#include <MuonAlignmentAnalyzer.h>
MuonAlignment offline Monitor Analyzer Makes histograms of high level Muon objects/quantities for Alignment Scenarios/DB comparison
Definition at line 40 of file MuonAlignmentAnalyzer.h.
MuonAlignmentAnalyzer::MuonAlignmentAnalyzer | ( | const edm::ParameterSet & | pset | ) |
Constructor.
Definition at line 50 of file MuonAlignmentAnalyzer.cc.
References doGBplots, doResplots, doSAplots, edm::ParameterSet::getParameter(), edm::ParameterSet::getUntrackedParameter(), invMassRangeMax, invMassRangeMin, min1DTrackRecHitSize, min4DTrackSegmentSize, nbins, numberOfGBRecTracks, numberOfHits, numberOfSARecTracks, numberOfSimTracks, ptRangeMax, ptRangeMin, resLocalXRangeStation1, resLocalXRangeStation2, resLocalXRangeStation3, resLocalXRangeStation4, resLocalYRangeStation1, resLocalYRangeStation2, resLocalYRangeStation3, resLocalYRangeStation4, resPhiRange, resThetaRange, theDataType, theGLBMuonTag, theRecHits4DTagCSC, theRecHits4DTagDT, and theSTAMuonTag.
: hGBNmuons(0), hSANmuons(0), hSimNmuons(0), hGBNmuons_Barrel(0), hSANmuons_Barrel(0), hSimNmuons_Barrel(0), hGBNmuons_Endcap(0), hSANmuons_Endcap(0), hSimNmuons_Endcap(0), hGBNhits(0), hGBNhits_Barrel(0), hGBNhits_Endcap(0), hSANhits(0), hSANhits_Barrel(0), hSANhits_Endcap(0), hGBChi2(0), hSAChi2(0), hGBChi2_Barrel(0), hSAChi2_Barrel(0), hGBChi2_Endcap(0), hSAChi2_Endcap(0), hGBInvM(0), hSAInvM(0), hSimInvM(0), hGBInvM_Barrel(0), hSAInvM_Barrel(0), hSimInvM_Barrel(0), hGBInvM_Endcap(0), hSAInvM_Endcap(0), hSimInvM_Endcap(0), hGBInvM_Overlap(0), hSAInvM_Overlap(0), hSimInvM_Overlap(0), hSAPTRec(0), hGBPTRec(0), hSimPT(0), hSAPTRec_Barrel(0), hGBPTRec_Barrel(0), hSimPT_Barrel(0), hSAPTRec_Endcap(0), hGBPTRec_Endcap(0), hSimPT_Endcap(0), hGBPTvsEta(0), hGBPTvsPhi(0), hSAPTvsEta(0), hSAPTvsPhi(0), hSimPTvsEta(0), hSimPTvsPhi(0), hSimPhivsEta(0), hSAPhivsEta(0), hGBPhivsEta(0), hSAPTres(0), hSAinvPTres(0), hGBPTres(0), hGBinvPTres(0), hSAPTres_Barrel(0), hSAPTres_Endcap(0), hGBPTres_Barrel(0), hGBPTres_Endcap(0), hSAPTDiff(0), hGBPTDiff(0), hSAPTDiffvsEta(0), hSAPTDiffvsPhi(0), hGBPTDiffvsEta(0), hGBPTDiffvsPhi(0), hGBinvPTvsEta(0), hGBinvPTvsPhi(0), hSAinvPTvsEta(0), hSAinvPTvsPhi(0), hSAinvPTvsNhits(0), hGBinvPTvsNhits(0), hResidualLocalXDT(0), hResidualLocalPhiDT(0), hResidualLocalThetaDT(0), hResidualLocalYDT(0), hResidualLocalXCSC(0), hResidualLocalPhiCSC(0), hResidualLocalThetaCSC(0), hResidualLocalYCSC(0), hResidualLocalXDT_W(5), hResidualLocalPhiDT_W(5), hResidualLocalThetaDT_W(5), hResidualLocalYDT_W(5), hResidualLocalXCSC_ME(18), hResidualLocalPhiCSC_ME(18), hResidualLocalThetaCSC_ME(18), hResidualLocalYCSC_ME(18), hResidualLocalXDT_MB(20), hResidualLocalPhiDT_MB(20), hResidualLocalThetaDT_MB(20), hResidualLocalYDT_MB(20), hResidualGlobalRPhiDT(0), hResidualGlobalPhiDT(0), hResidualGlobalThetaDT(0), hResidualGlobalZDT(0), hResidualGlobalRPhiCSC(0), hResidualGlobalPhiCSC(0), hResidualGlobalThetaCSC(0), hResidualGlobalRCSC(0), hResidualGlobalRPhiDT_W(5), hResidualGlobalPhiDT_W(5), hResidualGlobalThetaDT_W(5), hResidualGlobalZDT_W(5), hResidualGlobalRPhiCSC_ME(18), hResidualGlobalPhiCSC_ME(18), hResidualGlobalThetaCSC_ME(18), hResidualGlobalRCSC_ME(18), hResidualGlobalRPhiDT_MB(20), hResidualGlobalPhiDT_MB(20), hResidualGlobalThetaDT_MB(20), hResidualGlobalZDT_MB(20), hprofLocalPositionCSC(0), hprofLocalAngleCSC(0), hprofLocalPositionRmsCSC(0), hprofLocalAngleRmsCSC(0), hprofGlobalPositionCSC(0), hprofGlobalAngleCSC(0), hprofGlobalPositionRmsCSC(0), hprofGlobalAngleRmsCSC(0), hprofLocalPositionDT(0), hprofLocalAngleDT(0), hprofLocalPositionRmsDT(0), hprofLocalAngleRmsDT(0), hprofGlobalPositionDT(0), hprofGlobalAngleDT(0), hprofGlobalPositionRmsDT(0), hprofGlobalAngleRmsDT(0), hprofLocalXDT(0), hprofLocalPhiDT(0), hprofLocalThetaDT(0), hprofLocalYDT(0), hprofLocalXCSC(0), hprofLocalPhiCSC(0), hprofLocalThetaCSC(0), hprofLocalYCSC(0), hprofGlobalRPhiDT(0), hprofGlobalPhiDT(0), hprofGlobalThetaDT(0), hprofGlobalZDT(0), hprofGlobalRPhiCSC(0), hprofGlobalPhiCSC(0), hprofGlobalThetaCSC(0), hprofGlobalRCSC(0) { theSTAMuonTag = pset.getParameter<edm::InputTag>("StandAloneTrackCollectionTag"); theGLBMuonTag = pset.getParameter<edm::InputTag>("GlobalMuonTrackCollectionTag"); theRecHits4DTagDT = pset.getParameter<edm::InputTag>("RecHits4DDTCollectionTag"); theRecHits4DTagCSC = pset.getParameter<edm::InputTag>("RecHits4DCSCCollectionTag"); theDataType = pset.getUntrackedParameter<std::string>("DataType"); ptRangeMin = pset.getUntrackedParameter<double>("ptRangeMin"); ptRangeMax = pset.getUntrackedParameter<double>("ptRangeMax"); invMassRangeMin = pset.getUntrackedParameter<double>("invMassRangeMin"); invMassRangeMax = pset.getUntrackedParameter<double>("invMassRangeMax"); doSAplots = pset.getUntrackedParameter<bool>("doSAplots"); doGBplots = pset.getUntrackedParameter<bool>("doGBplots"); doResplots = pset.getUntrackedParameter<bool>("doResplots"); resLocalXRangeStation1 = pset.getUntrackedParameter<double>("resLocalXRangeStation1"); resLocalXRangeStation2 = pset.getUntrackedParameter<double>("resLocalXRangeStation2"); resLocalXRangeStation3 = pset.getUntrackedParameter<double>("resLocalXRangeStation3"); resLocalXRangeStation4 = pset.getUntrackedParameter<double>("resLocalXRangeStation4"); resLocalYRangeStation1 = pset.getUntrackedParameter<double>("resLocalYRangeStation1"); resLocalYRangeStation2 = pset.getUntrackedParameter<double>("resLocalYRangeStation2"); resLocalYRangeStation3 = pset.getUntrackedParameter<double>("resLocalYRangeStation3"); resLocalYRangeStation4 = pset.getUntrackedParameter<double>("resLocalYRangeStation4"); resPhiRange = pset.getUntrackedParameter<double>("resPhiRange"); resThetaRange = pset.getUntrackedParameter<double>("resThetaRange"); nbins = pset.getUntrackedParameter<unsigned int>("nbins"); min1DTrackRecHitSize = pset.getUntrackedParameter<unsigned int>("min1DTrackRecHitSize"); min4DTrackSegmentSize = pset.getUntrackedParameter<unsigned int>("min4DTrackSegmentSize"); if(theDataType != "RealData" && theDataType != "SimData") edm::LogError("MuonAlignmentAnalyzer") << "Error in Data Type!!"<<std::endl; numberOfSimTracks=0; numberOfSARecTracks=0; numberOfGBRecTracks=0; numberOfHits=0; }
MuonAlignmentAnalyzer::~MuonAlignmentAnalyzer | ( | ) | [virtual] |
void MuonAlignmentAnalyzer::analyze | ( | const edm::Event & | event, |
const edm::EventSetup & | eventSetup | ||
) | [virtual] |
Implements edm::EDAnalyzer.
Definition at line 1460 of file MuonAlignmentAnalyzer.cc.
References abs, alongMomentum, PV3DBase< T, PVType, FrameType >::barePhi(), barePhi(), PV3DBase< T, PVType, FrameType >::bareTheta(), CSCDetId::chamber(), deltaR(), detectorCollection, doGBplots, doMatching(), doResplots, doSAplots, Reference_intrackfit_cff::endcap, CSCDetId::endcap(), PV3DBase< T, PVType, FrameType >::eta(), TrajectoryStateOnSurface::freeState(), fs, edm::EventSetup::get(), TrajectoryStateOnSurface::globalDirection(), TrajectoryStateOnSurface::hasError(), hGBChi2, hGBChi2_Barrel, hGBChi2_Endcap, hGBInvM, hGBInvM_Barrel, hGBInvM_Endcap, hGBInvM_Overlap, hGBinvPTres, hGBinvPTvsEta, hGBinvPTvsNhits, hGBinvPTvsPhi, hGBNhits, hGBNhits_Barrel, hGBNhits_Endcap, hGBNmuons, hGBNmuons_Barrel, hGBNmuons_Endcap, hGBPhivsEta, hGBPTDiff, hGBPTDiffvsEta, hGBPTDiffvsPhi, hGBPTRec, hGBPTRec_Barrel, hGBPTRec_Endcap, hGBPTres, hGBPTres_Barrel, hGBPTres_Endcap, hGBPTvsEta, hGBPTvsPhi, hResidualGlobalPhiCSC, hResidualGlobalPhiCSC_ME, hResidualGlobalPhiDT, hResidualGlobalPhiDT_MB, hResidualGlobalPhiDT_W, hResidualGlobalRCSC, hResidualGlobalRCSC_ME, hResidualGlobalRPhiCSC, hResidualGlobalRPhiCSC_ME, hResidualGlobalRPhiDT, hResidualGlobalRPhiDT_MB, hResidualGlobalRPhiDT_W, hResidualGlobalThetaCSC, hResidualGlobalThetaCSC_ME, hResidualGlobalThetaDT, hResidualGlobalThetaDT_MB, hResidualGlobalThetaDT_W, hResidualGlobalZDT, hResidualGlobalZDT_MB, hResidualGlobalZDT_W, hResidualLocalPhiCSC, hResidualLocalPhiCSC_ME, hResidualLocalPhiDT, hResidualLocalPhiDT_MB, hResidualLocalPhiDT_W, hResidualLocalThetaCSC, hResidualLocalThetaCSC_ME, hResidualLocalThetaDT, hResidualLocalThetaDT_MB, hResidualLocalThetaDT_W, hResidualLocalXCSC, hResidualLocalXCSC_ME, hResidualLocalXDT, hResidualLocalXDT_MB, hResidualLocalXDT_W, hResidualLocalYCSC, hResidualLocalYCSC_ME, hResidualLocalYDT, hResidualLocalYDT_MB, hResidualLocalYDT_W, hSAChi2, hSAChi2_Barrel, hSAChi2_Endcap, hSAInvM, hSAInvM_Barrel, hSAInvM_Endcap, hSAInvM_Overlap, hSAinvPTres, hSAinvPTvsEta, hSAinvPTvsNhits, hSAinvPTvsPhi, hSANhits, hSANhits_Barrel, hSANhits_Endcap, hSANmuons, hSANmuons_Barrel, hSANmuons_Endcap, hSAPhivsEta, hSAPTDiff, hSAPTDiffvsEta, hSAPTDiffvsPhi, hSAPTRec, hSAPTRec_Barrel, hSAPTRec_Endcap, hSAPTres, hSAPTres_Barrel, hSAPTres_Endcap, hSAPTvsEta, hSAPTvsPhi, hSimInvM, hSimInvM_Barrel, hSimInvM_Endcap, hSimInvM_Overlap, hSimNmuons, hSimNmuons_Barrel, hSimNmuons_Endcap, hSimPhivsEta, hSimPT, hSimPT_Barrel, hSimPT_Endcap, hSimPTvsEta, hSimPTvsPhi, i, getHLTprescales::index, reco::TransientTrack::innermostMeasurementState(), TrajectoryStateOnSurface::isValid(), TrajectoryStateOnSurface::localDirection(), TrajectoryStateOnSurface::localPosition(), PV3DBase< T, PVType, FrameType >::mag(), min1DTrackRecHitSize, min4DTrackSegmentSize, nbins, numberOfGBRecTracks, numberOfHits, numberOfSARecTracks, numberOfSimTracks, p1, p2, PV3DBase< T, PVType, FrameType >::perp(), perp(), position, FreeTrajectoryState::position(), Propagator::propagate(), resLocalXRangeStation1, resLocalXRangeStation2, resLocalXRangeStation3, resLocalXRangeStation4, resLocalYRangeStation1, resLocalYRangeStation2, resLocalYRangeStation3, resLocalYRangeStation4, resPhiRange, resThetaRange, CSCDetId::ring(), relativeConstraints::ring, DTChamberId::sector(), findQualityFiles::size, relativeConstraints::station, CSCDetId::station(), DTChamberId::station(), muonTagProbeFilters_cff::staTracks, SteppingHelixPropagator_cfi::SteppingHelixPropagator, DetId::subdetId(), GeomDet::surface(), theDataType, theGLBMuonTag, thePropagator, theRecHits4DTagCSC, theRecHits4DTagDT, theSTAMuonTag, GeomDet::toGlobal(), unitsGlobalPhi, unitsGlobalRPhi, unitsGlobalRZ, unitsGlobalTheta, unitsLocalPhi, unitsLocalTheta, unitsLocalX, unitsLocalY, DTChamberId::wheel(), PV3DBase< T, PVType, FrameType >::x(), x, PV3DBase< T, PVType, FrameType >::y(), detailsBasic3DVector::y, PV3DBase< T, PVType, FrameType >::z(), and z.
