#include <HelixArbitraryPlaneCrossing2Order.h>
Public Types | |
typedef Basic3DVector< double > | DirectionTypeDouble |
typedef Basic3DVector< double > | PositionTypeDouble |
Public Member Functions | |
virtual DirectionType | direction (double s) const |
DirectionTypeDouble | directionInDouble (double s) const |
HelixArbitraryPlaneCrossing2Order (const double &x0, const double &y0, const double &z0, const double &cosPhi0, const double &sinPhi0, const double &cosTheta, const double &sinTheta, const double &rho, const PropagationDirection propDir=alongMomentum) | |
HelixArbitraryPlaneCrossing2Order (const PositionType &point, const DirectionType &direction, const float curvature, const PropagationDirection propDir=alongMomentum) | |
virtual std::pair< bool, double > | pathLength (const Plane &) |
virtual PositionType | position (double s) const |
PositionTypeDouble | positionInDouble (double s) const |
double | smallestPathLength (const double firstPathLength, const double secondPathLength) const |
virtual | ~HelixArbitraryPlaneCrossing2Order () |
Private Member Functions | |
std::pair< bool, double > | solutionByDirection (const double dS1, const double dS2) const dso_internal |
Private Attributes | |
double | theCosPhi0 |
double | theCosTheta |
const PropagationDirection | thePropDir |
const double | theRho |
double | theSinPhi0 |
double | theSinThetaI |
const double | theX0 |
const double | theY0 |
const double | theZ0 |
Calculates intersections of a helix with planes of any orientation using a parabolic approximation.
Definition at line 10 of file HelixArbitraryPlaneCrossing2Order.h.
typedef Basic3DVector<double> HelixArbitraryPlaneCrossing2Order::DirectionTypeDouble |
Definition at line 53 of file HelixArbitraryPlaneCrossing2Order.h.
typedef Basic3DVector<double> HelixArbitraryPlaneCrossing2Order::PositionTypeDouble |
Definition at line 52 of file HelixArbitraryPlaneCrossing2Order.h.
HelixArbitraryPlaneCrossing2Order::HelixArbitraryPlaneCrossing2Order | ( | const PositionType & | point, |
const DirectionType & | direction, | ||
const float | curvature, | ||
const PropagationDirection | propDir = alongMomentum |
||
) |
Constructor using point, direction and (transverse!) curvature.
Definition at line 10 of file HelixArbitraryPlaneCrossing2Order.cc.
References p2, mathSSE::sqrt(), theCosPhi0, theCosTheta, theSinPhi0, theSinThetaI, Basic3DVector< T >::x(), Basic3DVector< T >::y(), and Basic3DVector< T >::z().
: theX0(point.x()), theY0(point.y()), theZ0(point.z()), theRho(curvature), thePropDir(propDir) { // // Components of direction vector (with correct normalisation) // double px = direction.x(); double py = direction.y(); double pz = direction.z(); double pt2 = px*px+py*py; double p2 = pt2+pz*pz; double pI = 1./sqrt(p2); double ptI = 1./sqrt(pt2); theCosPhi0 = px*ptI; theSinPhi0 = py*ptI; theCosTheta = pz*pI; theSinThetaI = p2*pI*ptI; // (1/(pt/p)) = p/pt = p*ptI and p = p2/p = p2*pI }
HelixArbitraryPlaneCrossing2Order::HelixArbitraryPlaneCrossing2Order | ( | const double & | x0, |
const double & | y0, | ||
const double & | z0, | ||
const double & | cosPhi0, | ||
const double & | sinPhi0, | ||
const double & | cosTheta, | ||
const double & | sinTheta, | ||
const double & | rho, | ||
const PropagationDirection | propDir = alongMomentum |
||
) | [inline] |
Fast constructor (for use by HelixArbitraryPlaneCrossing).
Definition at line 22 of file HelixArbitraryPlaneCrossing2Order.h.
: theX0(x0), theY0(y0), theZ0(z0), theCosPhi0(cosPhi0), theSinPhi0(sinPhi0), theCosTheta(cosTheta), theSinThetaI(1./sinTheta), theRho(rho), thePropDir(propDir) {}
virtual HelixArbitraryPlaneCrossing2Order::~HelixArbitraryPlaneCrossing2Order | ( | ) | [inline, virtual] |
Definition at line 34 of file HelixArbitraryPlaneCrossing2Order.h.
{}
HelixPlaneCrossing::DirectionType HelixArbitraryPlaneCrossing2Order::direction | ( | double | s | ) | const [virtual] |
Direction at pathlength s from the starting point.
Implements HelixPlaneCrossing.
