | xflparll_ [4][6] |
Aqfl-parameterized x-correction in 4 charge bins for smaller cotbeta, cotalpha. | |
float | xgsig_ [4] |
sigma from Gaussian fit binned in 4 charge bins | |
float | xgsigbcn_ [4] |
barycenter: average x-rms of reconstruction binned in 4 charge bins | |
float | xgsigc2m_ [4] |
1st pass chi2 min search: average x-rms of reconstruction binned in 4 charge bins | |
float | xgx0_ [4] |
average x0 from Gaussian fit binned in 4 charge bins | |
float | xgx0bcn_ [4] |
barycenter: average x-bias of reconstruction binned in 4 charge bins | |
float | xgx0c2m_ [4] |
1st pass chi2 min search: average x-bias of reconstruction binned in 4 charge bins | |
float | xpar0_ [2][5] |
projected x-strip uncertainty parameterization for central cotalpha | |
float | xparh_ [2][5] |
projected x-strip uncertainty parameterization for larger cotalpha | |
float | xparhy0_ [2][5] |
projected x-strip uncertainty parameterization for larger cotbeta (central alpha) | |
float | xparl_ [2][5] |
projected x-strip uncertainty parameterization for smaller cotalpha | |
float | xparly0_ [2][5] |
projected x-strip uncertainty parameterization for smaller cotbeta (central alpha) | |
float | xrms_ [4] |
average x-rms of reconstruction binned in 4 charge bins | |
float | xrmsbcn_ [4] |
barycenter: average x-rms of reconstruction binned in 4 charge bins | |
float | xrmsc2m_ [4] |
1st pass chi2 min search: average x-rms of reconstruction binned in 4 charge bins | |
float | xsize_ |
Pixel x-size. | |
float | xtemp_ [9][BSXSIZE] |
templates for x-reconstruction (binned over 5 central strips) | |
float | xxratio_ |
fractional distance in x between cotalpha templates | |
float | yratio_ |
fractional distance in y between y-slices of cotbeta templates | |
float | ysize_ |
Pixel y-size. | |
float | yxratio_ |
fractional distance in y between x-slices of cotalpha templates | |
float | zsize_ |
Pixel z-size (thickness) |
A template management class. SiStripTemplate contains theStripTemp (a std::vector of SiStripTemplateStore, each of which is a collection of many SiStripTemplateEntries). Each SiStripTemplateStore corresponds to a given detector condition, and is valid for a range of runs. We allow more than one Store since the may change over time.
This class reads templates from files via pushfile() method.
The main functionality of SiStripTemplate is interpolate(), which produces a template on the fly, given a specific track's alpha and beta. The results are kept in data members and accessed via inline getters.
The resulting template is then used by StripTempReco2D() (a global function) which get the reference for SiStripTemplate & templ and uses the current template to reconstruct the SiStripRecHit.
Definition at line 139 of file SiStripTemplate.h.
SiStripTemplate::SiStripTemplate | ( | ) | [inline] |
Default constructor.
Definition at line 141 of file SiStripTemplate.h.
References cota_current_, cotb_current_, id_current_, and index_id_.
float SiStripTemplate::chi2xavg | ( | int | i | ) | [inline] |
averaage x chi^2 in 4 charge bins
Definition at line 232 of file SiStripTemplate.h.
References chi2xavg_, Exception, and i.
Referenced by SiStripTemplateReco::StripTempReco1D().
float SiStripTemplate::chi2xavgc2m | ( | int | i | ) | [inline] |
1st pass chi2 min search: average x-chisq for merged clusters
Definition at line 274 of file SiStripTemplate.h.
References chi2xavgc2m_, Exception, and i.
Referenced by SiStripTemplateSplit::StripTempSplit().
float SiStripTemplate::chi2xavgone | ( | ) | [inline] |
//!< average x chi^2 for 1 strip clusters
Definition at line 316 of file SiStripTemplate.h.
References chi2xavgone_.
Referenced by SiStripTemplateReco::StripTempReco1D(), and SiStripTemplateSplit::StripTempSplit().
float SiStripTemplate::chi2xmin | ( | int | i | ) | [inline] |
minimum y chi^2 in 4 charge bins
Definition at line 239 of file SiStripTemplate.h.
References chi2xmin_, Exception, and i.
Referenced by SiStripTemplateReco::StripTempReco1D().
float SiStripTemplate::chi2xminc2m | ( | int | i | ) | [inline] |
1st pass chi2 min search: minimum x-chisq for merged clusters
Definition at line 281 of file SiStripTemplate.h.
References chi2xminc2m_, Exception, and i.
float SiStripTemplate::chi2xminone | ( | ) | [inline] |
//!< minimum of x chi^2 for 1 strip clusters
Definition at line 317 of file SiStripTemplate.h.
References chi2xminone_.
Referenced by SiStripTemplateReco::StripTempReco1D(), and SiStripTemplateSplit::StripTempSplit().
float SiStripTemplate::clslenx | ( | ) | [inline] |
x-size of smaller interpolated template in strips
Definition at line 200 of file SiStripTemplate.h.
References clslenx_.
int SiStripTemplate::cxtemp | ( | ) |
Return central pixel of x-template pixels above readout threshold.
Definition at line 1314 of file SiStripTemplate.cc.
References BSXM1, BSXM2, BSXSIZE, and j.
Referenced by SiStripTemplateReco::StripTempReco1D(), and SiStripTemplateSplit::StripTempSplit().
{ // Retrieve already interpolated quantities // Local variables int j; // Analyze only pixels along the central entry // First, find the maximum signal and then work out to the edges float sigmax = 0.f; int jmax = -1; for(j=0; j<BSXSIZE; ++j) { if(xtemp_[4][j] > sigmax) { sigmax = xtemp_[4][j]; jmax = j; } } if(sigmax < 2.*s50_ || jmax<1 || jmax>BSXM2) {return -1;} // Now search forward and backward int jend = jmax; for(j=jmax+1; j<BSXM1; ++j) { if(xtemp_[4][j] < 2.*s50_) break; jend = j; } int jbeg = jmax; for(j=jmax-1; j>0; --j) { if(xtemp_[4][j] < 2.*s50_) break; jbeg = j; } return (jbeg+jend)/2; } // End cxtemp
float SiStripTemplate::dxone | ( | ) | [inline] |
mean offset/correction for one strip x-clusters
Definition at line 190 of file SiStripTemplate.h.
References dxone_.
Referenced by SiStripTemplateReco::StripTempReco1D(), and SiStripTemplateSplit::StripTempSplit().
bool SiStripTemplate::interpolate | ( | int | id, |
float | cotalpha, | ||
float | cotbeta | ||
) |
bool SiStripTemplate::interpolate | ( | int | id, |
float | cotalpha, | ||
float | cotbeta, | ||
float | locBy | ||
) |
Interpolate input alpha and beta angles to produce a working template for each individual hit.
id | - (input) index of the template to use |
cotalpha | - (input) the cotangent of the alpha track angle (see CMS IN 2004/014) |
cotbeta | - (input) the cotangent of the beta track angle (see CMS IN 2004/014) |
locBy | - (input) the sign of the y-component of the local magnetic field (if positive, flip things) |
Definition at line 641 of file SiStripTemplate.cc.
References abs, BSXM1, BSXM2, BSXM3, Exception, f, i, j, mathSSE::sqrt(), and TSXSIZE.
Referenced by TrackClusterSplitter::splitCluster(), SiStripTemplateReco::StripTempReco1D(), and SiStripTemplateSplit::StripTempSplit().
{ // Interpolate for a new set of track angles // Local variables int i, j; int ilow, ihigh, iylow, iyhigh, Ny, Nxx, Nyx, imidy, imaxx; float yratio, yxratio, xxratio, sxmax, qcorrect, qxtempcor, chi2xavgone, chi2xminone, cota, cotb, cotalpha0, cotbeta0; bool flip_x; // std::vector <float> xrms(4), xgsig(4), xrmsc2m(4), xgsigc2m(4); std::vector <float> chi2xavg(4), chi2xmin(4), chi2xavgc2m(4), chi2xminc2m(4); // Check to see if interpolation is valid if(id != id_current_ || cotalpha != cota_current_ || cotbeta != cotb_current_) { cota_current_ = cotalpha; cotb_current_ = cotbeta; success_ = true; if(id != id_current_) { // Find the index corresponding to id index_id_ = -1; for(i=0; i<(int)theStripTemp_.size(); ++i) { if(id == theStripTemp_[i].head.ID) { index_id_ = i; id_current_ = id; // Copy the charge scaling factor to the private variable qscale_ = theStripTemp_[index_id_].head.qscale; // Copy the pseudopixel signal size to the private variable s50_ = theStripTemp_[index_id_].head.s50; // Pixel sizes to the private variables xsize_ = theStripTemp_[index_id_].head.xsize; ysize_ = theStripTemp_[index_id_].head.ysize; zsize_ = theStripTemp_[index_id_].head.zsize; break; } } } #ifndef SI_PIXEL_TEMPLATE_STANDALONE if(index_id_ < 0 || index_id_ >= (int)theStripTemp_.size()) { throw cms::Exception("DataCorrupt") << "SiStripTemplate::interpolate can't find needed template ID = " << id << std::endl; } #else assert(index_id_ >= 0 && index_id_ < (int)theStripTemp_.size()); #endif // Interpolate the absolute value of cot(beta) abs_cotb_ = std::abs(cotbeta); cotb = abs_cotb_; // qcorrect corrects the cot(alpha)=0 cluster charge for non-zero cot(alpha) cotalpha0 = theStripTemp_[index_id_].enty[0].cotalpha; qcorrect=std::sqrt((1.f+cotbeta*cotbeta+cotalpha*cotalpha)/(1.f+cotbeta*cotbeta+cotalpha0*cotalpha0)); // flip quantities when the magnetic field in in the positive y local direction if(locBy > 0.f) { flip_x = true; } else { flip_x = false; } Ny = theStripTemp_[index_id_].head.NTy; Nyx = theStripTemp_[index_id_].head.NTyx; Nxx = theStripTemp_[index_id_].head.NTxx; #ifndef SI_PIXEL_TEMPLATE_STANDALONE if(Ny < 2 || Nyx < 1 || Nxx < 2) { throw cms::Exception("DataCorrupt") << "template ID = " << id_current_ << "has too few entries: Ny/Nyx/Nxx = " << Ny << "/" << Nyx << "/" << Nxx << std::endl; } #else assert(Ny > 1 && Nyx > 0 && Nxx > 1); #endif imaxx = Nyx - 1; imidy = Nxx/2; // next, loop over all y-angle entries ilow = 0; yratio = 0.f; if(cotb >= theStripTemp_[index_id_].enty[Ny-1].cotbeta) { ilow = Ny-2; yratio = 1.f; success_ = false; } else { if(cotb >= theStripTemp_[index_id_].enty[0].cotbeta) { for (i=0; i<Ny-1; ++i) { if( theStripTemp_[index_id_].enty[i].cotbeta <= cotb && cotb < theStripTemp_[index_id_].enty[i+1].cotbeta) { ilow = i; yratio = (cotb - theStripTemp_[index_id_].enty[i].cotbeta)/(theStripTemp_[index_id_].enty[i+1].cotbeta - theStripTemp_[index_id_].enty[i].cotbeta); break; } } } else { success_ = false; } } ihigh=ilow + 1; // Interpolate/store all y-related quantities (flip displacements when flip_y) yratio_ = yratio; qavg_ = (1.f - yratio)*theStripTemp_[index_id_].enty[ilow].qavg + yratio*theStripTemp_[index_id_].enty[ihigh].qavg; qavg_ *= qcorrect; sxmax = (1.f - yratio)*theStripTemp_[index_id_].enty[ilow].sxmax + yratio*theStripTemp_[index_id_].enty[ihigh].sxmax; syparmax_ = sxmax; qmin_ = (1.f - yratio)*theStripTemp_[index_id_].enty[ilow].qmin + yratio*theStripTemp_[index_id_].enty[ihigh].qmin; qmin_ *= qcorrect; qmin2_ = (1.f - yratio)*theStripTemp_[index_id_].enty[ilow].qmin2 + yratio*theStripTemp_[index_id_].enty[ihigh].qmin2; qmin2_ *= qcorrect; mpvvav_ = (1.f - yratio)*theStripTemp_[index_id_].enty[ilow].mpvvav + yratio*theStripTemp_[index_id_].enty[ihigh].mpvvav; mpvvav_ *= qcorrect; sigmavav_ = (1.f - yratio)*theStripTemp_[index_id_].enty[ilow].sigmavav + yratio*theStripTemp_[index_id_].enty[ihigh].sigmavav; kappavav_ = (1.f - yratio)*theStripTemp_[index_id_].enty[ilow].kappavav + yratio*theStripTemp_[index_id_].enty[ihigh].kappavav; mpvvav2_ = (1.f - yratio)*theStripTemp_[index_id_].enty[ilow].mpvvav2 + yratio*theStripTemp_[index_id_].enty[ihigh].mpvvav2; mpvvav2_ *= qcorrect; sigmavav2_ = (1.f - yratio)*theStripTemp_[index_id_].enty[ilow].sigmavav2 + yratio*theStripTemp_[index_id_].enty[ihigh].sigmavav2; kappavav2_ = (1.f - yratio)*theStripTemp_[index_id_].enty[ilow].kappavav2 + yratio*theStripTemp_[index_id_].enty[ihigh].kappavav2; qavg_avg_ = (1.f - yratio)*theStripTemp_[index_id_].enty[ilow].qavg_avg + yratio*theStripTemp_[index_id_].enty[ihigh].qavg_avg; qavg_avg_ *= qcorrect; for(i=0; i<2 ; ++i) { for(j=0; j<5 ; ++j) { // Charge loss switches sides when cot(alpha) changes sign if(flip_x) { xparly0_[1-i][j] = theStripTemp_[index_id_].enty[ilow].xpar[i][j]; xparhy0_[1-i][j] = theStripTemp_[index_id_].enty[ihigh].xpar[i][j]; } else { xparly0_[i][j] = theStripTemp_[index_id_].enty[ilow].xpar[i][j]; xparhy0_[i][j] = theStripTemp_[index_id_].enty[ihigh].xpar[i][j]; } } } for(i=0; i<4; ++i) { chi2xavg[i]=(1.f - yratio)*theStripTemp_[index_id_].enty[ilow].chi2xavg[i] + yratio*theStripTemp_[index_id_].enty[ihigh].chi2xavg[i]; chi2xmin[i]=(1.f - yratio)*theStripTemp_[index_id_].enty[ilow].chi2xmin[i] + yratio*theStripTemp_[index_id_].enty[ihigh].chi2xmin[i]; chi2xavgc2m[i]=(1.f - yratio)*theStripTemp_[index_id_].enty[ilow].chi2xavgc2m[i] + yratio*theStripTemp_[index_id_].enty[ihigh].chi2xavgc2m[i]; chi2xminc2m[i]=(1.f - yratio)*theStripTemp_[index_id_].enty[ilow].chi2xminc2m[i] + yratio*theStripTemp_[index_id_].enty[ihigh].chi2xminc2m[i]; } chi2xavgone=(1.f - yratio)*theStripTemp_[index_id_].enty[ilow].chi2xavgone + yratio*theStripTemp_[index_id_].enty[ihigh].chi2xavgone; chi2xminone=(1.f - yratio)*theStripTemp_[index_id_].enty[ilow].chi2xminone + yratio*theStripTemp_[index_id_].enty[ihigh].chi2xminone; // for(i=0; i<10; ++i) { // pyspare[i]=(1.f - yratio)*theStripTemp_[index_id_].enty[ilow].yspare[i] + yratio*theStripTemp_[index_id_].enty[ihigh].yspare[i]; // } // next, loop over all x-angle entries, first, find relevant y-slices iylow = 0; yxratio = 0.f; if(abs_cotb_ >= theStripTemp_[index_id_].entx[Nyx-1][0].cotbeta) { iylow = Nyx-2; yxratio = 1.f; } else if(abs_cotb_ >= theStripTemp_[index_id_].entx[0][0].cotbeta) { for (i=0; i<Nyx-1; ++i) { if( theStripTemp_[index_id_].entx[i][0].cotbeta <= abs_cotb_ && abs_cotb_ < theStripTemp_[index_id_].entx[i+1][0].cotbeta) { iylow = i; yxratio = (abs_cotb_ - theStripTemp_[index_id_].entx[i][0].cotbeta)/(theStripTemp_[index_id_].entx[i+1][0].cotbeta - theStripTemp_[index_id_].entx[i][0].cotbeta); break; } } } iyhigh=iylow + 1; ilow = 0; xxratio = 0.f; if(flip_x) {cota = -cotalpha;} else {cota = cotalpha;} if(cota >= theStripTemp_[index_id_].entx[0][Nxx-1].cotalpha) { ilow = Nxx-2; xxratio = 1.f; success_ = false; } else { if(cota >= theStripTemp_[index_id_].entx[0][0].cotalpha) { for (i=0; i<Nxx-1; ++i) { if( theStripTemp_[index_id_].entx[0][i].cotalpha <= cota && cota < theStripTemp_[index_id_].entx[0][i+1].cotalpha) { ilow = i; xxratio = (cota - theStripTemp_[index_id_].entx[0][i].cotalpha)/(theStripTemp_[index_id_].entx[0][i+1].cotalpha - theStripTemp_[index_id_].entx[0][i].cotalpha); break; } } } else { success_ = false; } } ihigh=ilow + 1; // Interpolate/store all x-related quantities yxratio_ = yxratio; xxratio_ = xxratio; // sxparmax defines the maximum charge for which the parameters xpar are defined (not rescaled by cotbeta) sxparmax_ = (1.f - xxratio)*theStripTemp_[index_id_].entx[imaxx][ilow].sxmax + xxratio*theStripTemp_[index_id_].entx[imaxx][ihigh].sxmax; sxmax_ = sxparmax_; if(theStripTemp_[index_id_].entx[imaxx][imidy].sxmax != 0.f) {sxmax_=sxmax_/theStripTemp_[index_id_].entx[imaxx][imidy].sxmax*sxmax;} dxone_ = (1.f - xxratio)*theStripTemp_[index_id_].entx[0][ilow].dxone + xxratio*theStripTemp_[index_id_].entx[0][ihigh].dxone; if(flip_x) {dxone_ = -dxone_;} sxone_ = (1.f - xxratio)*theStripTemp_[index_id_].entx[0][ilow].sxone + xxratio*theStripTemp_[index_id_].entx[0][ihigh].sxone; clslenx_ = fminf(theStripTemp_[index_id_].entx[0][ilow].clslenx, theStripTemp_[index_id_].entx[0][ihigh].clslenx); for(i=0; i<2 ; ++i) { for(j=0; j<5 ; ++j) { if(flip_x) { xpar0_[1-i][j] = theStripTemp_[index_id_].entx[imaxx][imidy].xpar[i][j]; xparl_[1-i][j] = theStripTemp_[index_id_].entx[imaxx][ilow].xpar[i][j]; xparh_[1-i][j] = theStripTemp_[index_id_].entx[imaxx][ihigh].xpar[i][j]; } else { xpar0_[i][j] = theStripTemp_[index_id_].entx[imaxx][imidy].xpar[i][j]; xparl_[i][j] = theStripTemp_[index_id_].entx[imaxx][ilow].xpar[i][j]; xparh_[i][j] = theStripTemp_[index_id_].entx[imaxx][ihigh].xpar[i][j]; } } } // sxmax is the maximum allowed strip charge (used for truncation) sxmax_=(1.f - yxratio)*((1.f - xxratio)*theStripTemp_[index_id_].entx[iylow][ilow].sxmax + xxratio*theStripTemp_[index_id_].entx[iylow][ihigh].sxmax) +yxratio*((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].sxmax + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].sxmax); for(i=0; i<4; ++i) { xavg_[i]=(1.f - yxratio)*((1.f - xxratio)*theStripTemp_[index_id_].entx[iylow][ilow].xavg[i] + xxratio*theStripTemp_[index_id_].entx[iylow][ihigh].xavg[i]) +yxratio*((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].xavg[i] + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].xavg[i]); if(flip_x) {xavg_[i] = -xavg_[i];} xrms_[i]=(1.f - yxratio)*((1.f - xxratio)*theStripTemp_[index_id_].entx[iylow][ilow].xrms[i] + xxratio*theStripTemp_[index_id_].entx[iylow][ihigh].xrms[i]) +yxratio*((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].xrms[i] + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].xrms[i]); // xgx0_[i]=(1.f - yxratio)*((1.f - xxratio)*theStripTemp_[index_id_].entx[iylow][ilow].xgx0[i] + xxratio*theStripTemp_[index_id_].entx[iylow][ihigh].xgx0[i]) // +yxratio*((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].xgx0[i] + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].xgx0[i]); // xgsig_[i]=(1.f - yxratio)*((1.f - xxratio)*theStripTemp_[index_id_].entx[iylow][ilow].xgsig[i] + xxratio*theStripTemp_[index_id_].entx[iylow][ihigh].xgsig[i]) // +yxratio*((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].xgsig[i] + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].xgsig[i]); xavgc2m_[i]=(1.f - yxratio)*((1.f - xxratio)*theStripTemp_[index_id_].entx[iylow][ilow].xavgc2m[i] + xxratio*theStripTemp_[index_id_].entx[iylow][ihigh].xavgc2m[i]) +yxratio*((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].xavgc2m[i] + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].xavgc2m[i]); if(flip_x) {xavgc2m_[i] = -xavgc2m_[i];} xrmsc2m_[i]=(1.f - yxratio)*((1.f - xxratio)*theStripTemp_[index_id_].entx[iylow][ilow].xrmsc2m[i] + xxratio*theStripTemp_[index_id_].entx[iylow][ihigh].xrmsc2m[i]) +yxratio*((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].xrmsc2m[i] + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].xrmsc2m[i]); xavgbcn_[i]=(1.f - yxratio)*((1.f - xxratio)*theStripTemp_[index_id_].entx[iylow][ilow].xavgbcn[i] + xxratio*theStripTemp_[index_id_].entx[iylow][ihigh].xavgbcn[i]) +yxratio*((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].xavgbcn[i] + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].xavgbcn[i]); if(flip_x) {xavgbcn_[i] = -xavgbcn_[i];} xrmsbcn_[i]=(1.f - yxratio)*((1.f - xxratio)*theStripTemp_[index_id_].entx[iylow][ilow].xrmsbcn[i] + xxratio*theStripTemp_[index_id_].entx[iylow][ihigh].xrmsbcn[i]) +yxratio*((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].xrmsbcn[i] + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].xrmsbcn[i]); // xgx0c2m_[i]=(1.f - yxratio)*((1.f - xxratio)*theStripTemp_[index_id_].entx[iylow][ilow].xgx0c2m[i] + xxratio*theStripTemp_[index_id_].entx[iylow][ihigh].xgx0c2m[i]) // +yxratio*((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].xgx0c2m[i] + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].xgx0c2m[i]); // xgsigc2m_[i]=(1.f - yxratio)*((1.f - xxratio)*theStripTemp_[index_id_].entx[iylow][ilow].xgsigc2m[i] + xxratio*theStripTemp_[index_id_].entx[iylow][ihigh].xgsigc2m[i]) // +yxratio*((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].xgsigc2m[i] + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].xgsigc2m[i]); // // Try new interpolation scheme // // chi2xavg_[i]=((1.f - xxratio)*theStripTemp_[index_id_].entx[imaxx][ilow].chi2xavg[i] + xxratio*theStripTemp_[index_id_].entx[imaxx][ihigh].chi2xavg[i]); // if(theStripTemp_[index_id_].entx[imaxx][imidy].chi2xavg[i] != 0.f) {chi2xavg_[i]=chi2xavg_[i]/theStripTemp_[index_id_].entx[imaxx][imidy].chi2xavg[i]*chi2xavg[i];} // // chi2xmin_[i]=((1.f - xxratio)*theStripTemp_[index_id_].entx[imaxx][ilow].chi2xmin[i] + xxratio*theStripTemp_[index_id_].entx[imaxx][ihigh].chi2xmin[i]); // if(theStripTemp_[index_id_].entx[imaxx][imidy].chi2xmin[i] != 0.f) {chi2xmin_[i]=chi2xmin_[i]/theStripTemp_[index_id_].entx[imaxx][imidy].chi2xmin[i]*chi2xmin[i];} // chi2xavg_[i]=((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].chi2xavg[i] + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].chi2xavg[i]); if(theStripTemp_[index_id_].entx[iyhigh][imidy].chi2xavg[i] != 0.f) {chi2xavg_[i]=chi2xavg_[i]/theStripTemp_[index_id_].entx[iyhigh][imidy].chi2xavg[i]*chi2xavg[i];} chi2xmin_[i]=((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].chi2xmin[i] + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].chi2xmin[i]); if(theStripTemp_[index_id_].entx[iyhigh][imidy].chi2xmin[i] != 0.f) {chi2xmin_[i]=chi2xmin_[i]/theStripTemp_[index_id_].entx[iyhigh][imidy].chi2xmin[i]*chi2xmin[i];} chi2xavgc2m_[i]=((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].chi2xavgc2m[i] + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].chi2xavgc2m[i]); if(theStripTemp_[index_id_].entx[iyhigh][imidy].chi2xavgc2m[i] != 0.f) {chi2xavgc2m_[i]=chi2xavgc2m_[i]/theStripTemp_[index_id_].entx[iyhigh][imidy].chi2xavgc2m[i]*chi2xavgc2m[i];} chi2xminc2m_[i]=((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].chi2xminc2m[i] + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].chi2xminc2m[i]); if(theStripTemp_[index_id_].entx[iyhigh][imidy].chi2xminc2m[i] != 0.f) {chi2xminc2m_[i]=chi2xminc2m_[i]/theStripTemp_[index_id_].entx[iyhigh][imidy].chi2xminc2m[i]*chi2xminc2m[i];} for(j=0; j<6 ; ++j) { xflparll_[i][j] = theStripTemp_[index_id_].entx[iylow][ilow].xflpar[i][j]; xflparlh_[i][j] = theStripTemp_[index_id_].entx[iylow][ihigh].xflpar[i][j]; xflparhl_[i][j] = theStripTemp_[index_id_].entx[iyhigh][ilow].xflpar[i][j]; xflparhh_[i][j] = theStripTemp_[index_id_].entx[iyhigh][ihigh].xflpar[i][j]; // Since Q_fl is odd under cotbeta, it flips qutomatically, change only even terms if(flip_x && (j == 0 || j == 2 || j == 4)) { xflparll_[i][j] = -xflparll_[i][j]; xflparlh_[i][j] = -xflparlh_[i][j]; xflparhl_[i][j] = -xflparhl_[i][j]; xflparhh_[i][j] = -xflparhh_[i][j]; } } } // Do the spares next chi2xavgone_=((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].chi2xavgone + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].chi2xavgone); if(theStripTemp_[index_id_].entx[iyhigh][imidy].chi2xavgone != 0.f) {chi2xavgone_=chi2xavgone_/theStripTemp_[index_id_].entx[iyhigh][imidy].chi2xavgone*chi2xavgone;} chi2xminone_=((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].chi2xminone + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].chi2xminone); if(theStripTemp_[index_id_].entx[iyhigh][imidy].chi2xminone != 0.f) {chi2xminone_=chi2xminone_/theStripTemp_[index_id_].entx[iyhigh][imidy].chi2xminone*chi2xminone;} // for(i=0; i<10; ++i) { // pxspare[i]=(1.f - yxratio)*((1.f - xxratio)*theStripTemp_[index_id_].entx[iylow][ilow].xspare[i] + xxratio*theStripTemp_[index_id_].entx[iylow][ihigh].xspare[i]) // +yxratio*((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].xspare[i] + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].xspare[i]); // } // Interpolate and build the x-template // qxtempcor corrects the total charge to the actual track angles (not actually needed for the template fits, but useful for Guofan) cotbeta0 = theStripTemp_[index_id_].entx[iyhigh][0].cotbeta; qxtempcor=std::sqrt((1.f+cotbeta*cotbeta+cotalpha*cotalpha)/(1.f+cotbeta0*cotbeta0+cotalpha*cotalpha)); for(i=0; i<9; ++i) { xtemp_[i][0] = 0.f; xtemp_[i][1] = 0.f; xtemp_[i][BSXM2] = 0.f; xtemp_[i][BSXM1] = 0.f; for(j=0; j<TSXSIZE; ++j) { // Take next largest x-slice for the x-template (it reduces bias in the forward direction after irradiation) // xtemp_[i][j+2]=(1.f - xxratio)*theStripTemp_[index_id_].entx[imaxx][ilow].xtemp[i][j] + xxratio*theStripTemp_[index_id_].entx[imaxx][ihigh].xtemp[i][j]; if(flip_x) { xtemp_[8-i][BSXM3-j]=qxtempcor*((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].xtemp[i][j] + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].xtemp[i][j]); } else { xtemp_[i][j+2]=qxtempcor*((1.f - xxratio)*theStripTemp_[index_id_].entx[iyhigh][ilow].xtemp[i][j] + xxratio*theStripTemp_[index_id_].entx[iyhigh][ihigh].xtemp[i][j]); } } } lorxwidth_ = theStripTemp_[index_id_].head.lorxwidth; if(locBy > 0.f) {lorxwidth_ = -lorxwidth_;} } return success_; } // interpolate
float SiStripTemplate::kappavav | ( | ) | [inline] |
kappa parameter for Vavilov distribution
Definition at line 321 of file SiStripTemplate.h.