{ GlobalVector p1,p2; std::vector< double > simPar[4] ; //pt,eta,phi,charge // ######### if data= MC, do Simulation Plots##### if(theDataType == "SimData"){ double simEta=0; double simPt=0; double simPhi=0; int i=0, ie=0,ib=0; // Get the SimTrack collection from the event edm::Handle<edm::SimTrackContainer> simTracks; event.getByLabel("g4SimHits",simTracks); edm::SimTrackContainer::const_iterator simTrack; for (simTrack = simTracks->begin(); simTrack != simTracks->end(); ++simTrack){ if (abs((*simTrack).type()) == 13) { i++; simPt=(*simTrack).momentum().Pt(); simEta=(*simTrack).momentum().eta(); simPhi=(*simTrack).momentum().phi(); numberOfSimTracks++; hSimPT->Fill(simPt); if(fabs(simEta)<1.04) {hSimPT_Barrel->Fill(simPt);ib++;} else {hSimPT_Endcap->Fill(simPt);ie++;} hSimPTvsEta->Fill(simEta,simPt); hSimPTvsPhi->Fill(simPhi,simPt); hSimPhivsEta->Fill(simEta,simPhi); simPar[0].push_back(simPt); simPar[1].push_back(simEta); simPar[2].push_back(simPhi); simPar[3].push_back((*simTrack).charge()); // Save the muon pair if(i==1) p1=GlobalVector((*simTrack).momentum().x(),(*simTrack).momentum().y(),(*simTrack).momentum().z()); if(i==2) p2=GlobalVector((*simTrack).momentum().x(),(*simTrack).momentum().y(),(*simTrack).momentum().z()); } } hSimNmuons->Fill(i); hSimNmuons_Barrel->Fill(ib); hSimNmuons_Endcap->Fill(ie); if(i>1){ // Take 2 first muons :-( TLorentzVector mu1(p1.x(), p1.y(), p1.z(), p1.mag()); TLorentzVector mu2(p2.x(), p2.y(), p2.z(), p2.mag()); TLorentzVector pair = mu1 + mu2; double Minv = pair.M(); hSimInvM->Fill(Minv); if(fabs(p1.eta())<1.04 && fabs(p2.eta())<1.04) hSimInvM_Barrel->Fill(Minv); else if(fabs(p1.eta())>=1.04 && fabs(p2.eta())>=1.04) hSimInvM_Endcap->Fill(Minv); else hSimInvM_Overlap->Fill(Minv); } } //simData // ############ Stand Alone Muon plots ############### if(doSAplots){ double SArecPt=0.; double SAeta=0.; double SAphi=0.; int i=0, ie=0,ib=0; double ich=0; // Get the RecTrack collection from the event edm::Handle<reco::TrackCollection> staTracks; event.getByLabel(theSTAMuonTag, staTracks); numberOfSARecTracks += staTracks->size(); reco::TrackCollection::const_iterator staTrack; for (staTrack = staTracks->begin(); staTrack != staTracks->end(); ++staTrack){ i++; SArecPt = (*staTrack).pt(); SAeta = (*staTrack).eta(); SAphi = (*staTrack).phi(); ich= (*staTrack).charge(); hSAPTRec->Fill(SArecPt); hSAPhivsEta->Fill(SAeta,SAphi); hSAChi2->Fill((*staTrack).chi2()); hSANhits->Fill((*staTrack).numberOfValidHits()); if(fabs(SAeta)<1.04) {hSAPTRec_Barrel->Fill(SArecPt); hSAChi2_Barrel->Fill((*staTrack).chi2()); hSANhits_Barrel->Fill((*staTrack).numberOfValidHits()); ib++;} else {hSAPTRec_Endcap->Fill(SArecPt); hSAChi2_Endcap->Fill((*staTrack).chi2()); hSANhits_Endcap->Fill((*staTrack).numberOfValidHits()); ie++;} // save the muon pair if(i==1) p1=GlobalVector((*staTrack).momentum().x(),(*staTrack).momentum().y(),(*staTrack).momentum().z()); if(i==2) p2=GlobalVector((*staTrack).momentum().x(),(*staTrack).momentum().y(),(*staTrack).momentum().z()); if(SArecPt && theDataType == "SimData"){ double candDeltaR= -999.0, dR; int iCand=0; if(simPar[0].size()>0){ for(unsigned int iSim = 0; iSim <simPar[0].size(); iSim++) { dR=deltaR(SAeta,SAphi,simPar[1][iSim],simPar[2][iSim]); if(candDeltaR<0 || dR<candDeltaR) { candDeltaR=dR; iCand=iSim; } }} double simPt=simPar[0][iCand]; hSAPTres->Fill( (SArecPt-simPt)/simPt); if(fabs(SAeta)<1.04) hSAPTres_Barrel->Fill((SArecPt-simPt)/simPt); else hSAPTres_Endcap->Fill((SArecPt-simPt)/simPt); hSAPTDiff->Fill(SArecPt-simPt); hSAPTDiffvsEta->Fill(SAeta,SArecPt-simPt); hSAPTDiffvsPhi->Fill(SAphi,SArecPt-simPt); double ptInvRes= ( ich/SArecPt - simPar[3][iCand]/simPt)/ (simPar[3][iCand]/simPt); hSAinvPTres->Fill( ptInvRes); hSAinvPTvsEta->Fill(SAeta,ptInvRes); hSAinvPTvsPhi->Fill(SAphi,ptInvRes); hSAinvPTvsNhits->Fill((*staTrack).numberOfValidHits(),ptInvRes); } hSAPTvsEta->Fill(SAeta,SArecPt); hSAPTvsPhi->Fill(SAphi,SArecPt); } hSANmuons->Fill(i); hSANmuons_Barrel->Fill(ib); hSANmuons_Endcap->Fill(ie); if(i>1){ // Take 2 first muons :-( TLorentzVector mu1(p1.x(), p1.y(), p1.z(), p1.mag()); TLorentzVector mu2(p2.x(), p2.y(), p2.z(), p2.mag()); TLorentzVector pair = mu1 + mu2; double Minv = pair.M(); hSAInvM->Fill(Minv); if(fabs(p1.eta())<1.04 && fabs(p2.eta())<1.04) hSAInvM_Barrel->Fill(Minv); else if(fabs(p1.eta())>=1.04 && fabs(p2.eta())>=1.04) hSAInvM_Endcap->Fill(Minv); else hSAInvM_Overlap->Fill(Minv); } // 2 first muons }//end doSAplots // ############### Global Muons plots ########## if(doGBplots){ // Get the RecTrack collection from the event edm::Handle<reco::TrackCollection> glbTracks; event.getByLabel(theGLBMuonTag, glbTracks); numberOfGBRecTracks += glbTracks->size(); double GBrecPt = 0; double GBeta = 0; double GBphi = 0; double ich =0; int i=0, ie=0,ib=0; reco::TrackCollection::const_iterator glbTrack; for (glbTrack = glbTracks->begin(); glbTrack != glbTracks->end(); ++glbTrack){ i++; GBrecPt = (*glbTrack).pt(); GBeta = (*glbTrack).eta(); GBphi = (*glbTrack).phi(); ich= (*glbTrack).charge(); hGBPTRec->Fill(GBrecPt); hGBPhivsEta->Fill(GBeta,GBphi); hGBChi2->Fill((*glbTrack).chi2()); hGBNhits->Fill((*glbTrack).numberOfValidHits()); if(fabs(GBeta)<1.04) {hGBPTRec_Barrel->Fill(GBrecPt); hGBChi2_Barrel->Fill((*glbTrack).chi2()); hGBNhits_Barrel->Fill((*glbTrack).numberOfValidHits()); ib++;} else {hGBPTRec_Endcap->Fill(GBrecPt); hGBChi2_Endcap->Fill((*glbTrack).chi2()); hGBNhits_Endcap->Fill((*glbTrack).numberOfValidHits()); ie++;} // save the muon pair if(i==1) p1=GlobalVector((*glbTrack).momentum().x(),(*glbTrack).momentum().y(),(*glbTrack).momentum().z()); if(i==2) p2=GlobalVector((*glbTrack).momentum().x(),(*glbTrack).momentum().y(),(*glbTrack).momentum().z()); if(GBrecPt && theDataType == "SimData"){ double candDeltaR= -999.0, dR; int iCand=0; if(simPar[0].size()>0){ for(unsigned int iSim = 0; iSim <simPar[0].size(); iSim++) { dR=deltaR(GBeta,GBphi,simPar[1][iSim],simPar[2][iSim]); if(candDeltaR<0 || dR<candDeltaR) { candDeltaR=dR; iCand=iSim; } }} double simPt=simPar[0][iCand]; hGBPTres->Fill( (GBrecPt-simPt)/simPt); if(fabs(GBeta)<1.04) hGBPTres_Barrel->Fill((GBrecPt-simPt)/simPt); else hGBPTres_Endcap->Fill((GBrecPt-simPt)/simPt); hGBPTDiff->Fill(GBrecPt-simPt); hGBPTDiffvsEta->Fill(GBeta,GBrecPt-simPt); hGBPTDiffvsPhi->Fill(GBphi,GBrecPt-simPt); double ptInvRes= ( ich/GBrecPt - simPar[3][iCand]/simPt)/ (simPar[3][iCand]/simPt); hGBinvPTres->Fill( ptInvRes); hGBinvPTvsEta->Fill(GBeta,ptInvRes); hGBinvPTvsPhi->Fill(GBphi,ptInvRes); hGBinvPTvsNhits->Fill((*glbTrack).numberOfValidHits(),ptInvRes); } hGBPTvsEta->Fill(GBeta,GBrecPt); hGBPTvsPhi->Fill(GBphi,GBrecPt); } hGBNmuons->Fill(i); hGBNmuons_Barrel->Fill(ib); hGBNmuons_Endcap->Fill(ie); if(i>1){ // Take 2 first muons :-( TLorentzVector mu1(p1.x(), p1.y(), p1.z(), p1.mag()); TLorentzVector mu2(p2.x(), p2.y(), p2.z(), p2.mag()); TLorentzVector pair = mu1 + mu2; double Minv = pair.M(); hGBInvM->Fill(Minv); if(fabs(p1.eta())<1.04 && fabs(p2.eta())<1.04) hGBInvM_Barrel->Fill(Minv); else if(fabs(p1.eta())>=1.04 && fabs(p2.eta())>=1.04) hGBInvM_Endcap->Fill(Minv); else hGBInvM_Overlap->Fill(Minv); } } //end doGBplots // ############ Residual plots ################### if(doResplots){ edm::ESHandle<MagneticField> theMGField; eventSetup.get<IdealMagneticFieldRecord>().get(theMGField); edm::ESHandle<GlobalTrackingGeometry> theTrackingGeometry; eventSetup.get<GlobalTrackingGeometryRecord>().get(theTrackingGeometry); // Get the RecTrack collection from the event edm::Handle<reco::TrackCollection> staTracks; event.getByLabel(theSTAMuonTag, staTracks); // Get the 4D DTSegments edm::Handle<DTRecSegment4DCollection> all4DSegmentsDT; event.getByLabel(theRecHits4DTagDT, all4DSegmentsDT); DTRecSegment4DCollection::const_iterator segmentDT; // Get the 4D CSCSegments edm::Handle<CSCSegmentCollection> all4DSegmentsCSC; event.getByLabel(theRecHits4DTagCSC, all4DSegmentsCSC); CSCSegmentCollection::const_iterator segmentCSC; //Vectors used to perform the matching between Segments and hits from Track intDVector indexCollectionDT; intDVector indexCollectionCSC; /* std::cout << "<MuonAlignmentAnalyzer> List of DTSegments found in Local Reconstruction" << std::endl; std::cout << "Number: " << all4DSegmentsDT->size() << std::endl; for (segmentDT = all4DSegmentsDT->begin(); segmentDT != all4DSegmentsDT->end(); ++segmentDT){ const GeomDet* geomDet = theTrackingGeometry->idToDet((*segmentDT).geographicalId()); std::cout << "<MuonAlignmentAnalyzer> " << geomDet->toGlobal((*segmentDT).localPosition()) << std::endl; std::cout << "<MuonAlignmentAnalyzer> Local " << (*segmentDT).localPosition() << std::endl; } std::cout << "<MuonAlignmentAnalyzer> List of CSCSegments found in Local Reconstruction" << std::endl; for (segmentCSC = all4DSegmentsCSC->begin(); segmentCSC != all4DSegmentsCSC->end(); ++segmentCSC){ const GeomDet* geomDet = theTrackingGeometry->idToDet((*segmentCSC).geographicalId()); std::cout << "<MuonAlignmentAnalyzer>" << geomDet->toGlobal((*segmentCSC).localPosition()) << std::endl; } */ thePropagator = new SteppingHelixPropagator(&*theMGField, alongMomentum); reco::TrackCollection::const_iterator staTrack; for (staTrack = staTracks->begin(); staTrack != staTracks->end(); ++staTrack){ int countPoints = 0; reco::TransientTrack track(*staTrack,&*theMGField,theTrackingGeometry); if(staTrack->numberOfValidHits()>(min1DTrackRecHitSize-1)) { RecHitVector my4DTrack = this->doMatching(*staTrack, all4DSegmentsDT, all4DSegmentsCSC, &indexCollectionDT, &indexCollectionCSC, theTrackingGeometry); //cut in number of segments if(my4DTrack.size()>(min4DTrackSegmentSize-1) ){ // start propagation // TrajectoryStateOnSurface innerTSOS = track.impactPointState(); TrajectoryStateOnSurface innerTSOS = track.innermostMeasurementState(); //If the state is valid if(innerTSOS.isValid()) { //Loop over Associated segments for(RecHitVector::iterator rechit = my4DTrack.begin(); rechit != my4DTrack.end(); ++rechit) { const GeomDet* geomDet = theTrackingGeometry->idToDet((*rechit)->geographicalId()); //Otherwise the propagator could throw an exception const Plane* pDest = dynamic_cast<const Plane*>(&geomDet->surface()); const Cylinder* cDest = dynamic_cast<const Cylinder*>(&geomDet->surface()); if(pDest != 0 || cDest != 0) { //Donde antes iba el try TrajectoryStateOnSurface destiny = thePropagator->propagate(*(innerTSOS.freeState()), geomDet->surface()); if(!destiny.isValid()|| !destiny.hasError()) continue; /* std::cout << "<MuonAlignmentAnalyzer> Segment: " << geomDet->toGlobal((*rechit)->localPosition()) << std::endl; std::cout << "<MuonAlignmentAnalyzer> Segment local: " << (*rechit)->localPosition() << std::endl; std::cout << "<MuonAlignmentAnalyzer> Predicted: " << destiny.freeState()->position() << std::endl; std::cout << "<MuonAlignmentAnalyzer> Predicted local: " << destiny.localPosition() << std::endl; */ const long rawId= (*rechit)->geographicalId().rawId(); int position = -1; bool newDetector = true; //Loop over the DetectorCollection to see if the detector is new and requires a new entry for(std::vector<long>::iterator myIds = detectorCollection.begin(); myIds != detectorCollection.end(); myIds++) { ++position; //If matches newDetector = false if(*myIds == rawId) { newDetector = false; break; } } DetId myDet(rawId); int det = myDet.subdetId(); int wheel=0,station=0,sector=0; int endcap=0,ring=0,chamber=0; double residualGlobalRPhi=0,residualGlobalPhi=0,residualGlobalR=0,residualGlobalTheta=0,residualGlobalZ=0; double residualLocalX=0,residualLocalPhi=0,residualLocalY=0,residualLocalTheta=0; // Fill generic histograms //If it's a DT if(det == 1) { DTChamberId myChamber(rawId); wheel=myChamber.wheel(); station = myChamber.station(); sector=myChamber.sector(); //global residualGlobalRPhi = geomDet->toGlobal((*rechit)->localPosition()).perp() * geomDet->toGlobal((*rechit)->localPosition()).barePhi() - destiny.freeState()->position().perp() * destiny.freeState()->position().barePhi(); //local residualLocalX = (*rechit)->localPosition().x() -destiny.localPosition().x(); //global residualGlobalPhi = geomDet->toGlobal(((RecSegment *)(*rechit))->localDirection()).barePhi() - destiny.globalDirection().barePhi(); //local residualLocalPhi = atan2(((RecSegment *)(*rechit))->localDirection().z(), ((RecSegment*)(*rechit))->localDirection().x()) - atan2(destiny.localDirection().z(), destiny.localDirection().x()); hResidualGlobalRPhiDT->Fill(residualGlobalRPhi); hResidualGlobalPhiDT->Fill(residualGlobalPhi); hResidualLocalXDT->Fill(residualLocalX); hResidualLocalPhiDT->Fill(residualLocalPhi); if(station!