Definition at line 122 of file HelixArbitraryPlaneCrossing2Order.cc.
References dir, directionInDouble(), Basic3DVector< T >::x(), Basic3DVector< T >::y(), and Basic3DVector< T >::z().
{ // use double precision result DirectionTypeDouble dir = directionInDouble(s); return DirectionType(dir.x(),dir.y(),dir.z()); }
HelixArbitraryPlaneCrossing2Order::DirectionTypeDouble HelixArbitraryPlaneCrossing2Order::directionInDouble | ( | double | s | ) | const |
Direction at pathlength s from the starting point in double precision.
Definition at line 131 of file HelixArbitraryPlaneCrossing2Order.cc.
References theCosPhi0, theCosTheta, theRho, theSinPhi0, and theSinThetaI.
Referenced by direction(), and HelixArbitraryPlaneCrossing::directionInDouble().
{ // based on delta phi double dph = s*theRho/theSinThetaI; return DirectionTypeDouble(theCosPhi0-(theSinPhi0+0.5*dph*theCosPhi0)*dph, theSinPhi0+(theCosPhi0-0.5*dph*theSinPhi0)*dph, theCosTheta*theSinThetaI); }
std::pair< bool, double > HelixArbitraryPlaneCrossing2Order::pathLength | ( | const Plane & | plane | ) | [virtual] |
Propagation status (true if valid) and (signed) path length along the helix from the starting point to the plane. The starting point is given in the constructor.
Implements HelixPlaneCrossing.
Definition at line 40 of file HelixArbitraryPlaneCrossing2Order.cc.
References alignCSCRings::e, likely, Plane::localZ(), Plane::normalVector(), solutionByDirection(), mathSSE::sqrt(), theCosPhi0, theCosTheta, theRho, theSinPhi0, theSinThetaI, theX0, theY0, theZ0, PV3DBase< T, PVType, FrameType >::x(), PV3DBase< T, PVType, FrameType >::y(), and PV3DBase< T, PVType, FrameType >::z().
Referenced by HelixArbitraryPlaneCrossing::pathLength().
{ // // get local z-vector in global co-ordinates and // distance to starting point // GlobalVector normalToPlane = plane.normalVector(); double nPx = normalToPlane.x(); double nPy = normalToPlane.y(); double nPz = normalToPlane.z(); double cP = plane.localZ(GlobalPoint(theX0,theY0,theZ0)); // // coefficients of 2nd order equation to obtain intersection point // in approximation (without curvature-related factors). // double ceq1 = theRho*(nPx*theSinPhi0-nPy*theCosPhi0); double ceq2 = nPx*theCosPhi0 + nPy*theSinPhi0 + nPz*theCosTheta*theSinThetaI; double ceq3 = cP; // // Check for degeneration to linear equation (zero // curvature, forward plane or direction perp. to plane) // double dS1,dS2; if likely( fabs(ceq1)>FLT_MIN ) { double deq1 = ceq2*ceq2; double deq2 = ceq1*ceq3; if ( fabs(deq1)<FLT_MIN || fabs(deq2/deq1)>1.e-6 ) { // // Standard solution for quadratic equations // double deq = deq1+2*deq2; if likely( deq<0. ) return std::pair<bool,double>(false,0); double ceq = -0.5*(ceq2+(ceq2>0?1:-1)*sqrt(deq)); dS1 = -2*(ceq/ceq1)*theSinThetaI; dS2 = (ceq3/ceq)*theSinThetaI; } else { // // Solution by expansion of sqrt(1+deq) // double ceq = (ceq2/ceq1)*theSinThetaI; double deq = deq2/deq1; deq *= (1-0.5*deq); dS1 = -ceq*deq; dS2 = ceq*(2+deq); } } else { // // Special case: linear equation // dS1 = dS2 = -(ceq3/ceq2)*theSinThetaI; } // // Choose and return solution // return solutionByDirection(dS1,dS2); }
HelixPlaneCrossing::PositionType HelixArbitraryPlaneCrossing2Order::position | ( | double | s | ) | const [virtual] |
Position at pathlength s from the starting point.
Implements HelixPlaneCrossing.
Definition at line 102 of file HelixArbitraryPlaneCrossing2Order.cc.
References pos, positionInDouble(), Basic3DVector< T >::x(), Basic3DVector< T >::y(), and Basic3DVector< T >::z().
{ // use double precision result PositionTypeDouble pos = positionInDouble(s); return PositionType(pos.x(),pos.y(),pos.z()); }
HelixArbitraryPlaneCrossing2Order::PositionTypeDouble HelixArbitraryPlaneCrossing2Order::positionInDouble | ( | double | s | ) | const |
Position at pathlength s from the starting point in double precision.
