CMS 3D CMS Logo

Public Types | Public Member Functions | Private Attributes

CSCSegAlgoPreClustering Class Reference

#include <CSCSegAlgoPreClustering.h>

List of all members.

Public Types

typedef std::vector< const
CSCRecHit2D * > 
ChamberHitContainer

Public Member Functions

std::vector< std::vector
< const CSCRecHit2D * > > 
clusterHits (const CSCChamber *aChamber, ChamberHitContainer rechits)
 clusterize
 CSCSegAlgoPreClustering (const edm::ParameterSet &ps)
 constructor
 ~CSCSegAlgoPreClustering ()
 destructor

Private Attributes

bool debug
double dXclusBoxMax
double dYclusBoxMax
float err_x
float err_y
float mean_x
float mean_y
const CSCChambertheChamber

Detailed Description

Definition at line 20 of file CSCSegAlgoPreClustering.h.


Member Typedef Documentation

Definition at line 24 of file CSCSegAlgoPreClustering.h.


Constructor & Destructor Documentation

CSCSegAlgoPreClustering::CSCSegAlgoPreClustering ( const edm::ParameterSet ps) [explicit]

constructor

Definition at line 31 of file CSCSegAlgoPreClustering.cc.

References debug, dXclusBoxMax, dYclusBoxMax, edm::ParameterSet::getParameter(), and edm::ParameterSet::getUntrackedParameter().

                                                                          {
  dXclusBoxMax           = ps.getParameter<double>("dXclusBoxMax");
  dYclusBoxMax           = ps.getParameter<double>("dYclusBoxMax");
  debug                  = ps.getUntrackedParameter<bool>("CSCSegmentDebug");
}
CSCSegAlgoPreClustering::~CSCSegAlgoPreClustering ( )

destructor

Definition at line 41 of file CSCSegAlgoPreClustering.cc.

                                                 {

}

Member Function Documentation

std::vector< std::vector< const CSCRecHit2D * > > CSCSegAlgoPreClustering::clusterHits ( const CSCChamber aChamber,
ChamberHitContainer  rechits 
)

clusterize

Definition at line 50 of file CSCSegAlgoPreClustering.cc.

References begin, gather_cfg::cout, dXclusBoxMax, dYclusBoxMax, end, err_x, err_y, i, mean_x, mean_y, findQualityFiles::size, groupFilesInBlocks::temp, theChamber, x, and detailsBasic3DVector::y.

Referenced by CSCSegAlgoDF::run().

                                                                                             {

  theChamber = aChamber;

  std::vector<ChamberHitContainer> rechits_clusters; // this is a collection of groups of rechits

  //float dXclus = 0.0;
  //float dYclus = 0.0;
  float dXclus_box = 0.0;
  float dYclus_box = 0.0;

  std::vector<const CSCRecHit2D*> temp;

  std::vector< ChamberHitContainer > seeds;

  std::vector<float> running_meanX;
  std::vector<float> running_meanY;

  std::vector<float> seed_minX;
  std::vector<float> seed_maxX;
  std::vector<float> seed_minY;
  std::vector<float> seed_maxY;

  // split rechits into subvectors and return vector of vectors:
  // Loop over rechits 
  // Create one seed per hit
    for(unsigned int i = 0; i < rechits.size(); ++i) {

        temp.clear();

        temp.push_back(rechits[i]);

        seeds.push_back(temp);

        // First added hit in seed defines the mean to which the next hit is compared
        // for this seed.

        running_meanX.push_back( rechits[i]->localPosition().x() );
        running_meanY.push_back( rechits[i]->localPosition().y() );
        
        // set min/max X and Y for box containing the hits in the precluster:
        seed_minX.push_back( rechits[i]->localPosition().x() );
        seed_maxX.push_back( rechits[i]->localPosition().x() );
        seed_minY.push_back( rechits[i]->localPosition().y() );
        seed_maxY.push_back( rechits[i]->localPosition().y() );
    }
    
    // merge clusters that are too close
    // measure distance between final "running mean"
      for(size_t NNN = 0; NNN < seeds.size(); ++NNN) {
        
        for(size_t MMM = NNN+1; MMM < seeds.size(); ++MMM) {
          if(running_meanX[MMM] == 999999. || running_meanX[NNN] == 999999. ) {
            std::cout<<"We should never see this line now!!!"<<std::endl;
            continue; //skip seeds that have been used 
          }
          