=4){ //global residualGlobalZ = geomDet->toGlobal((*rechit)->localPosition()).z() - destiny.freeState()->position().z(); //local residualLocalY = (*rechit)->localPosition().y() - destiny.localPosition().y(); //global residualGlobalTheta = geomDet->toGlobal(((RecSegment *)(*rechit))->localDirection()).bareTheta() - destiny.globalDirection().bareTheta(); //local residualLocalTheta = atan2(((RecSegment *)(*rechit))->localDirection().z(), ((RecSegment*)(*rechit))->localDirection().y()) - atan2(destiny.localDirection().z(), destiny.localDirection().y()); hResidualGlobalThetaDT->Fill(residualGlobalTheta); hResidualGlobalZDT->Fill(residualGlobalZ); hResidualLocalThetaDT->Fill(residualLocalTheta); hResidualLocalYDT->Fill(residualLocalY); } int index = wheel+2; hResidualGlobalRPhiDT_W[index]->Fill(residualGlobalRPhi); hResidualGlobalPhiDT_W[index]->Fill(residualGlobalPhi); hResidualLocalXDT_W[index]->Fill(residualLocalX); hResidualLocalPhiDT_W[index]->Fill(residualLocalPhi); if(station!=4){ hResidualGlobalThetaDT_W[index]->Fill(residualGlobalTheta); hResidualGlobalZDT_W[index]->Fill(residualGlobalZ); hResidualLocalThetaDT_W[index]->Fill(residualLocalTheta); hResidualLocalYDT_W[index]->Fill(residualLocalY); } index=wheel*4+station+7; hResidualGlobalRPhiDT_MB[index]->Fill(residualGlobalRPhi); hResidualGlobalPhiDT_MB[index]->Fill(residualGlobalPhi); hResidualLocalXDT_MB[index]->Fill(residualLocalX); hResidualLocalPhiDT_MB[index]->Fill(residualLocalPhi); if(station!=4){ hResidualGlobalThetaDT_MB[index]->Fill(residualGlobalTheta); hResidualGlobalZDT_MB[index]->Fill(residualGlobalZ); hResidualLocalThetaDT_MB[index]->Fill(residualLocalTheta); hResidualLocalYDT_MB[index]->Fill(residualLocalY); } } else if (det==2){ CSCDetId myChamber(rawId); endcap= myChamber.endcap(); station = myChamber.station(); if(endcap==2) station = -station; ring = myChamber.ring(); chamber=myChamber.chamber(); //global residualGlobalRPhi = geomDet->toGlobal((*rechit)->localPosition()).perp() * geomDet->toGlobal((*rechit)->localPosition()).barePhi() - destiny.freeState()->position().perp() * destiny.freeState()->position().barePhi(); //local residualLocalX = (*rechit)->localPosition().x() -destiny.localPosition().x(); //global residualGlobalR = geomDet->toGlobal((*rechit)->localPosition()).perp() - destiny.freeState()->position().perp(); //local residualLocalY = (*rechit)->localPosition().y() - destiny.localPosition().y(); //global residualGlobalPhi = geomDet->toGlobal(((RecSegment *)(*rechit))->localDirection()).barePhi() - destiny.globalDirection().barePhi(); //local residualLocalPhi = atan2(((RecSegment *)(*rechit))->localDirection().y(), ((RecSegment*)(*rechit))->localDirection().x()) - atan2(destiny.localDirection().y(), destiny.localDirection().x()); //global residualGlobalTheta = geomDet->toGlobal(((RecSegment *)(*rechit))->localDirection()).bareTheta() - destiny.globalDirection().bareTheta(); //local residualLocalTheta = atan2(((RecSegment *)(*rechit))->localDirection().y(), ((RecSegment*)(*rechit))->localDirection().z()) - atan2(destiny.localDirection().y(), destiny.localDirection().z()); hResidualGlobalRPhiCSC->Fill(residualGlobalRPhi); hResidualGlobalPhiCSC->Fill(residualGlobalPhi); hResidualGlobalThetaCSC->Fill(residualGlobalTheta); hResidualGlobalRCSC->Fill(residualGlobalR); hResidualLocalXCSC->Fill(residualLocalX); hResidualLocalPhiCSC->Fill(residualLocalPhi); hResidualLocalThetaCSC->Fill(residualLocalTheta); hResidualLocalYCSC->Fill(residualLocalY); int index=2*station+ring+7; if(station==-1) {index=5+ring; if(ring==4) index=6;} if(station==1) {index=8+ring; if(ring==4) index=9;} hResidualGlobalRPhiCSC_ME[index]->Fill(residualGlobalRPhi); hResidualGlobalPhiCSC_ME[index]->Fill(residualGlobalPhi); hResidualGlobalThetaCSC_ME[index]->Fill(residualGlobalTheta); hResidualGlobalRCSC_ME[index]->Fill(residualGlobalR); hResidualLocalXCSC_ME[index]->Fill(residualLocalX); hResidualLocalPhiCSC_ME[index]->Fill(residualLocalPhi); hResidualLocalThetaCSC_ME[index]->Fill(residualLocalTheta); hResidualLocalYCSC_ME[index]->Fill(residualLocalY); } else{residualGlobalRPhi=0,residualGlobalPhi=0,residualGlobalR=0,residualGlobalTheta=0,residualGlobalZ=0; residualLocalX=0,residualLocalPhi=0,residualLocalY=0,residualLocalTheta=0,residualLocalY=0; } // Fill individual chamber histograms if(newDetector) { //Create an RawIdDetector, fill it and push it into the collection detectorCollection.push_back(rawId); //This piece of code calculates the range of the residuals double rangeX = 3.0, rangeY =5.; switch(abs(station)) { case 1: {rangeX = resLocalXRangeStation1; rangeY = resLocalYRangeStation1;} break; case 2: {rangeX = resLocalXRangeStation2; rangeY = resLocalYRangeStation2;} break; case 3: {rangeX = resLocalXRangeStation3; rangeY = resLocalYRangeStation3;} break; case 4: {rangeX = resLocalXRangeStation4; rangeY = resLocalYRangeStation4;} break; default: break; } //create new histograms char nameOfHistoLocalX[50]; char nameOfHistoLocalTheta[50]; char nameOfHistoLocalY[50]; char nameOfHistoLocalPhi[50]; char nameOfHistoGlobalRPhi[50]; char nameOfHistoGlobalTheta[50]; char nameOfHistoGlobalR[50]; char nameOfHistoGlobalPhi[50]; char nameOfHistoGlobalZ[50]; if(det==1){ // DT snprintf(nameOfHistoLocalX, sizeof(nameOfHistoLocalX), "ResidualLocalX_W%dMB%1dS%1d",wheel,station,sector ); snprintf(nameOfHistoLocalPhi, sizeof(nameOfHistoLocalPhi), "ResidualLocalPhi_W%dMB%1dS%1d",wheel,station,sector); snprintf(nameOfHistoGlobalRPhi, sizeof(nameOfHistoGlobalRPhi), "ResidualGlobalRPhi_W%dMB%1dS%1d",wheel,station,sector ); snprintf(nameOfHistoGlobalPhi, sizeof(nameOfHistoGlobalPhi), "ResidualGlobalPhi_W%dMB%1dS%1d",wheel,station,sector); snprintf(nameOfHistoLocalTheta, sizeof(nameOfHistoLocalTheta), "ResidualLocalTheta_W%dMB%1dS%1d",wheel,station,sector); snprintf(nameOfHistoLocalY, sizeof(nameOfHistoLocalY), "ResidualLocalY_W%dMB%1dS%1d",wheel,station,sector); TH1F *histoLocalY = fs->make<TH1F>(nameOfHistoLocalY, nameOfHistoLocalY, nbins, -rangeY, rangeY); unitsLocalY.push_back(histoLocalY); snprintf(nameOfHistoGlobalTheta, sizeof(nameOfHistoGlobalTheta), "ResidualGlobalTheta_W%dMB%1dS%1d",wheel,station,sector); snprintf(nameOfHistoGlobalZ, sizeof(nameOfHistoGlobalZ), "ResidualGlobalZ_W%dMB%1dS%1d",wheel,station,sector); TH1F *histoGlobalZ = fs->make<TH1F>(nameOfHistoGlobalZ, nameOfHistoGlobalZ, nbins, -rangeY, rangeY); unitsGlobalRZ.push_back(histoGlobalZ); } else if(det==2){ //CSC snprintf(nameOfHistoLocalX, sizeof(nameOfHistoLocalX), "ResidualLocalX_ME%dR%1dC%1d",station,ring,chamber ); snprintf(nameOfHistoLocalPhi, sizeof(nameOfHistoLocalPhi), "ResidualLocalPhi_ME%dR%1dC%1d",station,ring,chamber); snprintf(nameOfHistoLocalTheta, sizeof(nameOfHistoLocalTheta), "ResidualLocalTheta_ME%dR%1dC%1d",station,ring,chamber); snprintf(nameOfHistoLocalY, sizeof(nameOfHistoLocalY), "ResidualLocalY_ME%dR%1dC%1d",station,ring,chamber); TH1F *histoLocalY = fs->make<TH1F>(nameOfHistoLocalY, nameOfHistoLocalY, nbins, -rangeY, rangeY); unitsLocalY.push_back(histoLocalY); snprintf(nameOfHistoGlobalRPhi, sizeof(nameOfHistoGlobalRPhi), "ResidualGlobalRPhi_ME%dR%1dC%1d",station,ring,chamber ); snprintf(nameOfHistoGlobalPhi, sizeof(nameOfHistoGlobalPhi), "ResidualGlobalPhi_ME%dR%1dC%1d",station,ring,chamber); snprintf(nameOfHistoGlobalTheta, sizeof(nameOfHistoGlobalTheta), "ResidualGlobalTheta_ME%dR%1dC%1d",station,ring,chamber); snprintf(nameOfHistoGlobalR, sizeof(nameOfHistoGlobalR), "ResidualGlobalR_ME%dR%1dC%1d",station,ring,chamber); TH1F *histoGlobalR = fs->make<TH1F>(nameOfHistoGlobalR, nameOfHistoGlobalR, nbins, -rangeY, rangeY); unitsGlobalRZ.push_back(histoGlobalR); } // Common histos to DT and CSC TH1F *histoLocalX = fs->make<TH1F>(nameOfHistoLocalX, nameOfHistoLocalX, nbins, -rangeX, rangeX); TH1F *histoGlobalRPhi = fs->make<TH1F>(nameOfHistoGlobalRPhi, nameOfHistoGlobalRPhi, nbins, -rangeX, rangeX); TH1F *histoLocalPhi = fs->make<TH1F>(nameOfHistoLocalPhi, nameOfHistoLocalPhi, nbins, -resPhiRange, resPhiRange); TH1F *histoGlobalPhi = fs->make<TH1F>(nameOfHistoGlobalPhi, nameOfHistoGlobalPhi, nbins, -resPhiRange, resPhiRange); TH1F *histoGlobalTheta = fs->make<TH1F>(nameOfHistoGlobalTheta, nameOfHistoGlobalTheta, nbins, -resThetaRange, resThetaRange); TH1F *histoLocalTheta = fs->make<TH1F>(nameOfHistoLocalTheta, nameOfHistoLocalTheta, nbins, -resThetaRange, resThetaRange); histoLocalX->Fill(residualLocalX); histoLocalPhi->Fill(residualLocalPhi); histoLocalTheta->Fill(residualLocalTheta); histoGlobalRPhi->Fill(residualGlobalRPhi); histoGlobalPhi->Fill(residualGlobalPhi); histoGlobalTheta->Fill(residualGlobalTheta); //Push them into their respective vectors unitsLocalX.push_back(histoLocalX); unitsLocalPhi.push_back(histoLocalPhi); unitsLocalTheta.push_back(histoLocalTheta); unitsGlobalRPhi.push_back(histoGlobalRPhi); unitsGlobalPhi.push_back(histoGlobalPhi); unitsGlobalTheta.push_back(histoGlobalTheta); } // new detector else { //If the detector was not new, just fill the histogram unitsLocalX.at(position)->Fill(residualLocalX); unitsLocalPhi.at(position)->Fill(residualLocalPhi); unitsLocalTheta.at(position)->Fill(residualLocalTheta); unitsGlobalRPhi.at(position)->Fill(residualGlobalRPhi); unitsGlobalPhi.at(position)->Fill(residualGlobalPhi); unitsGlobalTheta.at(position)->Fill(residualGlobalTheta); if(det==1) {unitsLocalY.at(position)->Fill(residualLocalY); unitsGlobalRZ.at(position)->Fill(residualGlobalZ);} else if(det==2) {unitsLocalY.at(position)->Fill(residualLocalY); unitsGlobalRZ.at(position)->Fill(residualGlobalR);} } countPoints++; innerTSOS = destiny; }else { edm::LogError("MuonAlignmentAnalyzer") <<" Error!! Exception in propagator catched" << std::endl; continue; } } //loop over my4DTrack } //TSOS was valid } // cut in at least 4 segments } //end cut in RecHitsSize>36 numberOfHits=numberOfHits+countPoints; } //loop over STAtracks delete thePropagator; } //end doResplots }
void MuonAlignmentAnalyzer::beginJob | ( | void | ) | [virtual] |
Reimplemented from edm::EDAnalyzer.