References kappavav_.
float SiStripTemplate::lorxwidth | ( | ) | [inline] |
signed lorentz x-width (microns)
Definition at line 318 of file SiStripTemplate.h.
References lorxwidth_.
Referenced by SiStripTemplateReco::StripTempReco1D().
float SiStripTemplate::mpvvav | ( | ) | [inline] |
most probable charge in Vavilov distribution (not actually for larger kappa)
Definition at line 319 of file SiStripTemplate.h.
References mpvvav_.
bool SiStripTemplate::pushfile | ( | const SiPixelTemplateDBObject & | dbobject | ) |
This routine initializes the global template structures from an external file template_summary_zpNNNN where NNNN are four digits
dbobject | - db storing multiple template calibrations |
Definition at line 358 of file SiStripTemplate.cc.
References SiStripTemplateEntry::alpha, SiStripTemplateEntry::beta, SiStripTemplateHeader::Bfield, SiPixelTemplateDBObject::char2float::c, SiStripTemplateEntry::chi2xavg, SiStripTemplateEntry::chi2xavgc2m, SiStripTemplateEntry::chi2xavgone, SiStripTemplateEntry::chi2xmin, SiStripTemplateEntry::chi2xminc2m, SiStripTemplateEntry::chi2xminone, SiStripTemplateEntry::clslenx, SiStripTemplateEntry::costrk, SiStripTemplateEntry::cotalpha, SiStripTemplateEntry::cotbeta, EcalCondDB::db, SiStripTemplateHeader::Dtype, SiStripTemplateEntry::dxone, ENDL, SiStripTemplateStore::entx, SiStripTemplateStore::enty, SiPixelTemplateDBObject::char2float::f, SiPixelTemplateDBObject::fail(), SiStripTemplateHeader::fluence, SiStripTemplateEntry::fracxone, SiStripTemplateStore::head, i, SiStripTemplateHeader::ID, SiPixelTemplateDBObject::incrementIndex(), SiPixelTemplateDBObject::index(), j, gen::k, SiStripTemplateEntry::kappavav, SiStripTemplateEntry::kappavav2, prof2calltree::l, LOGERROR, LOGINFO, SiStripTemplateHeader::lorxwidth, SiStripTemplateHeader::lorywidth, m, SiStripTemplateEntry::mpvvav, SiStripTemplateEntry::mpvvav2, SiStripTemplateHeader::NTxx, SiStripTemplateHeader::NTy, SiStripTemplateHeader::NTyx, SiPixelTemplateDBObject::numOfTempl(), SiStripTemplateEntry::qavg, SiStripTemplateEntry::qavg_avg, SiStripTemplateEntry::qbfrac, SiStripTemplateEntry::qmin, SiStripTemplateEntry::qmin2, SiStripTemplateHeader::qscale, SiStripTemplateEntry::runnum, SiStripTemplateHeader::s50, SiStripTemplateEntry::sigmavav, SiStripTemplateEntry::sigmavav2, SiStripTemplateEntry::spare, SiPixelTemplateDBObject::sVector(), SiStripTemplateEntry::sxmax, SiStripTemplateEntry::sxone, groupFilesInBlocks::temp, SiStripTemplateHeader::temperature, SiStripTemplateHeader::templ_version, SiStripTemplateHeader::title, TSXSIZE, SiStripTemplateHeader::Vbias, SiStripTemplateEntry::xavg, SiStripTemplateEntry::xavgbcn, SiStripTemplateEntry::xavgc2m, SiStripTemplateEntry::xavggen, SiStripTemplateEntry::xflpar, SiStripTemplateEntry::xgsig, SiStripTemplateEntry::xgsigbcn, SiStripTemplateEntry::xgsigc2m, SiStripTemplateEntry::xgsiggen, SiStripTemplateEntry::xgx0, SiStripTemplateEntry::xgx0bcn, SiStripTemplateEntry::xgx0c2m, SiStripTemplateEntry::xgx0gen, SiStripTemplateEntry::xpar, SiStripTemplateEntry::xrms, SiStripTemplateEntry::xrmsbcn, SiStripTemplateEntry::xrmsc2m, SiStripTemplateEntry::xrmsgen, SiStripTemplateHeader::xsize, SiStripTemplateEntry::xtemp, SiStripTemplateHeader::ysize, and SiStripTemplateHeader::zsize.
{ // Add template stored in external dbobject to theTemplateStore // Local variables int i, j, k, l; float qavg_avg; // const char *tempfile; const int code_version={17}; // We must create a new object because dbobject must be a const and our stream must not be SiPixelTemplateDBObject db = dbobject; // Create a local template storage entry SiStripTemplateStore theCurrentTemp; // Fill the template storage for each template calibration stored in the db for(int m=0; m<db.numOfTempl(); ++m) { // Read-in a header string first and print it SiPixelTemplateDBObject::char2float temp; for (i=0; i<20; ++i) { temp.f = db.sVector()[db.index()]; theCurrentTemp.head.title[4*i] = temp.c[0]; theCurrentTemp.head.title[4*i+1] = temp.c[1]; theCurrentTemp.head.title[4*i+2] = temp.c[2]; theCurrentTemp.head.title[4*i+3] = temp.c[3]; db.incrementIndex(1); } theCurrentTemp.head.title[79] = '\0'; LOGINFO("SiStripTemplate") << "Loading Strip Template File - " << theCurrentTemp.head.title << ENDL; // next, the header information db >> theCurrentTemp.head.ID >> theCurrentTemp.head.templ_version >> theCurrentTemp.head.Bfield >> theCurrentTemp.head.NTy >> theCurrentTemp.head.NTyx >> theCurrentTemp.head.NTxx >> theCurrentTemp.head.Dtype >> theCurrentTemp.head.Vbias >> theCurrentTemp.head.temperature >> theCurrentTemp.head.fluence >> theCurrentTemp.head.qscale >> theCurrentTemp.head.s50 >> theCurrentTemp.head.lorywidth >> theCurrentTemp.head.lorxwidth >> theCurrentTemp.head.ysize >> theCurrentTemp.head.xsize >> theCurrentTemp.head.zsize; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file, no template load" << ENDL; return false;} LOGINFO("SiStripTemplate") << "Template ID = " << theCurrentTemp.head.ID << ", Template Version " << theCurrentTemp.head.templ_version << ", Bfield = " << theCurrentTemp.head.Bfield << ", NTy = " << theCurrentTemp.head.NTy << ", NTyx = " << theCurrentTemp.head.NTyx<< ", NTxx = " << theCurrentTemp.head.NTxx << ", Dtype = " << theCurrentTemp.head.Dtype << ", Bias voltage " << theCurrentTemp.head.Vbias << ", temperature " << theCurrentTemp.head.temperature << ", fluence " << theCurrentTemp.head.fluence << ", Q-scaling factor " << theCurrentTemp.head.qscale << ", 1/2 threshold " << theCurrentTemp.head.s50 << ", y Lorentz Width " << theCurrentTemp.head.lorywidth << ", x Lorentz width " << theCurrentTemp.head.lorxwidth << ", pixel x-size " << theCurrentTemp.head.xsize << ", y-size " << theCurrentTemp.head.ysize << ", zsize " << theCurrentTemp.head.zsize << ENDL; if(theCurrentTemp.head.templ_version < code_version) {LOGERROR("SiStripTemplate") << "code expects version " << code_version << ", no template load" << ENDL; return false;} #ifdef SI_PIXEL_TEMPLATE_USE_BOOST // next, layout the 1-d/2-d structures needed to store template theCurrentTemp.enty.resize(boost::extents[theCurrentTemp.head.NTy]); theCurrentTemp.entx.resize(boost::extents[theCurrentTemp.head.NTyx][theCurrentTemp.head.NTxx]); #endif // next, loop over all y-angle entries for (i=0; i < theCurrentTemp.head.NTy; ++i) { db >> theCurrentTemp.enty[i].runnum >> theCurrentTemp.enty[i].costrk[0] >> theCurrentTemp.enty[i].costrk[1] >> theCurrentTemp.enty[i].costrk[2]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 1, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} // Calculate the alpha, beta, and cot(beta) for this entry theCurrentTemp.enty[i].alpha = static_cast<float>(atan2((double)theCurrentTemp.enty[i].costrk[2], (double)theCurrentTemp.enty[i].costrk[0])); theCurrentTemp.enty[i].cotalpha = theCurrentTemp.enty[i].costrk[0]/theCurrentTemp.enty[i].costrk[2]; theCurrentTemp.enty[i].beta = static_cast<float>(atan2((double)theCurrentTemp.enty[i].costrk[2], (double)theCurrentTemp.enty[i].costrk[1])); theCurrentTemp.enty[i].cotbeta = theCurrentTemp.enty[i].costrk[1]/theCurrentTemp.enty[i].costrk[2]; db >> theCurrentTemp.enty[i].qavg >> theCurrentTemp.enty[i].sxmax >> theCurrentTemp.enty[i].dxone >> theCurrentTemp.enty[i].sxone >> theCurrentTemp.enty[i].qmin >> theCurrentTemp.enty[i].clslenx; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 2, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} for (j=0; j<2; ++j) { db >> theCurrentTemp.enty[i].xpar[j][0] >> theCurrentTemp.enty[i].xpar[j][1] >> theCurrentTemp.enty[i].xpar[j][2] >> theCurrentTemp.enty[i].xpar[j][3] >> theCurrentTemp.enty[i].xpar[j][4]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 6, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } qavg_avg = 0.f; for (j=0; j<9; ++j) { for (k=0; k<TSXSIZE; ++k) {db >> theCurrentTemp.enty[i].xtemp[j][k]; qavg_avg += theCurrentTemp.enty[i].xtemp[j][k];} if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 7, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } theCurrentTemp.enty[i].qavg_avg = qavg_avg/9.; for (j=0; j<4; ++j) { db >> theCurrentTemp.enty[i].xavg[j] >> theCurrentTemp.enty[i].xrms[j] >> theCurrentTemp.enty[i].xgx0[j] >> theCurrentTemp.enty[i].xgsig[j]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 10, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { db >> theCurrentTemp.enty[i].xflpar[j][0] >> theCurrentTemp.enty[i].xflpar[j][1] >> theCurrentTemp.enty[i].xflpar[j][2] >> theCurrentTemp.enty[i].xflpar[j][3] >> theCurrentTemp.enty[i].xflpar[j][4] >> theCurrentTemp.enty[i].xflpar[j][5]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 11, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { db >> theCurrentTemp.enty[i].chi2xavg[j] >> theCurrentTemp.enty[i].chi2xmin[j] >> theCurrentTemp.enty[i].chi2xavgc2m[j] >> theCurrentTemp.enty[i].chi2xminc2m[j]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 12, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { db >> theCurrentTemp.enty[i].xavgc2m[j] >> theCurrentTemp.enty[i].xrmsc2m[j] >> theCurrentTemp.enty[i].xgx0c2m[j] >> theCurrentTemp.enty[i].xgsigc2m[j]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 14, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { db >> theCurrentTemp.enty[i].xavggen[j] >> theCurrentTemp.enty[i].xrmsgen[j] >> theCurrentTemp.enty[i].xgx0gen[j] >> theCurrentTemp.enty[i].xgsiggen[j]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 14b, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { db >> theCurrentTemp.enty[i].xavgbcn[j] >> theCurrentTemp.enty[i].xrmsbcn[j] >> theCurrentTemp.enty[i].xgx0bcn[j] >> theCurrentTemp.enty[i].xgsigbcn[j]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 14c, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } db >> theCurrentTemp.enty[i].chi2xavgone >> theCurrentTemp.enty[i].chi2xminone >> theCurrentTemp.enty[i].qmin2 >> theCurrentTemp.enty[i].mpvvav >> theCurrentTemp.enty[i].sigmavav >> theCurrentTemp.enty[i].kappavav >> theCurrentTemp.enty[i].mpvvav2 >> theCurrentTemp.enty[i].sigmavav2 >> theCurrentTemp.enty[i].kappavav2 >> theCurrentTemp.enty[i].spare[0]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 15, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} db >> theCurrentTemp.enty[i].qbfrac[0] >> theCurrentTemp.enty[i].qbfrac[1] >> theCurrentTemp.enty[i].qbfrac[2] >> theCurrentTemp.enty[i].fracxone >> theCurrentTemp.enty[i].spare[1] >> theCurrentTemp.enty[i].spare[2] >> theCurrentTemp.enty[i].spare[3] >> theCurrentTemp.enty[i].spare[4] >> theCurrentTemp.enty[i].spare[5] >> theCurrentTemp.enty[i].spare[6]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 16, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } // next, loop over all barrel x-angle entries for (k=0; k < theCurrentTemp.head.NTyx; ++k) { for (i=0; i < theCurrentTemp.head.NTxx; ++i) { db >> theCurrentTemp.entx[k][i].runnum >> theCurrentTemp.entx[k][i].costrk[0] >> theCurrentTemp.entx[k][i].costrk[1] >> theCurrentTemp.entx[k][i].costrk[2]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 17, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} // Calculate the alpha, beta, and cot(beta) for this entry theCurrentTemp.entx[k][i].alpha = static_cast<float>(atan2((double)theCurrentTemp.entx[k][i].costrk[2], (double)theCurrentTemp.entx[k][i].costrk[0])); theCurrentTemp.entx[k][i].cotalpha = theCurrentTemp.entx[k][i].costrk[0]/theCurrentTemp.entx[k][i].costrk[2]; theCurrentTemp.entx[k][i].beta = static_cast<float>(atan2((double)theCurrentTemp.entx[k][i].costrk[2], (double)theCurrentTemp.entx[k][i].costrk[1])); theCurrentTemp.entx[k][i].cotbeta = theCurrentTemp.entx[k][i].costrk[1]/theCurrentTemp.entx[k][i].costrk[2]; db >> theCurrentTemp.entx[k][i].qavg >> theCurrentTemp.entx[k][i].sxmax >> theCurrentTemp.entx[k][i].dxone >> theCurrentTemp.entx[k][i].sxone >> theCurrentTemp.entx[k][i].qmin >> theCurrentTemp.entx[k][i].clslenx; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 18, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} for (j=0; j<2; ++j) { db >> theCurrentTemp.entx[k][i].xpar[j][0] >> theCurrentTemp.entx[k][i].xpar[j][1] >> theCurrentTemp.entx[k][i].xpar[j][2] >> theCurrentTemp.entx[k][i].xpar[j][3] >> theCurrentTemp.entx[k][i].xpar[j][4]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 19, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } qavg_avg = 0.f; for (j=0; j<9; ++j) { for (l=0; l<TSXSIZE; ++k) {db >> theCurrentTemp.entx[k][i].xtemp[j][l]; qavg_avg += theCurrentTemp.entx[k][i].xtemp[j][l];} if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 20, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } theCurrentTemp.entx[k][i].qavg_avg = qavg_avg/9.; for (j=0; j<4; ++j) { db >> theCurrentTemp.entx[k][i].xavg[j] >> theCurrentTemp.entx[k][i].xrms[j] >> theCurrentTemp.entx[k][i].xgx0[j] >> theCurrentTemp.entx[k][i].xgsig[j]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 21, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { db >> theCurrentTemp.entx[k][i].xflpar[j][0] >> theCurrentTemp.entx[k][i].xflpar[j][1] >> theCurrentTemp.entx[k][i].xflpar[j][2] >> theCurrentTemp.entx[k][i].xflpar[j][3] >> theCurrentTemp.entx[k][i].xflpar[j][4] >> theCurrentTemp.entx[k][i].xflpar[j][5]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 22, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { db >> theCurrentTemp.entx[k][i].chi2xavg[j] >> theCurrentTemp.entx[k][i].chi2xmin[j] >> theCurrentTemp.entx[k][i].chi2xavgc2m[j] >> theCurrentTemp.entx[k][i].chi2xminc2m[j]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 23, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { db >> theCurrentTemp.entx[k][i].xavgc2m[j] >> theCurrentTemp.entx[k][i].xrmsc2m[j] >> theCurrentTemp.entx[k][i].xgx0c2m[j] >> theCurrentTemp.entx[k][i].xgsigc2m[j]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 24, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { db >> theCurrentTemp.entx[k][i].xavggen[j] >> theCurrentTemp.entx[k][i].xrmsgen[j] >> theCurrentTemp.entx[k][i].xgx0gen[j] >> theCurrentTemp.entx[k][i].xgsiggen[j]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 25, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { db >> theCurrentTemp.entx[k][i].xavgbcn[j] >> theCurrentTemp.entx[k][i].xrmsbcn[j] >> theCurrentTemp.entx[k][i].xgx0bcn[j] >> theCurrentTemp.entx[k][i].xgsigbcn[j]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 26, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } db >> theCurrentTemp.entx[k][i].chi2xavgone >> theCurrentTemp.entx[k][i].chi2xminone >> theCurrentTemp.entx[k][i].qmin2 >> theCurrentTemp.entx[k][i].mpvvav >> theCurrentTemp.entx[k][i].sigmavav >> theCurrentTemp.entx[k][i].kappavav >> theCurrentTemp.entx[k][i].mpvvav2 >> theCurrentTemp.entx[k][i].sigmavav2 >> theCurrentTemp.entx[k][i].kappavav2 >> theCurrentTemp.entx[k][i].spare[0]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 27, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} db >> theCurrentTemp.entx[k][i].qbfrac[0] >> theCurrentTemp.entx[k][i].qbfrac[1] >> theCurrentTemp.entx[k][i].qbfrac[2] >> theCurrentTemp.entx[k][i].fracxone >> theCurrentTemp.entx[k][i].spare[1] >> theCurrentTemp.entx[k][i].spare[2] >> theCurrentTemp.entx[k][i].spare[3] >> theCurrentTemp.entx[k][i].spare[4] >> theCurrentTemp.entx[k][i].spare[5] >> theCurrentTemp.entx[k][i].spare[6]; if(db.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 28, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } } // Add this template to the store theStripTemp_.push_back(theCurrentTemp); } return true; } // TempInit
bool SiStripTemplate::pushfile | ( | int | filenum | ) |
This routine initializes the global template structures from an external file template_summary_zpNNNN where NNNN are four digits of filenum.
filenum | - an integer NNNN used in the filename template_summary_zpNNNN |
Definition at line 54 of file SiStripTemplate.cc.
References SiStripTemplateEntry::alpha, SiStripTemplateEntry::beta, SiStripTemplateHeader::Bfield, trackerHits::c, SiStripTemplateEntry::chi2xavg, SiStripTemplateEntry::chi2xavgc2m, SiStripTemplateEntry::chi2xavgone, SiStripTemplateEntry::chi2xmin, SiStripTemplateEntry::chi2xminc2m, SiStripTemplateEntry::chi2xminone, SiStripTemplateEntry::clslenx, SiStripTemplateEntry::costrk, SiStripTemplateEntry::cotalpha, SiStripTemplateEntry::cotbeta, SiStripTemplateHeader::Dtype, SiStripTemplateEntry::dxone, ENDL, SiStripTemplateStore::entx, SiStripTemplateStore::enty, mergeVDriftHistosByStation::file, SiStripTemplateHeader::fluence, SiStripTemplateEntry::fracxone, SiStripTemplateStore::head, i, SiStripTemplateHeader::ID, recoMuon::in, j, gen::k, SiStripTemplateEntry::kappavav, SiStripTemplateEntry::kappavav2, prof2calltree::l, LOGERROR, LOGINFO, SiStripTemplateHeader::lorxwidth, SiStripTemplateHeader::lorywidth, SiStripTemplateEntry::mpvvav, SiStripTemplateEntry::mpvvav2, SiStripTemplateHeader::NTxx, SiStripTemplateHeader::NTy, SiStripTemplateHeader::NTyx, SiStripTemplateEntry::qavg, SiStripTemplateEntry::qavg_avg, SiStripTemplateEntry::qbfrac, SiStripTemplateEntry::qmin, SiStripTemplateEntry::qmin2, SiStripTemplateHeader::qscale, SiStripTemplateEntry::runnum, SiStripTemplateHeader::s50, SiStripTemplateEntry::sigmavav, SiStripTemplateEntry::sigmavav2, SiStripTemplateEntry::spare, SiStripTemplateEntry::sxmax, SiStripTemplateEntry::sxone, SiStripTemplateHeader::temperature, SiStripTemplateHeader::templ_version, SiStripTemplateHeader::title, TSXSIZE, SiStripTemplateHeader::Vbias, SiStripTemplateEntry::xavg, SiStripTemplateEntry::xavgbcn, SiStripTemplateEntry::xavgc2m, SiStripTemplateEntry::xavggen, SiStripTemplateEntry::xflpar, SiStripTemplateEntry::xgsig, SiStripTemplateEntry::xgsigbcn, SiStripTemplateEntry::xgsigc2m, SiStripTemplateEntry::xgsiggen, SiStripTemplateEntry::xgx0, SiStripTemplateEntry::xgx0bcn, SiStripTemplateEntry::xgx0c2m, SiStripTemplateEntry::xgx0gen, SiStripTemplateEntry::xpar, SiStripTemplateEntry::xrms, SiStripTemplateEntry::xrmsbcn, SiStripTemplateEntry::xrmsc2m, SiStripTemplateEntry::xrmsgen, SiStripTemplateHeader::xsize, SiStripTemplateEntry::xtemp, SiStripTemplateHeader::ysize, and SiStripTemplateHeader::zsize.
Referenced by StripCPEfromTemplate::StripCPEfromTemplate(), and TrackClusterSplitter::TrackClusterSplitter().