Definition at line 111 of file HelixArbitraryPlaneCrossing2Order.cc.
References theCosPhi0, theCosTheta, theRho, theSinPhi0, theSinThetaI, theX0, theY0, and theZ0.
Referenced by position(), and HelixArbitraryPlaneCrossing::positionInDouble().
{ // based on path length in the transverse plane double st = s/theSinThetaI; return PositionTypeDouble(theX0+(theCosPhi0-(st*0.5*theRho)*theSinPhi0)*st, theY0+(theSinPhi0+(st*0.5*theRho)*theCosPhi0)*st, theZ0+st*theCosTheta*theSinThetaI); }
double HelixArbitraryPlaneCrossing2Order::smallestPathLength | ( | const double | firstPathLength, |
const double | secondPathLength | ||
) | const [inline] |
Pathlength to closest solution.
Definition at line 65 of file HelixArbitraryPlaneCrossing2Order.h.
Referenced by solutionByDirection().
{
return fabs(firstPathLength)<fabs(secondPathLength) ? firstPathLength : secondPathLength;
}
std::pair< bool, double > HelixArbitraryPlaneCrossing2Order::solutionByDirection | ( | const double | dS1, |
const double | dS2 | ||
) | const [private] |
Choice of one of two solutions according to the propagation direction.
Definition at line 142 of file HelixArbitraryPlaneCrossing2Order.cc.
References alongMomentum, anyDirection, printConversionInfo::aux, getHLTPrescaleColumns::path, indexGen::s2, smallestPathLength(), thePropDir, and TrackValidation_HighPurity_cff::valid.
Referenced by pathLength().
{ bool valid = false; double path = 0; if ( thePropDir == anyDirection ) { valid = true; path = smallestPathLength(dS1,dS2); } else { // use same logic for both directions (invert if necessary) double propSign = thePropDir==alongMomentum ? 1 : -1; double s1(propSign*dS1); double s2(propSign*dS2); // sort if ( s1 > s2 ) { double aux = s1; s1 = s2; s2 = aux; } // choose solution (if any with positive sign) if ( s1<0 && s2>=0 ) { // First solution in backward direction: choose second one. valid = true; path = propSign*s2; } else if ( s1>=0 ) { // First solution in forward direction: choose it (s2 is further away!). valid = true; path = propSign*s1; } } return std::pair<bool,double>(valid,path); }
double HelixArbitraryPlaneCrossing2Order::theCosPhi0 [private] |
Definition at line 78 of file HelixArbitraryPlaneCrossing2Order.h.
Referenced by directionInDouble(), HelixArbitraryPlaneCrossing2Order(), pathLength(), and positionInDouble().
double HelixArbitraryPlaneCrossing2Order::theCosTheta [private] |
Definition at line 79 of file HelixArbitraryPlaneCrossing2Order.h.
Referenced by directionInDouble(), HelixArbitraryPlaneCrossing2Order(), pathLength(), and positionInDouble().
const PropagationDirection HelixArbitraryPlaneCrossing2Order::thePropDir [private] |
Definition at line 81 of file HelixArbitraryPlaneCrossing2Order.h.
Referenced by solutionByDirection().
const double HelixArbitraryPlaneCrossing2Order::theRho [private] |
Definition at line 80 of file HelixArbitraryPlaneCrossing2Order.h.
Referenced by directionInDouble(), pathLength(), and positionInDouble().
double HelixArbitraryPlaneCrossing2Order::theSinPhi0 [private] |
Definition at line 78 of file HelixArbitraryPlaneCrossing2Order.h.
Referenced by directionInDouble(), HelixArbitraryPlaneCrossing2Order(), pathLength(), and positionInDouble().
double HelixArbitraryPlaneCrossing2Order::theSinThetaI [private] |
Definition at line 79 of file HelixArbitraryPlaneCrossing2Order.h.
Referenced by directionInDouble(), HelixArbitraryPlaneCrossing2Order(), pathLength(), and positionInDouble().
const double HelixArbitraryPlaneCrossing2Order::theX0 [private] |
Definition at line 77 of file HelixArbitraryPlaneCrossing2Order.h.
Referenced by pathLength(), and positionInDouble().
const double HelixArbitraryPlaneCrossing2Order::theY0 [private] |
Definition at line 77 of file HelixArbitraryPlaneCrossing2Order.h.
Referenced by pathLength(), and positionInDouble().
const double HelixArbitraryPlaneCrossing2Order::theZ0 [private] |
Definition at line 77 of file HelixArbitraryPlaneCrossing2Order.h.
Referenced by pathLength(), and positionInDouble().