Definition at line 242 of file MuonAlignmentAnalyzer.cc.
References doGBplots, doResplots, doSAplots, fs, hGBChi2, hGBChi2_Barrel, hGBChi2_Endcap, hGBInvM, hGBInvM_Barrel, hGBInvM_Endcap, hGBInvM_Overlap, hGBinvPTres, hGBinvPTvsEta, hGBinvPTvsNhits, hGBinvPTvsPhi, hGBNhits, hGBNhits_Barrel, hGBNhits_Endcap, hGBNmuons, hGBNmuons_Barrel, hGBNmuons_Endcap, hGBPhivsEta, hGBPTDiff, hGBPTDiffvsEta, hGBPTDiffvsPhi, hGBPTRec, hGBPTRec_Barrel, hGBPTRec_Endcap, hGBPTres, hGBPTres_Barrel, hGBPTres_Endcap, hGBPTvsEta, hGBPTvsPhi, hprofGlobalAngleCSC, hprofGlobalAngleDT, hprofGlobalAngleRmsCSC, hprofGlobalAngleRmsDT, hprofGlobalPhiCSC, hprofGlobalPhiDT, hprofGlobalPositionCSC, hprofGlobalPositionDT, hprofGlobalPositionRmsCSC, hprofGlobalPositionRmsDT, hprofGlobalRCSC, hprofGlobalRPhiCSC, hprofGlobalRPhiDT, hprofGlobalThetaCSC, hprofGlobalThetaDT, hprofGlobalZDT, hprofLocalAngleCSC, hprofLocalAngleDT, hprofLocalAngleRmsCSC, hprofLocalAngleRmsDT, hprofLocalPhiCSC, hprofLocalPhiDT, hprofLocalPositionCSC, hprofLocalPositionDT, hprofLocalPositionRmsCSC, hprofLocalPositionRmsDT, hprofLocalThetaCSC, hprofLocalThetaDT, hprofLocalXCSC, hprofLocalXDT, hprofLocalYCSC, hprofLocalYDT, hResidualGlobalPhiCSC, hResidualGlobalPhiCSC_ME, hResidualGlobalPhiDT, hResidualGlobalPhiDT_MB, hResidualGlobalPhiDT_W, hResidualGlobalRCSC, hResidualGlobalRCSC_ME, hResidualGlobalRPhiCSC, hResidualGlobalRPhiCSC_ME, hResidualGlobalRPhiDT, hResidualGlobalRPhiDT_MB, hResidualGlobalRPhiDT_W, hResidualGlobalThetaCSC, hResidualGlobalThetaCSC_ME, hResidualGlobalThetaDT, hResidualGlobalThetaDT_MB, hResidualGlobalThetaDT_W, hResidualGlobalZDT, hResidualGlobalZDT_MB, hResidualGlobalZDT_W, hResidualLocalPhiCSC, hResidualLocalPhiCSC_ME, hResidualLocalPhiDT, hResidualLocalPhiDT_MB, hResidualLocalPhiDT_W, hResidualLocalThetaCSC, hResidualLocalThetaCSC_ME, hResidualLocalThetaDT, hResidualLocalThetaDT_MB, hResidualLocalThetaDT_W, hResidualLocalXCSC, hResidualLocalXCSC_ME, hResidualLocalXDT, hResidualLocalXDT_MB, hResidualLocalXDT_W, hResidualLocalYCSC, hResidualLocalYCSC_ME, hResidualLocalYDT, hResidualLocalYDT_MB, hResidualLocalYDT_W, hSAChi2, hSAChi2_Barrel, hSAChi2_Endcap, hSAInvM, hSAInvM_Barrel, hSAInvM_Endcap, hSAInvM_Overlap, hSAinvPTres, hSAinvPTvsEta, hSAinvPTvsNhits, hSAinvPTvsPhi, hSANhits, hSANhits_Barrel, hSANhits_Endcap, hSANmuons, hSANmuons_Barrel, hSANmuons_Endcap, hSAPhivsEta, hSAPTDiff, hSAPTDiffvsEta, hSAPTDiffvsPhi, hSAPTRec, hSAPTRec_Barrel, hSAPTRec_Endcap, hSAPTres, hSAPTres_Barrel, hSAPTres_Endcap, hSAPTvsEta, hSAPTvsPhi, hSimInvM, hSimInvM_Barrel, hSimInvM_Endcap, hSimInvM_Overlap, hSimNmuons, hSimNmuons_Barrel, hSimNmuons_Endcap, hSimPhivsEta, hSimPT, hSimPT_Barrel, hSimPT_Endcap, hSimPTvsEta, hSimPTvsPhi, i, invMassRangeMax, invMassRangeMin, ptRangeMax, ptRangeMin, and theDataType.
{ // eventSetup.get<IdealMagneticFieldRecord>().get(theMGField); //Create the propagator // if(doResplots) thePropagator = new SteppingHelixPropagator(&*theMGField, alongMomentum); int nBinsPt= (int) fabs(ptRangeMax-ptRangeMin); int nBinsMass= (int) fabs(invMassRangeMax-invMassRangeMin); // Define and book histograms for SA and GB muon quantities/objects if(doGBplots) { hGBNmuons = fs->make<TH1F>("GBNmuons","Nmuons",10,0,10); hGBNmuons_Barrel = fs->make<TH1F>("GBNmuons_Barrel","Nmuons",10,0,10); hGBNmuons_Endcap = fs->make<TH1F>("GBNmuons_Endcap","Nmuons",10,0,10); hGBNhits = fs->make<TH1F>("GBNhits","Nhits",100,0,100); hGBNhits_Barrel = fs->make<TH1F>("GBNhits_Barrel","Nhits",100,0,100); hGBNhits_Endcap = fs->make<TH1F>("GBNhits_Endcap","Nhits",100,0,100); hGBPTRec = fs->make<TH1F>("GBpTRec","p_{T}^{rec}",nBinsPt,ptRangeMin,ptRangeMax); hGBPTRec_Barrel = fs->make<TH1F>("GBpTRec_Barrel","p_{T}^{rec}",nBinsPt,ptRangeMin,ptRangeMax); hGBPTRec_Endcap = fs->make<TH1F>("GBpTRec_Endcap","p_{T}^{rec}",nBinsPt,ptRangeMin,ptRangeMax); hGBPTvsEta = fs->make<TH2F> ("GBPTvsEta","p_{T}^{rec} VS #eta",100,-2.5,2.5,nBinsPt,ptRangeMin,ptRangeMax); hGBPTvsPhi = fs->make<TH2F> ("GBPTvsPhi","p_{T}^{rec} VS #phi",100,-3.1416,3.1416,nBinsPt,ptRangeMin,ptRangeMax); hGBPhivsEta = fs->make<TH2F> ("GBPhivsEta","#phi VS #eta",100,-2.5,2.5,100,-3.1416,3.1416); if(theDataType == "SimData"){ hGBPTDiff = fs->make<TH1F>("GBpTDiff","p_{T}^{rec} - p_{T}^{gen} ",250,-120,120); hGBPTDiffvsEta = fs->make<TH2F> ("GBPTDiffvsEta","p_{T}^{rec} - p_{T}^{gen} VS #eta",100,-2.5,2.5,250,-120,120); hGBPTDiffvsPhi = fs->make<TH2F> ("GBPTDiffvsPhi","p_{T}^{rec} - p_{T}^{gen} VS #phi",100,-3.1416,3.1416,250,-120,120); hGBPTres = fs->make<TH1F>("GBpTRes","pT Resolution",100,-2,2); hGBPTres_Barrel = fs->make<TH1F>("GBpTRes_Barrel","pT Resolution",100,-2,2); hGBPTres_Endcap = fs->make<TH1F>("GBpTRes_Endcap","pT Resolution",100,-2,2); hGBinvPTres = fs->make<TH1F>("GBinvPTRes","#sigma (q/p_{T}) Resolution",100,-2,2); hGBinvPTvsEta = fs->make<TH2F> ("GBinvPTvsEta","#sigma (q/p_{T}) VS #eta",100,-2.5,2.5,100,-2,2); hGBinvPTvsPhi = fs->make<TH2F> ("GBinvPTvsPhi","#sigma (q/p_{T}) VS #phi",100,-3.1416,3.1416,100,-2,2); hGBinvPTvsNhits = fs->make<TH2F> ("GBinvPTvsNhits","#sigma (q/p_{T}) VS Nhits",100,0,100,100,-2,2); } hGBChi2 = fs->make<TH1F>("GBChi2","Chi2",200,0,200); hGBChi2_Barrel = fs->make<TH1F>("GBChi2_Barrel","Chi2",200,0,200); hGBChi2_Endcap = fs->make<TH1F>("GBChi2_Endcap ","Chi2",200,0,200); hGBInvM = fs->make<TH1F>("GBInvM","M_{inv}^{rec}",nBinsMass,invMassRangeMin,invMassRangeMax); hGBInvM_Barrel = fs->make<TH1F>("GBInvM_Barrel","M_{inv}^{rec}",nBinsMass,invMassRangeMin,invMassRangeMax); hGBInvM_Endcap = fs->make<TH1F>("GBInvM_Endcap ","M_{inv}^{rec}",nBinsMass,invMassRangeMin,invMassRangeMax); hGBInvM_Overlap = fs->make<TH1F>("GBInvM_Overlap","M_{inv}^{rec}",nBinsMass,invMassRangeMin,invMassRangeMax); } if(doSAplots) { hSANmuons = fs->make<TH1F>("SANmuons","Nmuons",10,0,10); hSANmuons_Barrel = fs->make<TH1F>("SANmuons_Barrel","Nmuons",10,0,10); hSANmuons_Endcap = fs->make<TH1F>("SANmuons_Endcap","Nmuons",10,0,10); hSANhits = fs->make<TH1F>("SANhits","Nhits",100,0,100); hSANhits_Barrel = fs->make<TH1F>("SANhits_Barrel","Nhits",100,0,100); hSANhits_Endcap = fs->make<TH1F>("SANhits_Endcap","Nhits",100,0,100); hSAPTRec = fs->make<TH1F>("SApTRec","p_{T}^{rec}",nBinsPt,ptRangeMin,ptRangeMax); hSAPTRec_Barrel = fs->make<TH1F>("SApTRec_Barrel","p_{T}^{rec}",nBinsPt,ptRangeMin,ptRangeMax); hSAPTRec_Endcap = fs->make<TH1F>("SApTRec_Endcap","p_{T}^{rec}",nBinsPt,ptRangeMin,ptRangeMax); hSAPTvsEta = fs->make<TH2F> ("SAPTvsEta","p_{T}^{rec} VS #eta",100,-2.5,2.5,nBinsPt,ptRangeMin,ptRangeMax); hSAPTvsPhi = fs->make<TH2F> ("SAPTvsPhi","p_{T}^{rec} VS #phi",100,-3.1416,3.1416,nBinsPt,ptRangeMin,ptRangeMax); hSAPhivsEta = fs->make<TH2F> ("SAPhivsEta","#phi VS #eta",100,-2.5,2.5,100,-3.1416,3.1416); if(theDataType == "SimData"){ hSAPTDiff = fs->make<TH1F>("SApTDiff","p_{T}^{rec} - p_{T}^{gen} ",250,-120,120); hSAPTDiffvsEta = fs->make<TH2F> ("SAPTDiffvsEta","p_{T}^{rec} - p_{T}^{gen} VS #eta",100,-2.5,2.5,250,-120,120); hSAPTDiffvsPhi = fs->make<TH2F> ("SAPTDiffvsPhi","p_{T}^{rec} - p_{T}^{gen} VS #phi",100,-3.1416,3.1416,250,-120,120); hSAPTres = fs->make<TH1F>("SApTRes","pT Resolution",100,-2,2); hSAPTres_Barrel = fs->make<TH1F>("SApTRes_Barrel","pT Resolution",100,-2,2); hSAPTres_Endcap = fs->make<TH1F>("SApTRes_Endcap","pT Resolution",100,-2,2); hSAinvPTres = fs->make<TH1F>("SAinvPTRes","1/pT Resolution",100,-2,2); hSAinvPTvsEta = fs->make<TH2F> ("SAinvPTvsEta","#sigma (q/p_{T}) VS #eta",100,-2.5,2.5,100,-2,2); hSAinvPTvsPhi = fs->make<TH2F> ("SAinvPTvsPhi","#sigma (q/p_{T}) VS #phi",100,-3.1416,3.1416,100,-2,2); hSAinvPTvsNhits = fs->make<TH2F> ("SAinvPTvsNhits","#sigma (q/p_{T}) VS Nhits",100,0,100,100,-2,2); } hSAInvM = fs->make<TH1F>("SAInvM","M_{inv}^{rec}",nBinsMass,invMassRangeMin,invMassRangeMax); hSAInvM_Barrel = fs->make<TH1F>("SAInvM_Barrel","M_{inv}^{rec}",nBinsMass,invMassRangeMin,invMassRangeMax); hSAInvM_Endcap = fs->make<TH1F>("SAInvM_Endcap","M_{inv}^{rec}",nBinsMass,invMassRangeMin,invMassRangeMax); hSAInvM_Overlap = fs->make<TH1F>("SAInvM_Overlap","M_{inv}^{rec}",nBinsMass,invMassRangeMin,invMassRangeMax); hSAChi2 = fs->make<TH1F>("SAChi2","Chi2",200,0,200); hSAChi2_Barrel = fs->make<TH1F>("SAChi2_Barrel","Chi2",200,0,200); hSAChi2_Endcap = fs->make<TH1F>("SAChi2_Endcap","Chi2",200,0,200); } if(theDataType == "SimData"){ hSimNmuons = fs->make<TH1F>("SimNmuons","Nmuons",10,0,10); hSimNmuons_Barrel = fs->make<TH1F>("SimNmuons_Barrel","Nmuons",10,0,10); hSimNmuons_Endcap = fs->make<TH1F>("SimNmuons_Endcap","Nmuons",10,0,10); hSimPT = fs->make<TH1F>("SimPT","p_{T}^{gen} ",nBinsPt,ptRangeMin,ptRangeMax); hSimPT_Barrel = fs->make<TH1F>("SimPT_Barrel","p_{T}^{gen} ",nBinsPt,ptRangeMin,ptRangeMax); hSimPT_Endcap = fs->make<TH1F>("SimPT_Endcap","p_{T}^{gen} ",nBinsPt,ptRangeMin,ptRangeMax); hSimPTvsEta = fs->make<TH2F> ("SimPTvsEta","p_{T}^{gen} VS #eta",100,-2.5,2.5,nBinsPt,ptRangeMin,ptRangeMax); hSimPTvsPhi = fs->make<TH2F> ("SimPTvsPhi","p_{T}^{gen} VS #phi",100,-3.1416,3.1416,nBinsPt,ptRangeMin,ptRangeMax); hSimPhivsEta = fs->make<TH2F> ("SimPhivsEta","#phi VS #eta",100,-2.5,2.5,100,-3.1416,3.1416); hSimInvM = fs->make<TH1F>("SimInvM","M_{inv}^{gen} ",nBinsMass,invMassRangeMin,invMassRangeMax); hSimInvM_Barrel = fs->make<TH1F>("SimInvM_Barrel","M_{inv}^{rec}",nBinsMass,invMassRangeMin,invMassRangeMax); hSimInvM_Endcap = fs->make<TH1F>("SimInvM_Endcap","M_{inv}^{gen} ",nBinsMass,invMassRangeMin,invMassRangeMax); hSimInvM_Overlap = fs->make<TH1F>("SimInvM_Overlap","M_{inv}^{gen} ",nBinsMass,invMassRangeMin,invMassRangeMax); } if(doResplots){ // All DT and CSC chambers hResidualLocalXDT = fs->make<TH1F>("hResidualLocalXDT","hResidualLocalXDT",200,-10,10); hResidualLocalPhiDT = fs->make<TH1F>("hResidualLocalPhiDT","hResidualLocalPhiDT",100,-1,1); hResidualLocalThetaDT = fs->make<TH1F>("hResidualLocalThetaDT","hResidualLocalThetaDT",100,-1,1); hResidualLocalYDT = fs->make<TH1F>("hResidualLocalYDT","hResidualLocalYDT",200,-10,10); hResidualLocalXCSC = fs->make<TH1F>("hResidualLocalXCSC","hResidualLocalXCSC",200,-10,10); hResidualLocalPhiCSC = fs->make<TH1F>("hResidualLocalPhiCSC","hResidualLocalPhiCSC",100,-1,1); hResidualLocalThetaCSC = fs->make<TH1F>("hResidualLocalThetaCSC","hResidualLocalThetaCSC",100,-1,1); hResidualLocalYCSC = fs->make<TH1F>("hResidualLocalYCSC","hResidualLocalYCSC",200,-10,10); hResidualGlobalRPhiDT = fs->make<TH1F>("hResidualGlobalRPhiDT","hResidualGlobalRPhiDT",200,-10,10); hResidualGlobalPhiDT = fs->make<TH1F>("hResidualGlobalPhiDT","hResidualGlobalPhiDT",100,-1,1); hResidualGlobalThetaDT = fs->make<TH1F>("hResidualGlobalThetaDT","hResidualGlobalThetaDT",100,-1,1); hResidualGlobalZDT = fs->make<TH1F>("hResidualGlobalZDT","hResidualGlobalZDT",200,-10,10); hResidualGlobalRPhiCSC = fs->make<TH1F>("hResidualGlobalRPhiCSC","hResidualGlobalRPhiCSC",200,-10,10); hResidualGlobalPhiCSC = fs->make<TH1F>("hResidualGlobalPhiCSC","hResidualGlobalPhiCSC",100,-1,1); hResidualGlobalThetaCSC = fs->make<TH1F>("hResidualGlobalThetaCSC","hResidualGlobalThetaCSC",100,-1,1); hResidualGlobalRCSC = fs->make<TH1F>("hResidualGlobalRCSC","hResidualGlobalRCSC",200,-10,10); // DT Wheels hResidualLocalXDT_W[0]=fs->make<TH1F>("hResidualLocalXDT_W-2","hResidualLocalXDT_W-2",200,-10,10); hResidualLocalPhiDT_W[0]=fs->make<TH1F>("hResidualLocalPhiDT_W-2","hResidualLocalPhiDT_W-2",200,-1,1); hResidualLocalThetaDT_W[0]=fs->make<TH1F>("hResidualLocalThetaDT_W-2","hResidualLocalThetaDT_W-2",200,-1,1); hResidualLocalYDT_W[0] = fs->make<TH1F>("hResidualLocalYDT_W-2","hResidualLocalYDT_W-2",200,-10,10); hResidualLocalXDT_W[1]=fs->make<TH1F>("hResidualLocalXDT_W-1","hResidualLocalXDT_W-1",200,-10,10); hResidualLocalPhiDT_W[1]=fs->make<TH1F>("hResidualLocalPhiDT_W-1","hResidualLocalPhiDT_W-1",200,-1,1); hResidualLocalThetaDT_W[1]=fs->make<TH1F>("hResidualLocalThetaDT_W-1","hResidualLocalThetaDT_W-1",200,-1,1); hResidualLocalYDT_W[1] = fs->make<TH1F>("hResidualLocalYDT_W-1","hResidualLocalYDT_W-1",200,-10,10); hResidualLocalXDT_W[2]=fs->make<TH1F>("hResidualLocalXDT_W0","hResidualLocalXDT_W0",200,-10,10); hResidualLocalPhiDT_W[2]=fs->make<TH1F>("hResidualLocalPhiDT_W0","hResidualLocalPhiDT_W0",200,-1,1); hResidualLocalThetaDT_W[2]=fs->make<TH1F>("hResidualLocalThetaDT_W0","hResidualLocalThetaDT_W0",200,-1,1); hResidualLocalYDT_W[2] = fs->make<TH1F>("hResidualLocalYDT_W0","hResidualLocalYDT_W0",200,-10,10); hResidualLocalXDT_W[3]=fs->make<TH1F>("hResidualLocalXDT_W1","hResidualLocalXDT_W1",200,-10,10); hResidualLocalPhiDT_W[3]=fs->make<TH1F>("hResidualLocalPhiDT_W1","hResidualLocalPhiDT_W1",200,-1,1); hResidualLocalThetaDT_W[3]=fs->make<TH1F>("hResidualLocalThetaDT_W1","hResidualLocalThetaDT_W1",200,-1,1); hResidualLocalYDT_W[3] = fs->make<TH1F>("hResidualLocalYDT_W1","hResidualLocalYDT_W1",200,-10,10); hResidualLocalXDT_W[4]=fs->make<TH1F>("hResidualLocalXDT_W2","hResidualLocalXDT_W2",200,-10,10); hResidualLocalPhiDT_W[4]=fs->make<TH1F>("hResidualLocalPhiDT_W2","hResidualLocalPhiDT_W2",200,-1,1); hResidualLocalThetaDT_W[4]=fs->make<TH1F>("hResidualLocalThetaDT_W2","hResidualLocalThetaDT_W2",200,-1,1); hResidualLocalYDT_W[4] = fs->make<TH1F>("hResidualLocalYDT_W2","hResidualLocalYDT_W2",200,-10,10); hResidualGlobalRPhiDT_W[0]=fs->make<TH1F>("hResidualGlobalRPhiDT_W-2","hResidualGlobalRPhiDT_W-2",200,-10,10); hResidualGlobalPhiDT_W[0]=fs->make<TH1F>("hResidualGlobalPhiDT_W-2","hResidualGlobalPhiDT_W-2",200,-1,1); hResidualGlobalThetaDT_W[0]=fs->make<TH1F>("hResidualGlobalThetaDT_W-2","hResidualGlobalThetaDT_W-2",200,-1,1); hResidualGlobalZDT_W[0] = fs->make<TH1F>("hResidualGlobalZDT_W-2","hResidualGlobalZDT_W-2",200,-10,10); hResidualGlobalRPhiDT_W[1]=fs->make<TH1F>("hResidualGlobalRPhiDT_W-1","hResidualGlobalRPhiDT_W-1",200,-10,10); hResidualGlobalPhiDT_W[1]=fs->make<TH1F>("hResidualGlobalPhiDT_W-1","hResidualGlobalPhiDT_W-1",200,-1,1); hResidualGlobalThetaDT_W[1]=fs->make<TH1F>("hResidualGlobalThetaDT_W-1","hResidualGlobalThetaDT_W-1",200,-1,1); hResidualGlobalZDT_W[1] = fs->make<TH1F>("hResidualGlobalZDT_W-1","hResidualGlobalZDT_W-1",200,-10,10); hResidualGlobalRPhiDT_W[2]=fs->make<TH1F>("hResidualGlobalRPhiDT_W0","hResidualGlobalRPhiDT_W0",200,-10,10); hResidualGlobalPhiDT_W[2]=fs->make<TH1F>("hResidualGlobalPhiDT_W0","hResidualGlobalPhiDT_W0",200,-1,1); hResidualGlobalThetaDT_W[2]=fs->make<TH1F>("hResidualGlobalThetaDT_W0","hResidualGlobalThetaDT_W0",200,-1,1); hResidualGlobalZDT_W[2] = fs->make<TH1F>("hResidualGlobalZDT_W0","hResidualGlobalZDT_W0",200,-10,10); hResidualGlobalRPhiDT_W[3]=fs->make<TH1F>("hResidualGlobalRPhiDT_W1","hResidualGlobalRPhiDT_W1",200,-10,10); hResidualGlobalPhiDT_W[3]=fs->make<TH1F>("hResidualGlobalPhiDT_W1","hResidualGlobalPhiDT_W1",200,-1,1); hResidualGlobalThetaDT_W[3]=fs->make<TH1F>("hResidualGlobalThetaDT_W1","hResidualGlobalThetaDT_W1",200,-1,1); hResidualGlobalZDT_W[3] = fs->make<TH1F>("hResidualGlobalZDT_W1","hResidualGlobalZDT_W1",200,-10,10); hResidualGlobalRPhiDT_W[4]=fs->make<TH1F>("hResidualGlobalRPhiDT_W2","hResidualGlobalRPhiDT_W2",200,-10,10); hResidualGlobalPhiDT_W[4]=fs->make<TH1F>("hResidualGlobalPhiDT_W2","hResidualGlobalPhiDT_W2",200,-1,1); hResidualGlobalThetaDT_W[4]=fs->make<TH1F>("hResidualGlobalThetaDT_W2","hResidualGlobalThetaDT_W2",200,-1,1); hResidualGlobalZDT_W[4] = fs->make<TH1F>("hResidualGlobalZDT_W2","hResidualGlobalZDT_W2",200,-10,10); // DT Stations hResidualLocalXDT_MB[0]=fs->make<TH1F>("hResidualLocalXDT_MB-2/1","hResidualLocalXDT_MB-2/1",200,-10,10); hResidualLocalPhiDT_MB[0]=fs->make<TH1F>("hResidualLocalPhiDT_MB-2/1","hResidualLocalPhiDT_MB-2/1",200,-1,1); hResidualLocalThetaDT_MB[0]=fs->make<TH1F>("hResidualLocalThetaDT_MB-2/1","hResidualLocalThetaDT_MB-2/1",200,-1,1); hResidualLocalYDT_MB[0] = fs->make<TH1F>("hResidualLocalYDT_MB-2/1","hResidualLocalYDT_MB-2/1",200,-10,10); hResidualLocalXDT_MB[1]=fs->make<TH1F>("hResidualLocalXDT_MB-2/2","hResidualLocalXDT_MB-2/2",200,-10,10); hResidualLocalPhiDT_MB[1]=fs->make<TH1F>("hResidualLocalPhiDT_MB-2/2","hResidualLocalPhiDT_MB-2/2",200,-1,1); hResidualLocalThetaDT_MB[1]=fs->make<TH1F>("hResidualLocalThetaDT_MB-2/2","hResidualLocalThetaDT_MB-2/2",200,-1,1); hResidualLocalYDT_MB[1] = fs->make<TH1F>("hResidualLocalYDT_MB-2/2","hResidualLocalYDT_MB-2/2",200,-10,10); hResidualLocalXDT_MB[2]=fs->make<TH1F>("hResidualLocalXDT_MB-2/3","hResidualLocalXDT_MB-2/3",200,-10,10); hResidualLocalPhiDT_MB[2]=fs->make<TH1F>("hResidualLocalPhiDT_MB-2/3","hResidualLocalPhiDT_MB-2/3",200,-1,1); hResidualLocalThetaDT_MB[2]=fs->make<TH1F>("hResidualLocalThetaDT_MB-2/3","hResidualLocalThetaDT_MB-2/3",200,-1,1); hResidualLocalYDT_MB[2] = fs->make<TH1F>("hResidualLocalYDT_MB-2/3","hResidualLocalYDT_MB-2/3",200,-10,10); hResidualLocalXDT_MB[3]=fs->make<TH1F>("hResidualLocalXDT_MB-2/4","hResidualLocalXDT_MB-2/4",200,-10,10); hResidualLocalPhiDT_MB[3]=fs->make<TH1F>("hResidualLocalPhiDT_MB-2/4","hResidualLocalPhiDT_MB-2/4",200,-1,1); hResidualLocalThetaDT_MB[3]=fs->make<TH1F>("hResidualLocalThetaDT_MB-2/4","hResidualLocalThetaDT_MB-2/4",200,-1,1); hResidualLocalYDT_MB[3] = fs->make<TH1F>("hResidualLocalYDT_MB-2/4","hResidualLocalYDT_MB-2/4",200,-10,10); hResidualLocalXDT_MB[4]=fs->make<TH1F>("hResidualLocalXDT_MB-1/1","hResidualLocalXDT_MB-1/1",200,-10,10); hResidualLocalPhiDT_MB[4]=fs->make<TH1F>("hResidualLocalPhiDT_MB-1/1","hResidualLocalPhiDT_MB-1/1",200,-1,1); hResidualLocalThetaDT_MB[4]=fs->make<TH1F>("hResidualLocalThetaDT_MB-1/1","hResidualLocalThetaDT_MB-1/1",200,-1,1); hResidualLocalYDT_MB[4] = fs->make<TH1F>("hResidualLocalYDT_MB-1/1","hResidualLocalYDT_MB-1/1",200,-10,10); hResidualLocalXDT_MB[5]=fs->make<TH1F>("hResidualLocalXDT_MB-1/2","hResidualLocalXDT_MB-1/2",200,-10,10); hResidualLocalPhiDT_MB[5]=fs->make<TH1F>("hResidualLocalPhiDT_MB-1/2","hResidualLocalPhiDT_MB-1/2",200,-1,1); hResidualLocalThetaDT_MB[5]=fs->make<TH1F>("hResidualLocalThetaDT_MB-1/2","hResidualLocalThetaDT_MB-1/2",200,-1,1); hResidualLocalYDT_MB[5] = fs->make<TH1F>("hResidualLocalYDT_MB-1/2","hResidualLocalYDT_MB-