{ // Add template stored in external file numbered filenum to theTemplateStore // Local variables int i, j, k, l; float qavg_avg; const char *tempfile; // char title[80]; remove this char c; const int code_version={18}; // Create a filename for this run std::ostringstream tout; // Create different path in CMSSW than standalone #ifndef SI_PIXEL_TEMPLATE_STANDALONE tout << "CalibTracker/SiPixelESProducers/data/stemplate_summary_p" << std::setw(4) << std::setfill('0') << std::right << filenum << ".out" << std::ends; std::string tempf = tout.str(); edm::FileInPath file( tempf.c_str() ); tempfile = (file.fullPath()).c_str(); #else tout << "stemplate_summary_p" << std::setw(4) << std::setfill('0') << std::right << filenum << ".out" << std::ends; std::string tempf = tout.str(); tempfile = tempf.c_str(); #endif // open the template file std::ifstream in_file(tempfile, std::ios::in); if(in_file.is_open()) { // Create a local template storage entry SiStripTemplateStore theCurrentTemp; // Read-in a header string first and print it for (i=0; (c=in_file.get()) != '\n'; ++i) { if(i < 79) {theCurrentTemp.head.title[i] = c;} } if(i > 78) {i=78;} theCurrentTemp.head.title[i+1] ='\0'; LOGINFO("SiStripTemplate") << "Loading Strip Template File - " << theCurrentTemp.head.title << ENDL; // next, the header information in_file >> theCurrentTemp.head.ID >> theCurrentTemp.head.templ_version >> theCurrentTemp.head.Bfield >> theCurrentTemp.head.NTy >> theCurrentTemp.head.NTyx >> theCurrentTemp.head.NTxx >> theCurrentTemp.head.Dtype >> theCurrentTemp.head.Vbias >> theCurrentTemp.head.temperature >> theCurrentTemp.head.fluence >> theCurrentTemp.head.qscale >> theCurrentTemp.head.s50 >> theCurrentTemp.head.lorywidth >> theCurrentTemp.head.lorxwidth >> theCurrentTemp.head.ysize >> theCurrentTemp.head.xsize >> theCurrentTemp.head.zsize; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file, no template load" << ENDL; return false;} LOGINFO("SiStripTemplate") << "Template ID = " << theCurrentTemp.head.ID << ", Template Version " << theCurrentTemp.head.templ_version << ", Bfield = " << theCurrentTemp.head.Bfield << ", NTy = " << theCurrentTemp.head.NTy << ", NTyx = " << theCurrentTemp.head.NTyx<< ", NTxx = " << theCurrentTemp.head.NTxx << ", Dtype = " << theCurrentTemp.head.Dtype << ", Bias voltage " << theCurrentTemp.head.Vbias << ", temperature " << theCurrentTemp.head.temperature << ", fluence " << theCurrentTemp.head.fluence << ", Q-scaling factor " << theCurrentTemp.head.qscale << ", 1/2 threshold " << theCurrentTemp.head.s50 << ", y Lorentz Width " << theCurrentTemp.head.lorywidth << ", x Lorentz width " << theCurrentTemp.head.lorxwidth << ", pixel x-size " << theCurrentTemp.head.xsize << ", y-size " << theCurrentTemp.head.ysize << ", zsize " << theCurrentTemp.head.zsize << ENDL; if(theCurrentTemp.head.templ_version < code_version) {LOGERROR("SiStripTemplate") << "code expects version " << code_version << ", no template load" << ENDL; return false;} #ifdef SI_STRIP_TEMPLATE_USE_BOOST // next, layout the 1-d/2-d structures needed to store template theCurrentTemp.enty.resize(boost::extents[theCurrentTemp.head.NTy]); theCurrentTemp.entx.resize(boost::extents[theCurrentTemp.head.NTyx][theCurrentTemp.head.NTxx]); #endif // next, loop over all y-angle entries for (i=0; i < theCurrentTemp.head.NTy; ++i) { in_file >> theCurrentTemp.enty[i].runnum >> theCurrentTemp.enty[i].costrk[0] >> theCurrentTemp.enty[i].costrk[1] >> theCurrentTemp.enty[i].costrk[2]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 1, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} // Calculate the alpha, beta, and cot(beta) for this entry theCurrentTemp.enty[i].alpha = static_cast<float>(atan2((double)theCurrentTemp.enty[i].costrk[2], (double)theCurrentTemp.enty[i].costrk[0])); theCurrentTemp.enty[i].cotalpha = theCurrentTemp.enty[i].costrk[0]/theCurrentTemp.enty[i].costrk[2]; theCurrentTemp.enty[i].beta = static_cast<float>(atan2((double)theCurrentTemp.enty[i].costrk[2], (double)theCurrentTemp.enty[i].costrk[1])); theCurrentTemp.enty[i].cotbeta = theCurrentTemp.enty[i].costrk[1]/theCurrentTemp.enty[i].costrk[2]; in_file >> theCurrentTemp.enty[i].qavg >> theCurrentTemp.enty[i].sxmax >> theCurrentTemp.enty[i].dxone >> theCurrentTemp.enty[i].sxone >> theCurrentTemp.enty[i].qmin >> theCurrentTemp.enty[i].clslenx; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 2, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} for (j=0; j<2; ++j) { in_file >> theCurrentTemp.enty[i].xpar[j][0] >> theCurrentTemp.enty[i].xpar[j][1] >> theCurrentTemp.enty[i].xpar[j][2] >> theCurrentTemp.enty[i].xpar[j][3] >> theCurrentTemp.enty[i].xpar[j][4]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 6, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } qavg_avg = 0.f; for (j=0; j<9; ++j) { for (k=0; k<TSXSIZE; ++k) {in_file >> theCurrentTemp.enty[i].xtemp[j][k]; qavg_avg += theCurrentTemp.enty[i].xtemp[j][k];} if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 7, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } theCurrentTemp.enty[i].qavg_avg = qavg_avg/9.; for (j=0; j<4; ++j) { in_file >> theCurrentTemp.enty[i].xavg[j] >> theCurrentTemp.enty[i].xrms[j] >> theCurrentTemp.enty[i].xgx0[j] >> theCurrentTemp.enty[i].xgsig[j]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 10, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { in_file >> theCurrentTemp.enty[i].xflpar[j][0] >> theCurrentTemp.enty[i].xflpar[j][1] >> theCurrentTemp.enty[i].xflpar[j][2] >> theCurrentTemp.enty[i].xflpar[j][3] >> theCurrentTemp.enty[i].xflpar[j][4] >> theCurrentTemp.enty[i].xflpar[j][5]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 11, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { in_file >> theCurrentTemp.enty[i].chi2xavg[j] >> theCurrentTemp.enty[i].chi2xmin[j] >> theCurrentTemp.enty[i].chi2xavgc2m[j] >> theCurrentTemp.enty[i].chi2xminc2m[j]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 12, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { in_file >> theCurrentTemp.enty[i].xavgc2m[j] >> theCurrentTemp.enty[i].xrmsc2m[j] >> theCurrentTemp.enty[i].xgx0c2m[j] >> theCurrentTemp.enty[i].xgsigc2m[j]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 14, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { in_file >> theCurrentTemp.enty[i].xavggen[j] >> theCurrentTemp.enty[i].xrmsgen[j] >> theCurrentTemp.enty[i].xgx0gen[j] >> theCurrentTemp.enty[i].xgsiggen[j]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 14b, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { in_file >> theCurrentTemp.enty[i].xavgbcn[j] >> theCurrentTemp.enty[i].xrmsbcn[j] >> theCurrentTemp.enty[i].xgx0bcn[j] >> theCurrentTemp.enty[i].xgsigbcn[j]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 14c, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } in_file >> theCurrentTemp.enty[i].chi2xavgone >> theCurrentTemp.enty[i].chi2xminone >> theCurrentTemp.enty[i].qmin2 >> theCurrentTemp.enty[i].mpvvav >> theCurrentTemp.enty[i].sigmavav >> theCurrentTemp.enty[i].kappavav >> theCurrentTemp.enty[i].mpvvav2 >> theCurrentTemp.enty[i].sigmavav2 >> theCurrentTemp.enty[i].kappavav2 >> theCurrentTemp.enty[i].spare[0]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 15, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} in_file >> theCurrentTemp.enty[i].qbfrac[0] >> theCurrentTemp.enty[i].qbfrac[1] >> theCurrentTemp.enty[i].qbfrac[2] >> theCurrentTemp.enty[i].fracxone >> theCurrentTemp.enty[i].spare[1] >> theCurrentTemp.enty[i].spare[2] >> theCurrentTemp.enty[i].spare[3] >> theCurrentTemp.enty[i].spare[4] >> theCurrentTemp.enty[i].spare[5] >> theCurrentTemp.enty[i].spare[6]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 16, no template load, run # " << theCurrentTemp.enty[i].runnum << ENDL; return false;} } // next, loop over all barrel x-angle entries for (k=0; k < theCurrentTemp.head.NTyx; ++k) { for (i=0; i < theCurrentTemp.head.NTxx; ++i) { in_file >> theCurrentTemp.entx[k][i].runnum >> theCurrentTemp.entx[k][i].costrk[0] >> theCurrentTemp.entx[k][i].costrk[1] >> theCurrentTemp.entx[k][i].costrk[2]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 17, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} // Calculate the alpha, beta, and cot(beta) for this entry theCurrentTemp.entx[k][i].alpha = static_cast<float>(atan2((double)theCurrentTemp.entx[k][i].costrk[2], (double)theCurrentTemp.entx[k][i].costrk[0])); theCurrentTemp.entx[k][i].cotalpha = theCurrentTemp.entx[k][i].costrk[0]/theCurrentTemp.entx[k][i].costrk[2]; theCurrentTemp.entx[k][i].beta = static_cast<float>(atan2((double)theCurrentTemp.entx[k][i].costrk[2], (double)theCurrentTemp.entx[k][i].costrk[1])); theCurrentTemp.entx[k][i].cotbeta = theCurrentTemp.entx[k][i].costrk[1]/theCurrentTemp.entx[k][i].costrk[2]; in_file >> theCurrentTemp.entx[k][i].qavg >> theCurrentTemp.entx[k][i].sxmax >> theCurrentTemp.entx[k][i].dxone >> theCurrentTemp.entx[k][i].sxone >> theCurrentTemp.entx[k][i].qmin >> theCurrentTemp.entx[k][i].clslenx; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 18, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} for (j=0; j<2; ++j) { in_file >> theCurrentTemp.entx[k][i].xpar[j][0] >> theCurrentTemp.entx[k][i].xpar[j][1] >> theCurrentTemp.entx[k][i].xpar[j][2] >> theCurrentTemp.entx[k][i].xpar[j][3] >> theCurrentTemp.entx[k][i].xpar[j][4]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 19, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } qavg_avg = 0.f; for (j=0; j<9; ++j) { for (l=0; l<TSXSIZE; ++l) {in_file >> theCurrentTemp.entx[k][i].xtemp[j][l]; qavg_avg += theCurrentTemp.entx[k][i].xtemp[j][l];} if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 20, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } theCurrentTemp.entx[k][i].qavg_avg = qavg_avg/9.; for (j=0; j<4; ++j) { in_file >> theCurrentTemp.entx[k][i].xavg[j] >> theCurrentTemp.entx[k][i].xrms[j] >> theCurrentTemp.entx[k][i].xgx0[j] >> theCurrentTemp.entx[k][i].xgsig[j]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 21, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { in_file >> theCurrentTemp.entx[k][i].xflpar[j][0] >> theCurrentTemp.entx[k][i].xflpar[j][1] >> theCurrentTemp.entx[k][i].xflpar[j][2] >> theCurrentTemp.entx[k][i].xflpar[j][3] >> theCurrentTemp.entx[k][i].xflpar[j][4] >> theCurrentTemp.entx[k][i].xflpar[j][5]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 22, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { in_file >> theCurrentTemp.entx[k][i].chi2xavg[j] >> theCurrentTemp.entx[k][i].chi2xmin[j] >> theCurrentTemp.entx[k][i].chi2xavgc2m[j] >> theCurrentTemp.entx[k][i].chi2xminc2m[j]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 23, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { in_file >> theCurrentTemp.entx[k][i].xavgc2m[j] >> theCurrentTemp.entx[k][i].xrmsc2m[j] >> theCurrentTemp.entx[k][i].xgx0c2m[j] >> theCurrentTemp.entx[k][i].xgsigc2m[j]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 24, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { in_file >> theCurrentTemp.entx[k][i].xavggen[j] >> theCurrentTemp.entx[k][i].xrmsgen[j] >> theCurrentTemp.entx[k][i].xgx0gen[j] >> theCurrentTemp.entx[k][i].xgsiggen[j]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 25, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } for (j=0; j<4; ++j) { in_file >> theCurrentTemp.entx[k][i].xavgbcn[j] >> theCurrentTemp.entx[k][i].xrmsbcn[j] >> theCurrentTemp.entx[k][i].xgx0bcn[j] >> theCurrentTemp.entx[k][i].xgsigbcn[j]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 26, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } in_file >> theCurrentTemp.entx[k][i].chi2xavgone >> theCurrentTemp.entx[k][i].chi2xminone >> theCurrentTemp.entx[k][i].qmin2 >> theCurrentTemp.entx[k][i].mpvvav >> theCurrentTemp.entx[k][i].sigmavav >> theCurrentTemp.entx[k][i].kappavav >> theCurrentTemp.entx[k][i].mpvvav2 >> theCurrentTemp.entx[k][i].sigmavav2 >> theCurrentTemp.entx[k][i].kappavav2 >> theCurrentTemp.entx[k][i].spare[0]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 27, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} in_file >> theCurrentTemp.entx[k][i].qbfrac[0] >> theCurrentTemp.entx[k][i].qbfrac[1] >> theCurrentTemp.entx[k][i].qbfrac[2] >> theCurrentTemp.entx[k][i].fracxone >> theCurrentTemp.entx[k][i].spare[1] >> theCurrentTemp.entx[k][i].spare[2] >> theCurrentTemp.entx[k][i].spare[3] >> theCurrentTemp.entx[k][i].spare[4] >> theCurrentTemp.entx[k][i].spare[5] >> theCurrentTemp.entx[k][i].spare[6]; if(in_file.fail()) {LOGERROR("SiStripTemplate") << "Error reading file 28, no template load, run # " << theCurrentTemp.entx[k][i].runnum << ENDL; return false;} } } in_file.close(); // Add this template to the store theStripTemp_.push_back(theCurrentTemp); return true; } else { // If file didn't open, report this LOGERROR("SiStripTemplate") << "Error opening File " << tempfile << ENDL; return false; } } // TempInit
float SiStripTemplate::qavg | ( | ) | [inline] |
average cluster charge for this set of track angles
Definition at line 186 of file SiStripTemplate.h.
References qavg_.
Referenced by SiStripTemplateReco::StripTempReco1D(), and SiStripTemplateSplit::StripTempSplit().
int SiStripTemplate::qbin | ( | int | id, |
float | cotalpha, | ||
float | cotbeta, | ||
float | qclus | ||
) |
Interpolate beta/alpha angles to produce an expected average charge. Return int (0-4) describing the charge of the cluster [0: 1.5<Q/Qavg, 1: 1<Q/Qavg<1.5, 2: 0.85<Q/Qavg<1, 3: 0.95Qmin<Q<0.85Qavg, 4: Q<0.95Qmin].
id | - (input) index of the template to use |
cotalpha | - (input) the cotangent of the alpha track angle (see CMS IN 2004/014) |
cotbeta | - (input) the cotangent of the beta track angle (see CMS IN 2004/014) |
qclus | - (input) the cluster charge in electrons |
Definition at line 1469 of file SiStripTemplate.cc.
References Exception, f, i, getHLTprescales::index, and mathSSE::sqrt().
Referenced by TrackClusterSplitter::splitCluster().