          // calculate cut criteria for simple running mean distance cut:
          //dXclus = fabs(running_meanX[NNN] - running_meanX[MMM]);
          //dYclus = fabs(running_meanY[NNN] - running_meanY[MMM]);

          // calculate minmal distance between precluster boxes containing the hits:
          if ( running_meanX[NNN] > running_meanX[MMM] ) dXclus_box = seed_minX[NNN] - seed_maxX[MMM];
          else                                           dXclus_box = seed_minX[MMM] - seed_maxX[NNN];
          if ( running_meanY[NNN] > running_meanY[MMM] ) dYclus_box = seed_minY[NNN] - seed_maxY[MMM];
          else                                           dYclus_box = seed_minY[MMM] - seed_maxY[NNN];
          
          
          if( dXclus_box < dXclusBoxMax && dYclus_box < dYclusBoxMax ) {
            // merge clusters!
            // merge by adding seed NNN to seed MMM and erasing seed NNN
            
            // calculate running mean for the merged seed:
            running_meanX[MMM] = (running_meanX[NNN]*seeds[NNN].size() + running_meanX[MMM]*seeds[MMM].size()) / (seeds[NNN].size()+seeds[MMM].size());
            running_meanY[MMM] = (running_meanY[NNN]*seeds[NNN].size() + running_meanY[MMM]*seeds[MMM].size()) / (seeds[NNN].size()+seeds[MMM].size());
            
            // update min/max X and Y for box containing the hits in the merged cluster:
            if ( seed_minX[NNN] <= seed_minX[MMM] ) seed_minX[MMM] = seed_minX[NNN];
            if ( seed_maxX[NNN] >  seed_maxX[MMM] ) seed_maxX[MMM] = seed_maxX[NNN];
            if ( seed_minY[NNN] <= seed_minY[MMM] ) seed_minY[MMM] = seed_minY[NNN];
            if ( seed_maxY[NNN] >  seed_maxY[MMM] ) seed_maxY[MMM] = seed_maxY[NNN];
            
            // add seed NNN to MMM (lower to larger number)
            seeds[MMM].insert(seeds[MMM].end(),seeds[NNN].begin(),seeds[NNN].end());
            
            // mark seed NNN as used (at the moment just set running mean to 999999.)
            running_meanX[NNN] = 999999.;
            running_meanY[NNN] = 999999.;
            // we have merged a seed (NNN) to the highter seed (MMM) - need to contimue to 
            // next seed (NNN+1)
            break;
          }

        }
      }

      // hand over the final seeds to the output
      // would be more elegant if we could do the above step with 
      // erasing the merged ones, rather than the 
      for(size_t NNN = 0; NNN < seeds.size(); ++NNN) {
        if (running_meanX[NNN] == 999999.) continue; //skip seeds that have been marked as used up in merging
        rechits_clusters.push_back(seeds[NNN]);
        mean_x = running_meanX[NNN];
        mean_y = running_meanY[NNN];
        err_x  = (seed_maxX[NNN]-seed_minX[NNN])/3.464101615; // use box size divided by sqrt(12) as position error estimate
        err_y  = (seed_maxY[NNN]-seed_minY[NNN])/3.464101615; // use box size divided by sqrt(12) as position error estimate

      }

  return rechits_clusters; 
}

Member Data Documentation

Definition at line 36 of file CSCSegAlgoPreClustering.h.

Referenced by CSCSegAlgoPreClustering().

Definition at line 37 of file CSCSegAlgoPreClustering.h.

Referenced by clusterHits(), and CSCSegAlgoPreClustering().

Definition at line 38 of file CSCSegAlgoPreClustering.h.

Referenced by clusterHits(), and CSCSegAlgoPreClustering().

Definition at line 40 of file CSCSegAlgoPreClustering.h.

Referenced by clusterHits().

Definition at line 40 of file CSCSegAlgoPreClustering.h.

Referenced by clusterHits().

Definition at line 40 of file CSCSegAlgoPreClustering.h.

Referenced by clusterHits().

Definition at line 40 of file CSCSegAlgoPreClustering.h.

Referenced by clusterHits().

Definition at line 41 of file CSCSegAlgoPreClustering.h.

Referenced by clusterHits().