1/2",200,-10,10); hResidualLocalXDT_MB[6]=fs->make<TH1F>("hResidualLocalXDT_MB-1/3","hResidualLocalXDT_MB-1/3",200,-10,10); hResidualLocalPhiDT_MB[6]=fs->make<TH1F>("hResidualLocalPhiDT_MB-1/3","hResidualLocalPhiDT_MB-1/3",200,-1,1); hResidualLocalThetaDT_MB[6]=fs->make<TH1F>("hResidualLocalThetaDT_MB-1/3","hResidualLocalThetaDT_MB-1/3",200,-1,1); hResidualLocalYDT_MB[6] = fs->make<TH1F>("hResidualLocalYDT_MB-1/3","hResidualLocalYDT_MB-1/3",200,-10,10); hResidualLocalXDT_MB[7]=fs->make<TH1F>("hResidualLocalXDT_MB-1/4","hResidualLocalXDT_MB-1/4",200,-10,10); hResidualLocalPhiDT_MB[7]=fs->make<TH1F>("hResidualLocalPhiDT_MB-1/4","hResidualLocalPhiDT_MB-1/4",200,-1,1); hResidualLocalThetaDT_MB[7]=fs->make<TH1F>("hResidualLocalThetaDT_MB-1/4","hResidualLocalThetaDT_MB-1/4",200,-1,1); hResidualLocalYDT_MB[7] = fs->make<TH1F>("hResidualLocalYDT_MB-1/4","hResidualLocalYDT_MB-1/4",200,-10,10); hResidualLocalXDT_MB[8]=fs->make<TH1F>("hResidualLocalXDT_MB0/1","hResidualLocalXDT_MB0/1",200,-10,10); hResidualLocalPhiDT_MB[8]=fs->make<TH1F>("hResidualLocalPhiDT_MB0/1","hResidualLocalPhiDT_MB0/1",200,-1,1); hResidualLocalThetaDT_MB[8]=fs->make<TH1F>("hResidualLocalThetaDT_MB0/1","hResidualLocalThetaDT_MB0/1",200,-1,1); hResidualLocalYDT_MB[8] = fs->make<TH1F>("hResidualLocalYDT_MB0/1","hResidualLocalYDT_MB0/1",200,-10,10); hResidualLocalXDT_MB[9]=fs->make<TH1F>("hResidualLocalXDT_MB0/2","hResidualLocalXDT_MB0/2",200,-10,10); hResidualLocalPhiDT_MB[9]=fs->make<TH1F>("hResidualLocalPhiDT_MB0/2","hResidualLocalPhiDT_MB0/2",200,-1,1); hResidualLocalThetaDT_MB[9]=fs->make<TH1F>("hResidualLocalThetaDT_MB0/2","hResidualLocalThetaDT_MB0/2",200,-1,1); hResidualLocalYDT_MB[9] = fs->make<TH1F>("hResidualLocalYDT_MB0/2","hResidualLocalYDT_MB0/2",200,-10,10); hResidualLocalXDT_MB[10]=fs->make<TH1F>("hResidualLocalXDT_MB0/3","hResidualLocalXDT_MB0/3",200,-10,10); hResidualLocalThetaDT_MB[10]=fs->make<TH1F>("hResidualLocalThetaDT_MB0/3","hResidualLocalThetaDT_MB0/3",200,-1,1); hResidualLocalPhiDT_MB[10]=fs->make<TH1F>("hResidualLocalPhiDT_MB0/3","hResidualLocalPhiDT_MB0/3",200,-1,1); hResidualLocalYDT_MB[10] = fs->make<TH1F>("hResidualLocalYDT_MB0/3","hResidualLocalYDT_MB0/3",200,-10,10); hResidualLocalXDT_MB[11]=fs->make<TH1F>("hResidualLocalXDT_MB0/4","hResidualLocalXDT_MB0/4",200,-10,10); hResidualLocalPhiDT_MB[11]=fs->make<TH1F>("hResidualLocalPhiDT_MB0/4","hResidualLocalPhiDT_MB0/4",200,-1,1); hResidualLocalThetaDT_MB[11]=fs->make<TH1F>("hResidualLocalThetaDT_MB0/4","hResidualLocalThetaDT_MB0/4",200,-1,1); hResidualLocalYDT_MB[11] = fs->make<TH1F>("hResidualLocalYDT_MB0/4","hResidualLocalYDT_MB0/4",200,-10,10); hResidualLocalXDT_MB[12]=fs->make<TH1F>("hResidualLocalXDT_MB1/1","hResidualLocalXDT_MB1/1",200,-10,10); hResidualLocalPhiDT_MB[12]=fs->make<TH1F>("hResidualLocalPhiDT_MB1/1","hResidualLocalPhiDT_MB1/1",200,-1,1); hResidualLocalThetaDT_MB[12]=fs->make<TH1F>("hResidualLocalThetaDT_MB1/1","hResidualLocalThetaDT_MB1/1",200,-1,1); hResidualLocalYDT_MB[12] = fs->make<TH1F>("hResidualLocalYDT_MB1/1","hResidualLocalYDT_MB1/1",200,-10,10); hResidualLocalXDT_MB[13]=fs->make<TH1F>("hResidualLocalXDT_MB1/2","hResidualLocalXDT_MB1/2",200,-10,10); hResidualLocalPhiDT_MB[13]=fs->make<TH1F>("hResidualLocalPhiDT_MB1/2","hResidualLocalPhiDT_MB1/2",200,-1,1); hResidualLocalThetaDT_MB[13]=fs->make<TH1F>("hResidualLocalThetaDT_MB1/2","hResidualLocalThetaDT_MB1/2",200,-1,1); hResidualLocalYDT_MB[13] = fs->make<TH1F>("hResidualLocalYDT_MB1/2","hResidualLocalYDT_MB1/2",200,-10,10); hResidualLocalXDT_MB[14]=fs->make<TH1F>("hResidualLocalXDT_MB1/3","hResidualLocalXDT_MB1/3",200,-10,10); hResidualLocalPhiDT_MB[14]=fs->make<TH1F>("hResidualLocalPhiDT_MB1/3","hResidualLocalPhiDT_MB1/3",200,-1,1); hResidualLocalThetaDT_MB[14]=fs->make<TH1F>("hResidualLocalThetaDT_MB1/3","hResidualLocalThetaDT_MB1/3",200,-1,1); hResidualLocalYDT_MB[14] = fs->make<TH1F>("hResidualLocalYDT_MB1/3","hResidualLocalYDT_MB1/3",200,-10,10); hResidualLocalXDT_MB[15]=fs->make<TH1F>("hResidualLocalXDT_MB1/4","hResidualLocalXDT_MB1/4",200,-10,10); hResidualLocalPhiDT_MB[15]=fs->make<TH1F>("hResidualLocalPhiDT_MB1/4","hResidualLocalPhiDT_MB1/4",200,-1,1); hResidualLocalThetaDT_MB[15]=fs->make<TH1F>("hResidualLocalThetaDT_MB1/4","hResidualLocalThetaDT_MB1/4",200,-1,1); hResidualLocalYDT_MB[15] = fs->make<TH1F>("hResidualLocalYDT_MB1/4","hResidualLocalYDT_MB1/4",200,-10,10); hResidualLocalXDT_MB[16]=fs->make<TH1F>("hResidualLocalXDT_MB2/1","hResidualLocalXDT_MB2/1",200,-10,10); hResidualLocalPhiDT_MB[16]=fs->make<TH1F>("hResidualLocalPhiDT_MB2/1","hResidualLocalPhiDT_MB2/1",200,-1,1); hResidualLocalThetaDT_MB[16]=fs->make<TH1F>("hResidualLocalThetaDT_MB2/1","hResidualLocalThetaDT_MB2/1",200,-1,1); hResidualLocalYDT_MB[16] = fs->make<TH1F>("hResidualLocalYDT_MB2/1","hResidualLocalYDT_MB2/1",200,-10,10); hResidualLocalXDT_MB[17]=fs->make<TH1F>("hResidualLocalXDT_MB2/2","hResidualLocalXDT_MB2/2",200,-10,10); hResidualLocalPhiDT_MB[17]=fs->make<TH1F>("hResidualLocalPhiDT_MB2/2","hResidualLocalPhiDT_MB2/2",200,-1,1); hResidualLocalThetaDT_MB[17]=fs->make<TH1F>("hResidualLocalThetaDT_MB2/2","hResidualLocalThetaDT_MB2/2",200,-1,1); hResidualLocalYDT_MB[17] = fs->make<TH1F>("hResidualLocalYDT_MB2/2","hResidualLocalYDT_MB2/2",200,-10,10); hResidualLocalXDT_MB[18]=fs->make<TH1F>("hResidualLocalXDT_MB2/3","hResidualLocalXDT_MB2/3",200,-10,10); hResidualLocalPhiDT_MB[18]=fs->make<TH1F>("hResidualLocalPhiDT_MB2/3","hResidualLocalPhiDT_MB2/3",200,-1,1); hResidualLocalThetaDT_MB[18]=fs->make<TH1F>("hResidualLocalThetaDT_MB2/3","hResidualLocalThetaDT_MB2/3",200,-1,1); hResidualLocalYDT_MB[18] = fs->make<TH1F>("hResidualLocalYDT_MB2/3","hResidualLocalYDT_MB2/3",200,-10,10); hResidualLocalXDT_MB[19]=fs->make<TH1F>("hResidualLocalXDT_MB2/4","hResidualLocalXDT_MB2/4",200,-10,10); hResidualLocalPhiDT_MB[19]=fs->make<TH1F>("hResidualLocalPhiDT_MB2/4","hResidualLocalPhiDT_MB2/4",200,-1,1); hResidualLocalThetaDT_MB[19]=fs->make<TH1F>("hResidualLocalThetaDT_MB2/4","hResidualLocalThetaDT_MB2/4",200,-1,1); hResidualLocalYDT_MB[19] = fs->make<TH1F>("hResidualLocalYDT_MB2/4","hResidualLocalYDT_MB2/4",200,-10,10); hResidualGlobalRPhiDT_MB[0]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB-2/1","hResidualGlobalRPhiDT_MB-2/1",200,-10,10); hResidualGlobalPhiDT_MB[0]=fs->make<TH1F>("hResidualGlobalPhiDT_MB-2/1","hResidualGlobalPhiDT_MB-2/1",200,-1,1); hResidualGlobalThetaDT_MB[0]=fs->make<TH1F>("hResidualGlobalThetaDT_MB-2/1","hResidualGlobalThetaDT_MB-2/1",200,-1,1); hResidualGlobalZDT_MB[0] = fs->make<TH1F>("hResidualGlobalZDT_MB-2/1","hResidualGlobalZDT_MB-2/1",200,-10,10); hResidualGlobalRPhiDT_MB[1]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB-2/2","hResidualGlobalRPhiDT_MB-2/2",200,-10,10); hResidualGlobalPhiDT_MB[1]=fs->make<TH1F>("hResidualGlobalPhiDT_MB-2/2","hResidualGlobalPhiDT_MB-2/2",200,-1,1); hResidualGlobalThetaDT_MB[1]=fs->make<TH1F>("hResidualGlobalThetaDT_MB-2/2","hResidualGlobalThetaDT_MB-2/2",200,-1,1); hResidualGlobalZDT_MB[1] = fs->make<TH1F>("hResidualGlobalZDT_MB-2/2","hResidualGlobalZDT_MB-2/2",200,-10,10); hResidualGlobalRPhiDT_MB[2]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB-2/3","hResidualGlobalRPhiDT_MB-2/3",200,-10,10); hResidualGlobalPhiDT_MB[2]=fs->make<TH1F>("hResidualGlobalPhiDT_MB-2/3","hResidualGlobalPhiDT_MB-2/3",200,-1,1); hResidualGlobalThetaDT_MB[2]=fs->make<TH1F>("hResidualGlobalThetaDT_MB-2/3","hResidualGlobalThetaDT_MB-2/3",200,-1,1); hResidualGlobalZDT_MB[2] = fs->make<TH1F>("hResidualGlobalZDT_MB-2/3","hResidualGlobalZDT_MB-2/3",200,-10,10); hResidualGlobalRPhiDT_MB[3]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB-2/4","hResidualGlobalRPhiDT_MB-2/4",200,-10,10); hResidualGlobalPhiDT_MB[3]=fs->make<TH1F>("hResidualGlobalPhiDT_MB-2/4","hResidualGlobalPhiDT_MB-2/4",200,-1,1); hResidualGlobalThetaDT_MB[3]=fs->make<TH1F>("hResidualGlobalThetaDT_MB-2/4","hResidualGlobalThetaDT_MB-2/4",200,-1,1); hResidualGlobalZDT_MB[3] = fs->make<TH1F>("hResidualGlobalZDT_MB-2/4","hResidualGlobalZDT_MB-2/4",200,-10,10); hResidualGlobalRPhiDT_MB[4]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB-1/1","hResidualGlobalRPhiDT_MB-1/1",200,-10,10); hResidualGlobalPhiDT_MB[4]=fs->make<TH1F>("hResidualGlobalPhiDT_MB-1/1","hResidualGlobalPhiDT_MB-1/1",200,-1,1); hResidualGlobalThetaDT_MB[4]=fs->make<TH1F>("hResidualGlobalThetaDT_MB-1/1","hResidualGlobalThetaDT_MB-1/1",200,-1,1); hResidualGlobalZDT_MB[4] = fs->make<TH1F>("hResidualGlobalZDT_MB-1/1","hResidualGlobalZDT_MB-1/1",200,-10,10); hResidualGlobalRPhiDT_MB[5]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB-1/2","hResidualGlobalRPhiDT_MB-1/2",200,-10,10); hResidualGlobalPhiDT_MB[5]=fs->make<TH1F>("hResidualGlobalPhiDT_MB-1/2","hResidualGlobalPhiDT_MB-1/2",200,-1,1); hResidualGlobalThetaDT_MB[5]=fs->make<TH1F>("hResidualGlobalThetaDT_MB-1/2","hResidualGlobalThetaDT_MB-1/2",200,-1,1); hResidualGlobalZDT_MB[5] = fs->make<TH1F>("hResidualGlobalZDT_MB-1/2","hResidualGlobalZDT_MB-1/2",200