{ // Interpolate for a new set of track angles // Local variables int i, binq; int ilow, ihigh, Ny, Nxx, Nyx, index; float yratio; float acotb, qscale, qavg, qmin, qmin2, fq, qtotal, qcorrect, cotalpha0; // Find the index corresponding to id index = -1; for(i=0; i<(int)theStripTemp_.size(); ++i) { if(id == theStripTemp_[i].head.ID) { index = i; break; } } #ifndef SI_PIXEL_TEMPLATE_STANDALONE if(index < 0 || index >= (int)theStripTemp_.size()) { throw cms::Exception("DataCorrupt") << "SiStripTemplate::qbin can't find needed template ID = " << id << std::endl; } #else assert(index >= 0 && index < (int)theStripTemp_.size()); #endif // // Interpolate the absolute value of cot(beta) acotb = fabs((double)cotbeta); // qcorrect corrects the cot(alpha)=0 cluster charge for non-zero cot(alpha) // qcorrect corrects the cot(alpha)=0 cluster charge for non-zero cot(alpha) cotalpha0 = theStripTemp_[index].enty[0].cotalpha; qcorrect=std::sqrt((1.f+cotbeta*cotbeta+cotalpha*cotalpha)/(1.f+cotbeta*cotbeta+cotalpha0*cotalpha0)); // Copy the charge scaling factor to the private variable qscale = theStripTemp_[index].head.qscale; Ny = theStripTemp_[index].head.NTy; Nyx = theStripTemp_[index].head.NTyx; Nxx = theStripTemp_[index].head.NTxx; #ifndef SI_PIXEL_TEMPLATE_STANDALONE if(Ny < 2 || Nyx < 1 || Nxx < 2) { throw cms::Exception("DataCorrupt") << "template ID = " << id_current_ << "has too few entries: Ny/Nyx/Nxx = " << Ny << "/" << Nyx << "/" << Nxx << std::endl; } #else assert(Ny > 1 && Nyx > 0 && Nxx > 1); #endif // next, loop over all y-angle entries ilow = 0; yratio = 0.f; if(acotb >= theStripTemp_[index].enty[Ny-1].cotbeta) { ilow = Ny-2; yratio = 1.f; } else { if(acotb >= theStripTemp_[index].enty[0].cotbeta) { for (i=0; i<Ny-1; ++i) { if( theStripTemp_[index].enty[i].cotbeta <= acotb && acotb < theStripTemp_[index].enty[i+1].cotbeta) { ilow = i; yratio = (acotb - theStripTemp_[index].enty[i].cotbeta)/(theStripTemp_[index].enty[i+1].cotbeta - theStripTemp_[index].enty[i].cotbeta); break; } } } } ihigh=ilow + 1; // Interpolate/store all y-related quantities (flip displacements when flip_y) qavg = (1.f - yratio)*theStripTemp_[index].enty[ilow].qavg + yratio*theStripTemp_[index].enty[ihigh].qavg; qavg *= qcorrect; qmin = (1.f - yratio)*theStripTemp_[index].enty[ilow].qmin + yratio*theStripTemp_[index].enty[ihigh].qmin; qmin *= qcorrect; qmin2 = (1.f - yratio)*theStripTemp_[index].enty[ilow].qmin2 + yratio*theStripTemp_[index].enty[ihigh].qmin2; qmin2 *= qcorrect; #ifndef SI_PIXEL_TEMPLATE_STANDALONE if(qavg <= 0.f || qmin <= 0.f) { throw cms::Exception("DataCorrupt") << "SiStripTemplate::qbin, qavg or qmin <= 0," << " Probably someone called the generic pixel reconstruction with an illegal trajectory state" << std::endl; } #else assert(qavg > 0.f && qmin > 0.f); #endif // Scale the input charge to account for differences between pixelav and CMSSW simulation or data qtotal = qscale*qclus; // uncertainty and final corrections depend upon total charge bin fq = qtotal/qavg; if(fq > 1.5f) { binq=0; } else { if(fq > 1.0f) { binq=1; } else { if(fq > 0.85f) { binq=2; } else { binq=3; } } } // If the charge is too small (then flag it) if(qtotal < 0.95f*qmin) {binq = 5;} else {if(qtotal < 0.95f*qmin2) {binq = 4;}} return binq; } // qbin
float SiStripTemplate::qmin | ( | ) | [inline] |
minimum cluster charge for valid hit (keeps 99.9% of simulated hits)
Definition at line 192 of file SiStripTemplate.h.
References qmin_.
Referenced by SiStripTemplateReco::StripTempReco1D(), and SiStripTemplateSplit::StripTempSplit().
float SiStripTemplate::qmin | ( | int | i | ) | [inline] |
minimum cluster charge for valid hit (keeps 99.9% or 99.8% of simulated hits)
Definition at line 193 of file SiStripTemplate.h.
float SiStripTemplate::qscale | ( | ) | [inline] |
charge scaling factor
Definition at line 187 of file SiStripTemplate.h.
References qscale_.
Referenced by SiStripTemplateReco::StripTempReco1D(), and SiStripTemplateSplit::StripTempSplit().
float SiStripTemplate::s50 | ( | ) | [inline] |
1/2 of the strip threshold signal in electrons
Definition at line 188 of file SiStripTemplate.h.
References s50_.
Referenced by SiStripTemplateReco::StripTempReco1D(), and SiStripTemplateSplit::StripTempSplit().
float SiStripTemplate::sigmavav | ( | ) | [inline] |
"sigma" scale fctor for Vavilov distribution
Definition at line 320 of file SiStripTemplate.h.
References sigmavav_.
float SiStripTemplate::sxmax | ( | ) | [inline] |
average strip signal for x-projection of cluster
Definition at line 189 of file SiStripTemplate.h.
References sxmax_.
Referenced by SiStripTemplateReco::StripTempReco1D(), and SiStripTemplateSplit::StripTempSplit().
float SiStripTemplate::sxone | ( | ) | [inline] |
rms for one strip x-clusters
Definition at line 191 of file SiStripTemplate.h.
References sxone_.
Referenced by SiStripTemplateReco::StripTempReco1D(), and SiStripTemplateSplit::StripTempSplit().
void SiStripTemplate::sxtemp | ( | float | xhit, |
std::vector< float > & | cluster | ||
) |
Interpolate the template in xhit and return scaled charges (ADC units) in the vector container
xhit | - (input) coordinate of the hit (0 at center of first strip: cluster[0]) |
cluster | - (output) vector array of TSXSIZE (or any other) |
Definition at line 1259 of file SiStripTemplate.cc.
References BSHX, BSXSIZE, Exception, f, i, j, edm::min(), and edm::shift.
Referenced by TrackClusterSplitter::splitCluster().
{ // Retrieve already interpolated quantities // Local variables int i, j; // Extract x template based upon the hit position float xpix = xhit/xsize_ + 0.5f; #ifndef SI_PIXEL_TEMPLATE_STANDALONE if(xpix < 0.f) { throw cms::Exception("DataCorrupt") << "SiStripTemplate::2xtemp called with xhit = " << xhit << std::endl; } #else assert(xpix >= 0.f); #endif // cpix is struck pixel(strip) of the cluster int cpix = (int)xpix; int shift = BSHX - cpix; // xbin the floating bin number and cbin is the bin number (between 0 and 7) of the interpolated template float xbin = 8.*(xpix-(float)cpix); int cbin = (int)xbin; float xfrac = xbin-(float)cbin; int sizex = std::min((int)cluster.size(), BSXSIZE); // shift and interpolate the correct cluster shape for(i=0; i<sizex; ++i) { j = i+shift; if(j < 0 || j > sizex-1) {cluster[i] = 0.f;} else { cluster[i]=(1.f-xfrac)*xtemp_[cbin][j]+xfrac*xtemp_[cbin+1][j]; if(cluster[i] < s50_) cluster[i] = 0.f; } // Return cluster in same charge units cluster[i] /= qscale_; } return; } // End sxtemp
void SiStripTemplate::vavilov2_pars | ( | double & | mpv, |
double & | sigma, | ||
double & | kappa | ||
) |
Interpolate beta/alpha angles to produce Vavilov parameters for the 2-cluster charge distribution
mpv | - (output) the Vavilov most probable charge (well, not really the most probable esp at large kappa) |
sigma | - (output) the Vavilov sigma parameter |
kappa | - (output) the Vavilov kappa parameter [0.01 (Landau-like) < kappa < 10 (Gaussian-like) |
Definition at line 1691 of file SiStripTemplate.cc.
References cmsCodeRulesChecker::arg, Exception, f, i, and mathSSE::sqrt().
Referenced by SiStripTemplateSplit::StripTempSplit().
{ // Local variables int i; int ilow, ihigh, Ny; float yratio, cotb, cotalpha0, arg; // Interpolate in cotbeta only for the correct total path length (converts cotalpha, cotbeta into an effective cotbeta) cotalpha0 = theStripTemp_[index_id_].enty[0].cotalpha; arg = cotb_current_*cotb_current_ + cota_current_*cota_current_ - cotalpha0*cotalpha0; if(arg < 0.f) arg = 0.f; cotb = std::sqrt(arg); // Copy the charge scaling factor to the private variable Ny = theStripTemp_[index_id_].head.NTy; #ifndef SI_PIXEL_TEMPLATE_STANDALONE if(Ny < 2) { throw cms::Exception("DataCorrupt") << "template ID = " << id_current_ << "has too few entries: Ny = " << Ny << std::endl; } #else assert(Ny > 1); #endif // next, loop over all y-angle entries ilow = 0; yratio = 0.f; if(cotb >= theStripTemp_[index_id_].enty[Ny-1].cotbeta) { ilow = Ny-2; yratio = 1.f; } else { if(cotb >= theStripTemp_[index_id_].enty[0].cotbeta) { for (i=0; i<Ny-1; ++i) { if( theStripTemp_[index_id_].enty[i].cotbeta <= cotb && cotb < theStripTemp_[index_id_].enty[i+1].cotbeta) { ilow = i; yratio = (cotb - theStripTemp_[index_id_].enty[i].cotbeta)/(theStripTemp_[index_id_].enty[i+1].cotbeta - theStripTemp_[index_id_].enty[i].cotbeta); break; } } } } ihigh=ilow + 1; // Interpolate Vavilov parameters mpvvav2_ = (1.f - yratio)*theStripTemp_[index_id_].enty[ilow].mpvvav2 + yratio*theStripTemp_[index_id_].enty[ihigh].mpvvav2; sigmavav2_ = (1.f - yratio)*theStripTemp_[index_id_].enty[ilow].sigmavav2 + yratio*theStripTemp_[index_id_].enty[ihigh].sigmavav2; kappavav2_ = (1.f - yratio)*theStripTemp_[index_id_].enty[ilow].kappavav2 + yratio*theStripTemp_[index_id_].enty[ihigh].kappavav2; // Copy to parameter list mpv = (double)mpvvav2_; sigma = (double)sigmavav2_; kappa = (double)kappavav2_; return; } // vavilov2_pars
void SiStripTemplate::vavilov_pars | ( | double & | mpv, |
double & | sigma, | ||
double & | kappa | ||
) |
Interpolate beta/alpha angles to produce Vavilov parameters for the charge distribution
mpv | - (output) the Vavilov most probable charge (well, not really the most probable esp at large kappa) |
sigma | - (output) the Vavilov sigma parameter |
kappa | - (output) the Vavilov kappa parameter [0.01 (Landau-like) < kappa < 10 (Gaussian-like) |
Definition at line 1613 of file SiStripTemplate.cc.
References cmsCodeRulesChecker::arg, Exception, f, i, and mathSSE::sqrt().
Referenced by SiStripTemplateReco::StripTempReco1D().
{ // Local variables int i; int ilow, ihigh, Ny; float yratio, cotb, cotalpha0, arg; // Interpolate in cotbeta only for the correct total path length (converts cotalpha, cotbeta into an effective cotbeta) cotalpha0 = theStripTemp_[index_id_].enty[0].cotalpha; arg = cotb_current_*cotb_current_ + cota_current_*cota_current_ - cotalpha0*cotalpha0; if(arg < 0.f) arg = 0.f; cotb = std::sqrt(arg); // Copy the charge scaling factor to the private variable Ny = theStripTemp_[index_id_].head.NTy; #ifndef SI_PIXEL_TEMPLATE_STANDALONE if(Ny < 2) { throw cms::Exception("DataCorrupt") << "template ID = " << id_current_ << "has too few entries: Ny = " << Ny << std::endl; } #else assert(Ny > 1); #endif // next, loop over all y-angle entries ilow = 0; yratio = 0.f; if(cotb >= theStripTemp_[index_id_].enty[Ny-1].cotbeta) { ilow = Ny-2; yratio = 1.f; } else { if(cotb >= theStripTemp_[index_id_].enty[0].cotbeta) { for (i=0; i<Ny-1; ++i) { if( theStripTemp_[index_id_].enty[i].cotbeta <= cotb && cotb < theStripTemp_[index_id_].enty[i+1].cotbeta) { ilow = i; yratio = (cotb - theStripTemp_[index_id_].enty[i].cotbeta)/(theStripTemp_[index_id_].enty[i+1].cotbeta - theStripTemp_[index_id_].enty[i].cotbeta); break; } } } } ihigh=ilow + 1; // Interpolate Vavilov parameters mpvvav_ = (1.f - yratio)*theStripTemp_[index_id_].enty[ilow].mpvvav + yratio*theStripTemp_[index_id_].enty[ihigh].mpvvav; sigmavav_ = (1.f - yratio)*theStripTemp_[index_id_].enty[ilow].sigmavav + yratio*theStripTemp_[index_id_].enty[ihigh].sigmavav; kappavav_ = (1.f - yratio)*theStripTemp_[index_id_].enty[ilow].kappavav + yratio*theStripTemp_[index_id_].enty[ihigh].kappavav; // Copy to parameter list mpv = (double)mpvvav_; sigma = (double)sigmavav_; kappa = (double)kappavav_; return; } // vavilov_pars
float SiStripTemplate::xavg | ( | int | i | ) | [inline] |
average x-bias of reconstruction binned in 4 charge bins
Definition at line 204 of file SiStripTemplate.h.
References Exception, i, and xavg_.
Referenced by SiStripTemplateReco::StripTempReco1D().
float SiStripTemplate::xavgbcn | ( | int | i | ) | [inline] |
1st pass chi2 min search: average x-bias of reconstruction binned in 4 charge bins
Definition at line 288 of file SiStripTemplate.h.
References Exception, i, and xavgbcn_.
Referenced by SiStripTemplateReco::StripTempReco1D().
float SiStripTemplate::xavgc2m | ( | int | i | ) | [inline] |
1st pass chi2 min search: average x-bias of reconstruction binned in 4 charge bins
Definition at line 246 of file SiStripTemplate.h.
References Exception, i, and xavgc2m_.
Referenced by SiStripTemplateSplit::StripTempSplit().
float SiStripTemplate::xflcorr | ( | int | binq, |
float | qflx | ||
) |
Return interpolated x-correction for input charge bin and qflx
binq | - (input) charge bin [0-3] |
qflx | - (input) (Q_f-Q_l)/(Q_f+Q_l) for this cluster |
Definition at line 1132 of file SiStripTemplate.cc.