,-10,10); hResidualGlobalRPhiDT_MB[6]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB-1/3","hResidualGlobalRPhiDT_MB-1/3",200,-10,10); hResidualGlobalPhiDT_MB[6]=fs->make<TH1F>("hResidualGlobalPhiDT_MB-1/3","hResidualGlobalPhiDT_MB-1/3",200,-1,1); hResidualGlobalThetaDT_MB[6]=fs->make<TH1F>("hResidualGlobalThetaDT_MB-1/3","hResidualGlobalThetaDT_MB-1/3",200,-1,1); hResidualGlobalZDT_MB[6] = fs->make<TH1F>("hResidualGlobalZDT_MB-1/3","hResidualGlobalZDT_MB-1/3",200,-10,10); hResidualGlobalRPhiDT_MB[7]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB-1/4","hResidualGlobalRPhiDT_MB-1/4",200,-10,10); hResidualGlobalPhiDT_MB[7]=fs->make<TH1F>("hResidualGlobalPhiDT_MB-1/4","hResidualGlobalPhiDT_MB-1/4",200,-1,1); hResidualGlobalThetaDT_MB[7]=fs->make<TH1F>("hResidualGlobalThetaDT_MB-1/4","hResidualGlobalThetaDT_MB-1/4",200,-1,1); hResidualGlobalZDT_MB[7] = fs->make<TH1F>("hResidualGlobalZDT_MB-1/4","hResidualGlobalZDT_MB-1/4",200,-10,10); hResidualGlobalRPhiDT_MB[8]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB0/1","hResidualGlobalRPhiDT_MB0/1",200,-10,10); hResidualGlobalPhiDT_MB[8]=fs->make<TH1F>("hResidualGlobalPhiDT_MB0/1","hResidualGlobalPhiDT_MB0/1",200,-1,1); hResidualGlobalThetaDT_MB[8]=fs->make<TH1F>("hResidualGlobalThetaDT_MB0/1","hResidualGlobalThetaDT_MB0/1",200,-1,1); hResidualGlobalZDT_MB[8] = fs->make<TH1F>("hResidualGlobalZDT_MB0/1","hResidualGlobalZDT_MB0/1",200,-10,10); hResidualGlobalRPhiDT_MB[9]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB0/2","hResidualGlobalRPhiDT_MB0/2",200,-10,10); hResidualGlobalPhiDT_MB[9]=fs->make<TH1F>("hResidualGlobalPhiDT_MB0/2","hResidualGlobalPhiDT_MB0/2",200,-1,1); hResidualGlobalThetaDT_MB[9]=fs->make<TH1F>("hResidualGlobalThetaDT_MB0/2","hResidualGlobalThetaDT_MB0/2",200,-1,1); hResidualGlobalZDT_MB[9] = fs->make<TH1F>("hResidualGlobalZDT_MB0/2","hResidualGlobalZDT_MB0/2",200,-10,10); hResidualGlobalRPhiDT_MB[10]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB0/3","hResidualGlobalRPhiDT_MB0/3",200,-10,10); hResidualGlobalThetaDT_MB[10]=fs->make<TH1F>("hResidualGlobalThetaDT_MB0/3","hResidualGlobalThetaDT_MB0/3",200,-1,1); hResidualGlobalPhiDT_MB[10]=fs->make<TH1F>("hResidualGlobalPhiDT_MB0/3","hResidualGlobalPhiDT_MB0/3",200,-1,1); hResidualGlobalZDT_MB[10] = fs->make<TH1F>("hResidualGlobalZDT_MB0/3","hResidualGlobalZDT_MB0/3",200,-10,10); hResidualGlobalRPhiDT_MB[11]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB0/4","hResidualGlobalRPhiDT_MB0/4",200,-10,10); hResidualGlobalPhiDT_MB[11]=fs->make<TH1F>("hResidualGlobalPhiDT_MB0/4","hResidualGlobalPhiDT_MB0/4",200,-1,1); hResidualGlobalThetaDT_MB[11]=fs->make<TH1F>("hResidualGlobalThetaDT_MB0/4","hResidualGlobalThetaDT_MB0/4",200,-1,1); hResidualGlobalZDT_MB[11] = fs->make<TH1F>("hResidualGlobalZDT_MB0/4","hResidualGlobalZDT_MB0/4",200,-10,10); hResidualGlobalRPhiDT_MB[12]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB1/1","hResidualGlobalRPhiDT_MB1/1",200,-10,10); hResidualGlobalPhiDT_MB[12]=fs->make<TH1F>("hResidualGlobalPhiDT_MB1/1","hResidualGlobalPhiDT_MB1/1",200,-1,1); hResidualGlobalThetaDT_MB[12]=fs->make<TH1F>("hResidualGlobalThetaDT_MB1/1","hResidualGlobalThetaDT_MB1/1",200,-1,1); hResidualGlobalZDT_MB[12] = fs->make<TH1F>("hResidualGlobalZDT_MB1/1","hResidualGlobalZDT_MB1/1",200,-10,10); hResidualGlobalRPhiDT_MB[13]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB1/2","hResidualGlobalRPhiDT_MB1/2",200,-10,10); hResidualGlobalPhiDT_MB[13]=fs->make<TH1F>("hResidualGlobalPhiDT_MB1/2","hResidualGlobalPhiDT_MB1/2",200,-1,1); hResidualGlobalThetaDT_MB[13]=fs->make<TH1F>("hResidualGlobalThetaDT_MB1/2","hResidualGlobalThetaDT_MB1/2",200,-1,1); hResidualGlobalZDT_MB[13] = fs->make<TH1F>("hResidualGlobalZDT_MB1/2","hResidualGlobalZDT_MB1/2",200,-10,10); hResidualGlobalRPhiDT_MB[14]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB1/3","hResidualGlobalRPhiDT_MB1/3",200,-10,10); hResidualGlobalPhiDT_MB[14]=fs->make<TH1F>("hResidualGlobalPhiDT_MB1/3","hResidualGlobalPhiDT_MB1/3",200,-1,1); hResidualGlobalThetaDT_MB[14]=fs->make<TH1F>("hResidualGlobalThetaDT_MB1/3","hResidualGlobalThetaDT_MB1/3",200,-1,1); hResidualGlobalZDT_MB[14] = fs->make<TH1F>("hResidualGlobalZDT_MB1/3","hResidualGlobalZDT_MB1/3",200,-10,10); hResidualGlobalRPhiDT_MB[15]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB1/4","hResidualGlobalRPhiDT_MB1/4",200,-10,10); hResidualGlobalPhiDT_MB[15]=fs->make<TH1F>("hResidualGlobalPhiDT_MB1/4","hResidualGlobalPhiDT_MB1/4",200,-1,1); hResidualGlobalThetaDT_MB[15]=fs->make<TH1F>("hResidualGlobalThetaDT_MB1/4","hResidualGlobalThetaDT_MB1/4",200,-1,1); hResidualGlobalZDT_MB[15] = fs->make<TH1F>("hResidualGlobalZDT_MB1/4","hResidualGlobalZDT_MB1/4",200,-10,10); hResidualGlobalRPhiDT_MB[16]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB2/1","hResidualGlobalRPhiDT_MB2/1",200,-10,10); hResidualGlobalPhiDT_MB[16]=fs->make<TH1F>("hResidualGlobalPhiDT_MB2/1","hResidualGlobalPhiDT_MB2/1",200,-1,1); hResidualGlobalThetaDT_MB[16]=fs->make<TH1F>("hResidualGlobalThetaDT_MB2/1","hResidualGlobalThetaDT_MB2/1",200,-1,1); hResidualGlobalZDT_MB[16] = fs->make<TH1F>("hResidualGlobalZDT_MB2/1","hResidualGlobalZDT_MB2/1",200,-10,10); hResidualGlobalRPhiDT_MB[17]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB2/2","hResidualGlobalRPhiDT_MB2/2",200,-10,10); hResidualGlobalPhiDT_MB[17]=fs->make<TH1F>("hResidualGlobalPhiDT_MB2/2","hResidualGlobalPhiDT_MB2/2",200,-1,1); hResidualGlobalThetaDT_MB[17]=fs->make<TH1F>("hResidualGlobalThetaDT_MB2/2","hResidualGlobalThetaDT_MB2/2",200,-1,1); hResidualGlobalZDT_MB[17] = fs->make<TH1F>("hResidualGlobalZDT_MB2/2","hResidualGlobalZDT_MB2/2",200,-10,10); hResidualGlobalRPhiDT_MB[18]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB2/3","hResidualGlobalRPhiDT_MB2/3",200,-10,10); hResidualGlobalPhiDT_MB[18]=fs->make<TH1F>("hResidualGlobalPhiDT_MB2/3","hResidualGlobalPhiDT_MB2/3",200,-1,1); hResidualGlobalThetaDT_MB[18]=fs->make<TH1F>("hResidualGlobalThetaDT_MB2/3","hResidualGlobalThetaDT_MB2/3",200,-1,1); hResidualGlobalZDT_MB[18] = fs->make<TH1F>("hResidualGlobalZDT_MB2/3","hResidualGlobalZDT_MB2/3",200,-10,10); hResidualGlobalRPhiDT_MB[19]=fs->make<TH1F>("hResidualGlobalRPhiDT_MB2/4","hResidualGlobalRPhiDT_MB2/4",200,-10,10); hResidualGlobalPhiDT_MB[19]=fs->make<TH1F>("hResidualGlobalPhiDT_MB2/4","hResidualGlobalPhiDT_MB2/4",200,-1,1); hResidualGlobalThetaDT_MB[19]=fs->make<TH1F>("hResidualGlobalThetaDT_MB2/4","hResidualGlobalThetaDT_MB2/4",200,-1,1); hResidualGlobalZDT_MB[19] = fs->make<TH1F>("hResidualGlobalZDT_MB2/4","hResidualGlobalZDT_MB2/4",200,-10,10); // CSC Stations hResidualLocalXCSC_ME[0]=fs->make<TH1F>("hResidualLocalXCSC_ME-4/1","hResidualLocalXCSC_ME-4/1",200,-10,10); hResidualLocalPhiCSC_ME[0]=fs->make<TH1F>("hResidualLocalPhiCSC_ME-4/1","hResidualLocalPhiCSC_ME-4/1",200,-1,1); hResidualLocalThetaCSC_ME[0]=fs->make<TH1F>("hResidualLocalThetaCSC_ME-4/1","hResidualLocalThetaCSC_ME-4/1",200,-1,1); hResidualLocalYCSC_ME[0] = fs->make<TH1F>("hResidualLocalYCSC_ME-4/1","hResidualLocalYCSC_ME-4/1",200,-10,10); hResidualLocalXCSC_ME[1]=fs->make<TH1F>("hResidualLocalXCSC_ME-4/2","hResidualLocalXCSC_ME-4/2",200,-10,10); hResidualLocalPhiCSC_ME[1]=fs->make<TH1F>("hResidualLocalPhiCSC_ME-4/2","hResidualLocalPhiCSC_ME-4/2",200,-1,1); hResidualLocalThetaCSC_ME[1]=fs->make<TH1F>("hResidualLocalThetaCSC_ME-4/2","hResidualLocalThetaCSC_ME-4/2",200,-1,1); hResidualLocalYCSC_ME[1] = fs->make<TH1F>("hResidualLocalYCSC_ME-4/2","hResidualLocalYCSC_ME-4/2",200,-10,10); hResidualLocalXCSC_ME[2]=fs->make<TH1F>("hResidualLocalXCSC_ME-3/1","hResidualLocalXCSC_ME-3/1",200,-10,10); hResidualLocalPhiCSC_ME[2]=fs->make<TH1F>("hResidualLocalPhiCSC_ME-3/1","hResidualLocalPhiCSC_ME-3/1",200,-1,1); hResidualLocalThetaCSC_ME[2]=fs->make<TH1F>("hResidualLocalThetaCSC_ME-3/1","hResidualLocalThetaCSC_ME-3/1",200,-1,1); hResidualLocalYCSC_ME[2] = fs->make<TH1F>("hResidualLocalYCSC_ME-3/1","hResidualLocalYCSC_ME-3/1",200,-10,10); hResidualLocalXCSC_ME[3]=fs->make<TH1F>("hResidualLocalXCSC_ME-3/2","hResidualLocalXCSC_ME-3/2",200,-10,10); hResidualLocalPhiCSC_ME[3]=fs->make<TH1F>("hResidualLocalPhiCSC_ME-3/2","hResidualLocalPhiCSC_ME-3/2",200,-1,1); hResidualLocalThetaCSC_ME[3]=fs->make<TH1F>("hResidualLocalThetaCSC_ME-3/2","hResidualLocalThetaCSC_ME-3/2",200,-1,1); hResidualLocalYCSC_ME[3] = fs->make<TH1F>("hResidualLocalYCSC_ME-3/2","hResidualLocalYCSC_ME-3/2",200,-10,10); hResidualLocalXCSC_ME[4]=fs->make<TH1F>("hResidualLocalXCSC_ME-2/1","hResidualLocalXCSC_ME-2/1",200,-10,10); hResidualLocalPhiCSC_ME[4]=fs->make<TH1F>("hResidualLocalPhiCSC_ME-2/1","hResidualLocalPhiCSC_ME-2/1",200,-1,1); hResidualLocalThetaCSC_ME[4]=fs->make<TH1F>("hResidualLocalThetaCSC_ME-2/1","hResidualLocalThetaCSC_ME-2/1",200,-1,1); hResidualLocalYCSC_ME[4] = fs->make<TH1F>("hResidualLocalYCSC_ME-2/1","hResidualLocalYCSC_ME-2/1",200,-10,10); hResidualLocalXCSC_ME[5]=fs->make<TH1F>("hResidualLocalXCSC_ME-2/2","hResidualLocalXCSC_ME-2/2",200,-10