Referenced by SiStripTemplateReco::StripTempReco1D().
{ // Interpolate using quantities already stored in the private variables // Local variables float qfl, qfl2, qfl3, qfl4, qfl5, dx; // Make sure that input is OK #ifndef SI_PIXEL_TEMPLATE_STANDALONE if(binq < 0 || binq > 3) { throw cms::Exception("DataCorrupt") << "SiStripTemplate::xflcorr called with binq = " << binq << std::endl; } #else assert(binq >= 0 && binq < 4); #endif #ifndef SI_PIXEL_TEMPLATE_STANDALONE if(fabs((double)qflx) > 1.) { throw cms::Exception("DataCorrupt") << "SiStripTemplate::xflcorr called with qflx = " << qflx << std::endl; } #else assert(fabs((double)qflx) <= 1.); #endif // Define the maximum signal to allow before de-weighting a pixel qfl = qflx; if(qfl < -0.9f) {qfl = -0.9f;} if(qfl > 0.9f) {qfl = 0.9f;} // Interpolate between the two polynomials qfl2 = qfl*qfl; qfl3 = qfl2*qfl; qfl4 = qfl3*qfl; qfl5 = qfl4*qfl; dx = (1.f - yxratio_)*((1.f-xxratio_)*(xflparll_[binq][0]+xflparll_[binq][1]*qfl+xflparll_[binq][2]*qfl2+xflparll_[binq][3]*qfl3+xflparll_[binq][4]*qfl4+xflparll_[binq][5]*qfl5) + xxratio_*(xflparlh_[binq][0]+xflparlh_[binq][1]*qfl+xflparlh_[binq][2]*qfl2+xflparlh_[binq][3]*qfl3+xflparlh_[binq][4]*qfl4+xflparlh_[binq][5]*qfl5)) + yxratio_*((1.f-xxratio_)*(xflparhl_[binq][0]+xflparhl_[binq][1]*qfl+xflparhl_[binq][2]*qfl2+xflparhl_[binq][3]*qfl3+xflparhl_[binq][4]*qfl4+xflparhl_[binq][5]*qfl5) + xxratio_*(xflparhh_[binq][0]+xflparhh_[binq][1]*qfl+xflparhh_[binq][2]*qfl2+xflparhh_[binq][3]*qfl3+xflparhh_[binq][4]*qfl4+xflparhh_[binq][5]*qfl5)); return dx; } // End xflcorr
float SiStripTemplate::xgsig | ( | int | i | ) | [inline] |
average sigma_x from Gaussian fit binned in 4 charge bins
Definition at line 225 of file SiStripTemplate.h.
float SiStripTemplate::xgsigbcn | ( | int | i | ) | [inline] |
1st pass chi2 min search: average sigma_x from Gaussian fit binned in 4 charge bins
Definition at line 309 of file SiStripTemplate.h.
float SiStripTemplate::xgsigc2m | ( | int | i | ) | [inline] |
1st pass chi2 min search: average sigma_x from Gaussian fit binned in 4 charge bins
Definition at line 267 of file SiStripTemplate.h.
float SiStripTemplate::xgx0 | ( | int | i | ) | [inline] |
average x0 from Gaussian fit binned in 4 charge bins
Definition at line 218 of file SiStripTemplate.h.
float SiStripTemplate::xgx0bcn | ( | int | i | ) | [inline] |
1st pass chi2 min search: average x0 from Gaussian fit binned in 4 charge bins
Definition at line 302 of file SiStripTemplate.h.
float SiStripTemplate::xgx0c2m | ( | int | i | ) | [inline] |
1st pass chi2 min search: average x0 from Gaussian fit binned in 4 charge bins
Definition at line 260 of file SiStripTemplate.h.
float SiStripTemplate::xrms | ( | int | i | ) | [inline] |
average x-rms of reconstruction binned in 4 charge bins
Definition at line 211 of file SiStripTemplate.h.
References Exception, i, and xrms_.
Referenced by SiStripTemplateReco::StripTempReco1D().
float SiStripTemplate::xrmsbcn | ( | int | i | ) | [inline] |
1st pass chi2 min search: average x-rms of reconstruction binned in 4 charge bins
Definition at line 295 of file SiStripTemplate.h.
References Exception, i, and xrmsbcn_.
Referenced by SiStripTemplateReco::StripTempReco1D().
float SiStripTemplate::xrmsc2m | ( | int | i | ) | [inline] |
1st pass chi2 min search: average x-rms of reconstruction binned in 4 charge bins
Definition at line 253 of file SiStripTemplate.h.
References Exception, i, and xrmsc2m_.
Referenced by SiStripTemplateSplit::StripTempSplit().
void SiStripTemplate::xsigma2 | ( | int | fxstrp, |
int | lxstrp, | ||
float | sxthr, | ||
float | xsum[BSXSIZE], | ||
float | xsig2[BSXSIZE] | ||
) |
Return vector of x errors (squared) for an input vector of projected signals Add large Q scaling for use in cluster splitting.
fxpix | - (input) index of the first real pixel in the projected cluster (doesn't include pseudopixels) |
lxpix | - (input) index of the last real pixel in the projected cluster (doesn't include pseudopixels) |
sxthr | - (input) maximum signal before de-weighting |
xsum | - (input) 11-element vector of pixel signals |
xsig2 | - (output) 11-element vector of x errors (squared) |
Definition at line 1460 of file SiPixelTemplate.cc.
References BHX, BXM2, ENDL, Exception, f, i, and LOGERROR.
Referenced by SiStripTemplateReco::StripTempReco1D(), and SiStripTemplateSplit::StripTempSplit().
{ // Interpolate using quantities already stored in the private variables // Local variables int i; float sigi, sigi2, sigi3, sigi4, yint, sxmax, x0, qscale; // Make sure that input is OK #ifndef SI_PIXEL_TEMPLATE_STANDALONE if(fxpix < 2 || fxpix >= BXM2) { throw cms::Exception("DataCorrupt") << "SiPixelTemplate::xsigma2 called with fxpix = " << fxpix << std::endl; } #else assert(fxpix > 1 && fxpix < BXM2); #endif #ifndef SI_PIXEL_TEMPLATE_STANDALONE if(lxpix < fxpix || lxpix >= BXM2) { throw cms::Exception("DataCorrupt") << "SiPixelTemplate::xsigma2 called with lxpix/fxpix = " << lxpix << "/" << fxpix << std::endl; } #else assert(lxpix >= fxpix && lxpix < BXM2); #endif // Define the maximum signal to use in the parameterization sxmax = sxmax_; if(sxmax_ > sxparmax_) {sxmax = sxparmax_;} // Evaluate pixel-by-pixel uncertainties (weights) for the templ analysis for(i=fxpix-2; i<=lxpix+2; ++i) { if(i < fxpix || i > lxpix) { // Nearest pseudopixels have uncertainties of 50% of threshold, next-nearest have 10% of threshold xsig2[i] = s50_*s50_; } else { if(xsum[i] < sxmax) { sigi = xsum[i]; qscale = 1.f; } else { sigi = sxmax; qscale = xsum[i]/sxmax; } sigi2 = sigi*sigi; sigi3 = sigi2*sigi; sigi4 = sigi3*sigi; // First, do the cotbeta interpolation if(i <= BHX) { yint = (1.f-yratio_)* (xparly0_[0][0]+xparly0_[0][1]*sigi+xparly0_[0][2]*sigi2+xparly0_[0][3]*sigi3+xparly0_[0][4]*sigi4) + yratio_* (xparhy0_[0][0]+xparhy0_[0][1]*sigi+xparhy0_[0][2]*sigi2+xparhy0_[0][3]*sigi3+xparhy0_[0][4]*sigi4); } else { yint = (1.f-yratio_)* (xparly0_[1][0]+xparly0_[1][1]*sigi+xparly0_[1][2]*sigi2+xparly0_[1][3]*sigi3+xparly0_[1][4]*sigi4) + yratio_* (xparhy0_[1][0]+xparhy0_[1][1]*sigi+xparhy0_[1][2]*sigi2+xparhy0_[1][3]*sigi3+xparhy0_[1][4]*sigi4); } // Next, do the cotalpha interpolation if(i <= BHX) { xsig2[i] = (1.f-xxratio_)* (xparl_[0][0]+xparl_[0][1]*sigi+xparl_[0][2]*sigi2+xparl_[0][3]*sigi3+xparl_[0][4]*sigi4) + xxratio_* (xparh_[0][0]+xparh_[0][1]*sigi+xparh_[0][2]*sigi2+xparh_[0][3]*sigi3+xparh_[0][4]*sigi4); } else { xsig2[i] = (1.f-xxratio_)* (xparl_[1][0]+xparl_[1][1]*sigi+xparl_[1][2]*sigi2+xparl_[1][3]*sigi3+xparl_[1][4]*sigi4) + xxratio_* (xparh_[1][0]+xparh_[1][1]*sigi+xparh_[1][2]*sigi2+xparh_[1][3]*sigi3+xparh_[1][4]*sigi4); } // Finally, get the mid-point value of the cotalpha function if(i <= BHX) { x0 = xpar0_[0][0]+xpar0_[0][1]*sigi+xpar0_[0][2]*sigi2+xpar0_[0][3]*sigi3+xpar0_[0][4]*sigi4; } else { x0 = xpar0_[1][0]+xpar0_[1][1]*sigi+xpar0_[1][2]*sigi2+xpar0_[1][3]*sigi3+xpar0_[1][4]*sigi4; } // Finally, rescale the yint value for cotalpha variation if(x0 != 0.f) {xsig2[i] = xsig2[i]/x0 * yint;} xsig2[i] *=qscale; if(xsum[i] > sxthr) {xsig2[i] = 1.e8;} if(xsig2[i] <= 0.f) {LOGERROR("SiPixelTemplate") << "neg x-error-squared, id = " << id_current_ << ", index = " << index_id_ << ", cot(alpha) = " << cota_current_ << ", cot(beta) = " << cotb_current_ << ", sigi = " << sigi << ENDL;} } } return; } // End xsigma2
float SiStripTemplate::xsize | ( | ) | [inline] |
strip x-size (microns)
Definition at line 322 of file SiStripTemplate.h.
References xsize_.
Referenced by TrackClusterSplitter::splitCluster(), SiStripTemplateReco::StripTempReco1D(), and SiStripTemplateSplit::StripTempSplit().
void SiStripTemplate::xtemp | ( | int | fxbin, |
int | lxbin, | ||
float | xtemplate[41][BSXSIZE] | ||
) |
Return interpolated y-template in single call
fxbin | - (input) index of first bin (0-40) to fill |
fxbin | - (input) index of last bin (0-40) to fill |
xtemplate | - (output) a 41x11 output buffer |
Definition at line 1183 of file SiStripTemplate.cc.
References BSXM1, BSXM2, BSXSIZE, Exception, i, and j.
Referenced by SiStripTemplateReco::StripTempReco1D().
{ // Retrieve already interpolated quantities // Local variables int i, j; // Verify that input parameters are in valid range #ifndef SI_PIXEL_TEMPLATE_STANDALONE if(fxbin < 0 || fxbin > 40) { throw cms::Exception("DataCorrupt") << "SiStripTemplate::xtemp called with fxbin = " << fxbin << std::endl; } #else assert(fxbin >= 0 && fxbin < 41); #endif #ifndef SI_PIXEL_TEMPLATE_STANDALONE if(lxbin < 0 || lxbin > 40) { throw cms::Exception("DataCorrupt") << "SiStripTemplate::xtemp called with lxbin = " << lxbin << std::endl; } #else assert(lxbin >= 0 && lxbin < 41); #endif // Build the x-template, the central 25 bins are here in all cases for(i=0; i<9; ++i) { for(j=0; j<BSXSIZE; ++j) { xtemplate[i+16][j]=xtemp_[i][j]; } } for(i=0; i<8; ++i) { xtemplate[i+8][BSXM1] = 0.f; for(j=0; j<BSXM1; ++j) { xtemplate[i+8][j]=xtemp_[i][j+1]; } } for(i=1; i<9; ++i) { xtemplate[i+24][0] = 0.f; for(j=0; j<BSXM1; ++j) { xtemplate[i+24][j+1]=xtemp_[i][j]; } } // Add more bins if needed if(fxbin < 8) { for(i=0; i<8; ++i) { xtemplate[i][BSXM2] = 0.f; xtemplate[i][BSXM1] = 0.f; for(j=0; j<BSXM2; ++j) { xtemplate[i][j]=xtemp_[i][j+2]; } } } if(lxbin > 32) { for(i=1; i<9; ++i) { xtemplate[i+32][0] = 0.f; xtemplate[i+32][1] = 0.f; for(j=0; j<BSXM2; ++j) { xtemplate[i+32][j+2]=xtemp_[i][j]; } } } return; } // End xtemp
void SiStripTemplate::xtemp3d | ( | int | i, |
int | j, | ||
std::vector< float > & | xtemplate | ||
) |
Return interpolated 3d x-template in single call
i,j | - (input) template indices |
xtemplate | - (output) a boost 3d array containing two sets of temlate indices and the combined pixel signals |
Definition at line 1441 of file SiStripTemplate.cc.
References BSXSIZE, i, j, and gen::k.
Referenced by SiStripTemplateSplit::StripTempSplit().
void SiStripTemplate::xtemp3d_int | ( | int | nxpix, |
int & | nxbins | ||
) |
Make interpolated 3d x-template (stored as class variables)
nxpix | - (input) number of pixels in cluster (needed to size template) |
nxbins | - (output) number of bins needed for each template projection |
Definition at line 1362 of file SiStripTemplate.cc.
References BSXM1, BSXM3, BSXSIZE, diffTreeTool::diff, Exception, i, j, and gen::k.
Referenced by SiStripTemplateSplit::StripTempSplit().
{ // Retrieve already interpolated quantities // Local variables int i, j, k; int ioff0, ioffp, ioffm; // Verify that input parameters are in valid range #ifndef SI_PIXEL_TEMPLATE_STANDALONE if(nxpix < 1 || nxpix >= BSXM3) { throw cms::Exception("DataCorrupt") << "SiPixelTemplate::xtemp3d called with nxpix = " << nxpix << std::endl; } #else assert(nxpix > 0 && nxpix < BSXM3); #endif // Calculate the size of the shift in pixels needed to span the entire cluster float diff = fabsf(nxpix - clslenx_)/2. + 1.f; int nshift = (int)diff; if((diff - nshift) > 0.5f) {++nshift;} // Calculate the number of bins needed to specify each hit range nxbins_ = 9 + 16*nshift; // Create a 2-d working template with the correct size temp2dx_.resize(boost::extents[nxbins_][BSXSIZE]); // The 9 central bins are copied from the interpolated private store ioff0 = 8*nshift; for(i=0; i<9; ++i) { for(j=0; j<BSXSIZE; ++j) { temp2dx_[i+ioff0][j]=xtemp_[i][j]; } } // Add the +- shifted templates for(k=1; k<=nshift; ++k) { ioffm=ioff0-k*8; for(i=0; i<8; ++i) { for(j=0; j<k; ++j) { temp2dx_[i+ioffm][BSXM1-j] = 0.f; } for(j=0; j<BSXSIZE-k; ++j) { temp2dx_[i+ioffm][j]=xtemp_[i][j+k]; } } ioffp=ioff0+k*8; for(i=1; i<9; ++i) { for(j=0; j<k; ++j) { temp2dx_[i+ioffp][j] = 0.f; } for(j=0; j<BSXSIZE-k; ++j) { temp2dx_[i+ioffp][j+k]=xtemp_[i][j]; } } } nxbins = nxbins_; return; } // End xtemp3d_int
float SiStripTemplate::xxratio | ( | ) | [inline] |
fractional distance in x between cotalpha templates
Definition at line 203 of file SiStripTemplate.h.
References xxratio_.
float SiStripTemplate::yratio | ( | ) | [inline] |
fractional distance in y between cotbeta templates
Definition at line 201 of file SiStripTemplate.h.
References yratio_.
float SiStripTemplate::ysize | ( | ) | [inline] |
float SiStripTemplate::yxratio | ( | ) | [inline] |
fractional distance in y between cotalpha templates slices
Definition at line 202 of file SiStripTemplate.h.
References yxratio_.
float SiStripTemplate::zsize | ( | ) | [inline] |
strip z-size or thickness (microns)
Definition at line 324 of file SiStripTemplate.h.
References zsize_.
float SiStripTemplate::abs_cotb_ [private] |
absolute value of cot beta
Definition at line 337 of file SiStripTemplate.h.
float SiStripTemplate::chi2xavg_[4] [private] |
average x chi^2 in 4 charge bins
Definition at line 377 of file SiStripTemplate.h.
Referenced by chi2xavg().
float SiStripTemplate::chi2xavgc2m_[4] [private] |
1st pass chi2 min search: average x-chisq for merged clusters
Definition at line 379 of file SiStripTemplate.h.
Referenced by chi2xavgc2m().
float SiStripTemplate::chi2xavgone_ [private] |
average x chi^2 for 1 strip clusters
Definition at line 385 of file SiStripTemplate.h.
Referenced by chi2xavgone().
float SiStripTemplate::chi2xmin_[4] [private] |
minimum of x chi^2 in 4 charge bins
Definition at line 378 of file SiStripTemplate.h.
Referenced by chi2xmin().
float SiStripTemplate::chi2xminc2m_[4] [private] |
1st pass chi2 min search: minimum x-chisq for merged clusters
Definition at line 380 of file SiStripTemplate.h.
Referenced by chi2xminc2m().
float SiStripTemplate::chi2xminone_ [private] |
minimum of x chi^2 for 1 strip clusters
Definition at line 386 of file SiStripTemplate.h.
Referenced by chi2xminone().
float SiStripTemplate::clslenx_ [private] |
x-cluster length of smaller interpolated template in strips
Definition at line 355 of file SiStripTemplate.h.
Referenced by clslenx().
float SiStripTemplate::cota_current_ [private] |
current cot alpha
Definition at line 335 of file SiStripTemplate.h.
Referenced by SiStripTemplate().
float SiStripTemplate::cotb_current_ [private] |
float SiStripTemplate::dxone_ [private] |
mean offset/correction for one strip x-clusters
Definition at line 350 of file SiStripTemplate.h.
Referenced by dxone().
float SiStripTemplate::dxtwo_ [private] |
mean offset/correction for one double-strip x-clusters
Definition at line 352 of file SiStripTemplate.h.
int SiStripTemplate::id_current_ [private] |
int SiStripTemplate::index_id_ [private] |
float SiStripTemplate::kappavav2_ [private] |
kappa parameter for 2-cluster Vavilov distribution
Definition at line 393 of file SiStripTemplate.h.
float SiStripTemplate::kappavav_ [private] |
kappa parameter for Vavilov distribution
Definition at line 390 of file SiStripTemplate.h.
Referenced by kappavav().
float SiStripTemplate::lorxwidth_ [private] |
float SiStripTemplate::mpvvav2_ [private] |
most probable charge in 2-cluster Vavilov distribution (not actually for larger kappa)
Definition at line 391 of file SiStripTemplate.h.
float SiStripTemplate::mpvvav_ [private] |
most probable charge in Vavilov distribution (not actually for larger kappa)
Definition at line 388 of file SiStripTemplate.h.
Referenced by mpvvav().
float SiStripTemplate::nxbins_ [private] |
number of bins in each dimension of the x-splitting template
Definition at line 399 of file SiStripTemplate.h.
float SiStripTemplate::pixmax_ [private] |
maximum strip charge
Definition at line 344 of file SiStripTemplate.h.
float SiStripTemplate::qavg_ [private] |
average cluster charge for this set of track angles
Definition at line 343 of file SiStripTemplate.h.
Referenced by qavg().
float SiStripTemplate::qavg_avg_ [private] |
average of cluster charge less than qavg
Definition at line 398 of file SiStripTemplate.h.
float SiStripTemplate::qmin2_ [private] |
tighter minimum cluster charge for valid hit (keeps 99.8% of simulated hits)
Definition at line 387 of file SiStripTemplate.h.
Referenced by qmin().
float SiStripTemplate::qmin_ [private] |
minimum cluster charge for valid hit (keeps 99.9% of simulated hits)
Definition at line 354 of file SiStripTemplate.h.
Referenced by qmin().
float SiStripTemplate::qscale_ [private] |
float SiStripTemplate::s50_ [private] |
1/2 of the strip threshold signal in adc units
Definition at line 346 of file SiStripTemplate.h.
Referenced by s50().
float SiStripTemplate::sigmavav2_ [private] |
"sigma" scale fctor for 2-cluster Vavilov distribution
Definition at line 392 of file SiStripTemplate.h.
float SiStripTemplate::sigmavav_ [private] |
"sigma" scale fctor for Vavilov distribution
Definition at line 389 of file SiStripTemplate.h.
Referenced by sigmavav().
bool SiStripTemplate::success_ [private] |
true if cotalpha, cotbeta are inside of the acceptance (dynamically loaded)
Definition at line 338 of file SiStripTemplate.h.
float SiStripTemplate::sxmax_ [private] |
average strip signal for x-projection of cluster
Definition at line 347 of file SiStripTemplate.h.
Referenced by sxmax().
float SiStripTemplate::sxone_ [private] |
rms for one strip x-clusters
Definition at line 351 of file SiStripTemplate.h.
Referenced by sxone().
float SiStripTemplate::sxparmax_ [private] |
maximum strip signal for parameterization of x uncertainties
Definition at line 348 of file SiStripTemplate.h.
float SiStripTemplate::sxtwo_ [private] |
rms for one double-strip x-clusters
Definition at line 353 of file SiStripTemplate.h.
float SiStripTemplate::syparmax_ [private] |
maximum strip signal for parameterization of y-slice x uncertainties
Definition at line 349 of file SiStripTemplate.h.
boost::multi_array<float,2> SiStripTemplate::temp2dx_ [private] |
2d-primitive for spltting 3-d template
Definition at line 400 of file SiStripTemplate.h.
std::vector< SiStripTemplateStore > SiStripTemplate::theStripTemp_ [private] |
Definition at line 405 of file SiStripTemplate.h.
float SiStripTemplate::xavg_[4] [private] |
average x-bias of reconstruction binned in 4 charge bins
Definition at line 365 of file SiStripTemplate.h.
Referenced by xavg().
float SiStripTemplate::xavgbcn_[4] [private] |
barycenter: average x-bias of reconstruction binned in 4 charge bins
Definition at line 381 of file SiStripTemplate.h.
Referenced by xavgbcn().
float SiStripTemplate::xavgc2m_[4] [private] |
1st pass chi2 min search: average x-bias of reconstruction binned in 4 charge bins
Definition at line 373 of file SiStripTemplate.h.
Referenced by xavgc2m().
float SiStripTemplate::xflparhh_[4][6] [private] |
Aqfl-parameterized x-correction in 4 charge bins for larger cotbeta, cotalpha.
Definition at line 372 of file SiStripTemplate.h.
float SiStripTemplate::xflparhl_[4][6] [private] |
Aqfl-parameterized x-correction in 4 charge bins for larger cotbeta, smaller cotalpha.
Definition at line 371 of file SiStripTemplate.h.
float SiStripTemplate::xflparlh_[4][6] [private] |
Aqfl-parameterized x-correction in 4 charge bins for smaller cotbeta, larger cotalpha.
Definition at line 370 of file SiStripTemplate.h.
float SiStripTemplate::xflparll_[4][6] [private] |
Aqfl-parameterized x-correction in 4 charge bins for smaller cotbeta, cotalpha.
Definition at line 369 of file SiStripTemplate.h.
float SiStripTemplate::xgsig_[4] [private] |
sigma from Gaussian fit binned in 4 charge bins
Definition at line 368 of file SiStripTemplate.h.
Referenced by xgsig().
float SiStripTemplate::xgsigbcn_[4] [private] |
barycenter: average x-rms of reconstruction binned in 4 charge bins
Definition at line 384 of file SiStripTemplate.h.
Referenced by xgsigbcn().
float SiStripTemplate::xgsigc2m_[4] [private] |
1st pass chi2 min search: average x-rms of reconstruction binned in 4 charge bins
Definition at line 376 of file SiStripTemplate.h.
Referenced by xgsigc2m().
float SiStripTemplate::xgx0_[4] [private] |
average x0 from Gaussian fit binned in 4 charge bins
Definition at line 367 of file SiStripTemplate.h.
Referenced by xgx0().
float SiStripTemplate::xgx0bcn_[4] [private] |
barycenter: average x-bias of reconstruction binned in 4 charge bins
Definition at line 383 of file SiStripTemplate.h.
Referenced by xgx0bcn().
float SiStripTemplate::xgx0c2m_[4] [private] |
1st pass chi2 min search: average x-bias of reconstruction binned in 4 charge bins
Definition at line 375 of file SiStripTemplate.h.
Referenced by xgx0c2m().
float SiStripTemplate::xpar0_[2][5] [private] |
projected x-strip uncertainty parameterization for central cotalpha
Definition at line 361 of file SiStripTemplate.h.
float SiStripTemplate::xparh_[2][5] [private] |
projected x-strip uncertainty parameterization for larger cotalpha
Definition at line 363 of file SiStripTemplate.h.
float SiStripTemplate::xparhy0_[2][5] [private] |
projected x-strip uncertainty parameterization for larger cotbeta (central alpha)
Definition at line 357 of file SiStripTemplate.h.
float SiStripTemplate::xparl_[2][5] [private] |
projected x-strip uncertainty parameterization for smaller cotalpha
Definition at line 362 of file SiStripTemplate.h.
float SiStripTemplate::xparly0_[2][5] [private] |
projected x-strip uncertainty parameterization for smaller cotbeta (central alpha)
Definition at line 356 of file SiStripTemplate.h.
float SiStripTemplate::xrms_[4] [private] |
average x-rms of reconstruction binned in 4 charge bins
Definition at line 366 of file SiStripTemplate.h.
Referenced by xrms().
float SiStripTemplate::xrmsbcn_[4] [private] |
barycenter: average x-rms of reconstruction binned in 4 charge bins
Definition at line 382 of file SiStripTemplate.h.
Referenced by xrmsbcn().
float SiStripTemplate::xrmsc2m_[4] [private] |
1st pass chi2 min search: average x-rms of reconstruction binned in 4 charge bins
Definition at line 374 of file SiStripTemplate.h.
Referenced by xrmsc2m().
float SiStripTemplate::xsize_ [private] |
float SiStripTemplate::xtemp_[9][BSXSIZE] [private] |
templates for x-reconstruction (binned over 5 central strips)
Definition at line 364 of file SiStripTemplate.h.
float SiStripTemplate::xxratio_ [private] |
fractional distance in x between cotalpha templates
Definition at line 360 of file SiStripTemplate.h.
Referenced by xxratio().
float SiStripTemplate::yratio_ [private] |
fractional distance in y between y-slices of cotbeta templates
Definition at line 358 of file SiStripTemplate.h.
Referenced by yratio().
float SiStripTemplate::ysize_ [private] |
float SiStripTemplate::yxratio_ [private] |
fractional distance in y between x-slices of cotalpha templates
Definition at line 359 of file SiStripTemplate.h.
Referenced by yxratio().
float SiStripTemplate::zsize_ [private] |