,10); hResidualLocalPhiCSC_ME[5]=fs->make<TH1F>("hResidualLocalPhiCSC_ME-2/2","hResidualLocalPhiCSC_ME-2/2",200,-1,1); hResidualLocalThetaCSC_ME[5]=fs->make<TH1F>("hResidualLocalThetaCSC_ME-2/2","hResidualLocalThetaCSC_ME-2/2",200,-1,1); hResidualLocalYCSC_ME[5] = fs->make<TH1F>("hResidualLocalYCSC_ME-2/2","hResidualLocalYCSC_ME-2/2",200,-10,10); hResidualLocalXCSC_ME[6]=fs->make<TH1F>("hResidualLocalXCSC_ME-1/1","hResidualLocalXCSC_ME-1/1",200,-10,10); hResidualLocalPhiCSC_ME[6]=fs->make<TH1F>("hResidualLocalPhiCSC_ME-1/1","hResidualLocalPhiCSC_ME-1/1",200,-1,1); hResidualLocalThetaCSC_ME[6]=fs->make<TH1F>("hResidualLocalThetaCSC_ME-1/1","hResidualLocalThetaCSC_ME-1/1",200,-1,1); hResidualLocalYCSC_ME[6] = fs->make<TH1F>("hResidualLocalYCSC_ME-1/1","hResidualLocalYCSC_ME-1/1",200,-10,10); hResidualLocalXCSC_ME[7]=fs->make<TH1F>("hResidualLocalXCSC_ME-1/2","hResidualLocalXCSC_ME-1/2",200,-10,10); hResidualLocalPhiCSC_ME[7]=fs->make<TH1F>("hResidualLocalPhiCSC_ME-1/2","hResidualLocalPhiCSC_ME-1/2",200,-1,1); hResidualLocalThetaCSC_ME[7]=fs->make<TH1F>("hResidualLocalThetaCSC_ME-1/2","hResidualLocalThetaCSC_ME-1/2",200,-1,1); hResidualLocalYCSC_ME[7] = fs->make<TH1F>("hResidualLocalYCSC_ME-1/2","hResidualLocalYCSC_ME-1/2",200,-10,10); hResidualLocalXCSC_ME[8]=fs->make<TH1F>("hResidualLocalXCSC_ME-1/3","hResidualLocalXCSC_ME-1/3",200,-10,10); hResidualLocalPhiCSC_ME[8]=fs->make<TH1F>("hResidualLocalPhiCSC_ME-1/3","hResidualLocalPhiCSC_ME-1/3",200,-1,1); hResidualLocalThetaCSC_ME[8]=fs->make<TH1F>("hResidualLocalThetaCSC_ME-1/3","hResidualLocalThetaCSC_ME-1/3",200,-1,1); hResidualLocalYCSC_ME[8] = fs->make<TH1F>("hResidualLocalYCSC_ME-1/3","hResidualLocalYCSC_ME-1/3",200,-10,10); hResidualLocalXCSC_ME[9]=fs->make<TH1F>("hResidualLocalXCSC_ME1/1","hResidualLocalXCSC_ME1/1",200,-10,10); hResidualLocalPhiCSC_ME[9]=fs->make<TH1F>("hResidualLocalPhiCSC_ME1/1","hResidualLocalPhiCSC_ME1/1",100,-1,1); hResidualLocalThetaCSC_ME[9]=fs->make<TH1F>("hResidualLocalThetaCSC_ME1/1","hResidualLocalThetaCSC_ME1/1",200,-1,1); hResidualLocalYCSC_ME[9] = fs->make<TH1F>("hResidualLocalYCSC_ME1/1","hResidualLocalYCSC_ME1/1",200,-10,10); hResidualLocalXCSC_ME[10]=fs->make<TH1F>("hResidualLocalXCSC_ME1/2","hResidualLocalXCSC_ME1/2",200,-10,10); hResidualLocalPhiCSC_ME[10]=fs->make<TH1F>("hResidualLocalPhiCSC_ME1/2","hResidualLocalPhiCSC_ME1/2",200,-1,1); hResidualLocalThetaCSC_ME[10]=fs->make<TH1F>("hResidualLocalThetaCSC_ME1/2","hResidualLocalThetaCSC_ME1/2",200,-1,1); hResidualLocalYCSC_ME[10] = fs->make<TH1F>("hResidualLocalYCSC_ME1/2","hResidualLocalYCSC_ME1/2",200,-10,10); hResidualLocalXCSC_ME[11]=fs->make<TH1F>("hResidualLocalXCSC_ME1/3","hResidualLocalXCSC_ME1/3",200,-10,10); hResidualLocalPhiCSC_ME[11]=fs->make<TH1F>("hResidualLocalPhiCSC_ME1/3","hResidualLocalPhiCSC_ME1/3",200,-1,1); hResidualLocalThetaCSC_ME[11]=fs->make<TH1F>("hResidualLocalThetaCSC_ME1/3","hResidualLocalThetaCSC_ME1/3",200,-1,1); hResidualLocalYCSC_ME[11] = fs->make<TH1F>("hResidualLocalYCSC_ME1/3","hResidualLocalYCSC_ME1/3",200,-10,10); hResidualLocalXCSC_ME[12]=fs->make<TH1F>("hResidualLocalXCSC_ME2/1","hResidualLocalXCSC_ME2/1",200,-10,10); hResidualLocalPhiCSC_ME[12]=fs->make<TH1F>("hResidualLocalPhiCSC_ME2/1","hResidualLocalPhiCSC_ME2/1",200,-1,1); hResidualLocalThetaCSC_ME[12]=fs->make<TH1F>("hResidualLocalThetaCSC_ME2/1","hResidualLocalThetaCSC_ME2/1",200,-1,1); hResidualLocalYCSC_ME[12] = fs->make<TH1F>("hResidualLocalYCSC_ME2/1","hResidualLocalYCSC_ME2/1",200,-10,10); hResidualLocalXCSC_ME[13]=fs->make<TH1F>("hResidualLocalXCSC_ME2/2","hResidualLocalXCSC_ME2/2",200,-10,10); hResidualLocalPhiCSC_ME[13]=fs->make<TH1F>("hResidualLocalPhiCSC_ME2/2","hResidualLocalPhiCSC_ME2/2",200,-1,1); hResidualLocalThetaCSC_ME[13]=fs->make<TH1F>("hResidualLocalThetaCSC_ME2/2","hResidualLocalThetaCSC_ME2/2",200,-1,1); hResidualLocalYCSC_ME[13] = fs->make<TH1F>("hResidualLocalYCSC_ME2/2","hResidualLocalYCSC_ME2/2",200,-10,10); hResidualLocalXCSC_ME[14]=fs->make<TH1F>("hResidualLocalXCSC_ME3/1","hResidualLocalXCSC_ME3/1",200,-10,10); hResidualLocalPhiCSC_ME[14]=fs->make<TH1F>("hResidualLocalPhiCSC_ME3/1","hResidualLocalPhiCSC_ME3/1",200,-1,1); hResidualLocalThetaCSC_ME[14]=fs->make<TH1F>("hResidualLocalThetaCSC_ME3/1","hResidualLocalThetaCSC_ME3/1",200,-1,1); hResidualLocalYCSC_ME[14] = fs->make<TH1F>("hResidualLocalYCSC_ME3/1","hResidualLocalYCSC_ME3/1",200,-10,10); hResidualLocalXCSC_ME[15]=fs->make<TH1F>("hResidualLocalXCSC_ME3/2","hResidualLocalXCSC_ME3/2",200,-10,10); hResidualLocalPhiCSC_ME[15]=fs->make<TH1F>("hResidualLocalPhiCSC_ME3/2","hResidualLocalPhiCSC_ME3/2",200,-1,1); hResidualLocalThetaCSC_ME[15]=fs->make<TH1F>("hResidualLocalThetaCSC_ME3/2","hResidualLocalThetaCSC_ME3/2",200,-1,1); hResidualLocalYCSC_ME[15] = fs->make<TH1F>("hResidualLocalYCSC_ME3/2","hResidualLocalYCSC_ME3/2",200,-10,10); hResidualLocalXCSC_ME[16]=fs->make<TH1F>("hResidualLocalXCSC_ME4/1","hResidualLocalXCSC_ME4/1",200,-10,10); hResidualLocalPhiCSC_ME[16]=fs->make<TH1F>("hResidualLocalPhiCSC_ME4/1","hResidualLocalPhiCSC_ME4/1",200,-1,1); hResidualLocalThetaCSC_ME[16]=fs->make<TH1F>("hResidualLocalThetaCSC_ME4/1","hResidualLocalThetaCSC_ME4/1",200,-1,1); hResidualLocalYCSC_ME[16] = fs->make<TH1F>("hResidualLocalYCSC_ME4/1","hResidualLocalYCSC_ME4/1",200,-10,10); hResidualLocalXCSC_ME[17]=fs->make<TH1F>("hResidualLocalXCSC_ME4/2","hResidualLocalXCSC_ME4/2",200,-10,10); hResidualLocalPhiCSC_ME[17]=fs->make<TH1F>("hResidualLocalPhiCSC_ME4/2","hResidualLocalPhiCSC_ME4/2",200,-1,1); hResidualLocalThetaCSC_ME[17]=fs->make<TH1F>("hResidualLocalThetaCSC_ME4/2","hResidualLocalThetaCSC_ME4/2",200,-1,1); hResidualLocalYCSC_ME[17] = fs->make<TH1F>("hResidualLocalYCSC_ME4/2","hResidualLocalYCSC_ME4/2",200,-10,10); hResidualGlobalRPhiCSC_ME[0]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME-4/1","hResidualGlobalRPhiCSC_ME-4/1",200,-10,10); hResidualGlobalPhiCSC_ME[0]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME-4/1","hResidualGlobalPhiCSC_ME-4/1",200,-1,1); hResidualGlobalThetaCSC_ME[0]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME-4/1","hResidualGlobalThetaCSC_ME-4/1",200,-1,1); hResidualGlobalRCSC_ME[0] = fs->make<TH1F>("hResidualGlobalRCSC_ME-4/1","hResidualGlobalRCSC_ME-4/1",200,-10,10); hResidualGlobalRPhiCSC_ME[1]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME-4/2","hResidualGlobalRPhiCSC_ME-4/2",200,-10,10); hResidualGlobalPhiCSC_ME[1]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME-4/2","hResidualGlobalPhiCSC_ME-4/2",200,-1,1); hResidualGlobalThetaCSC_ME[1]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME-4/2","hResidualGlobalThetaCSC_ME-4/2",200,-1,1); hResidualGlobalRCSC_ME[1] = fs->make<TH1F>("hResidualGlobalRCSC_ME-4/2","hResidualGlobalRCSC_ME-4/2",200,-10,10); hResidualGlobalRPhiCSC_ME[2]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME-3/1","hResidualGlobalRPhiCSC_ME-3/1",200,-10,10); hResidualGlobalPhiCSC_ME[2]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME-3/1","hResidualGlobalPhiCSC_ME-3/1",200,-1,1); hResidualGlobalThetaCSC_ME[2]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME-3/1","hResidualGlobalThetaCSC_ME-3/1",200,-1,1); hResidualGlobalRCSC_ME[2] = fs->make<TH1F>("hResidualGlobalRCSC_ME-3/1","hResidualGlobalRCSC_ME-3/1",200,-10,10); hResidualGlobalRPhiCSC_ME[3]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME-3/2","hResidualGlobalRPhiCSC_ME-3/2",200,-10,10); hResidualGlobalPhiCSC_ME[3]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME-3/2","hResidualGlobalPhiCSC_ME-3/2",200,-1,1); hResidualGlobalThetaCSC_ME[3]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME-3/2","hResidualGlobalThetaCSC_ME-3/2",200,-1,1); hResidualGlobalRCSC_ME[3] = fs->make<TH1F>("hResidualGlobalRCSC_ME-3/2","hResidualGlobalRCSC_ME-3/2",200,-10,10); hResidualGlobalRPhiCSC_ME[4]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME-2/1","hResidualGlobalRPhiCSC_ME-2/1",200,-10,10); hResidualGlobalPhiCSC_ME[4]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME-2/1","hResidualGlobalPhiCSC_ME-2/1",200,-1,1); hResidualGlobalThetaCSC_ME[4]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME-2/1","hResidualGlobalThetaCSC_ME-2/1",200,-1,1); hResidualGlobalRCSC_ME[4] = fs->make<TH1F>("hResidualGlobalRCSC_ME-2/1","hResidualGlobalRCSC_ME-2/1",200,-10,10); hResidualGlobalRPhiCSC_ME[5]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME-2/2","hResidualGlobalRPhiCSC_ME-2/2",200,-10,10); hResidualGlobalPhiCSC_ME[5]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME-2/2","hResidualGlobalPhiCSC_ME-2/2",200,-1,1); hResidualGlobalThetaCSC_ME[5]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME-2/2","hResidualGlobalThetaCSC_ME-2/2",200,-1,1); hResidualGlobalRCSC_ME[5] = fs->make<TH1F>("hResidualGlobalRCSC_ME-2/2","hResidualGlobalRCSC_ME-2/2",200,-10,10); hResidualGlobalRPhiCSC_ME[6]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME-1/1","hResidualGlobalRPhiCSC_ME-1/1",200,-10,10); hResidualGlobalPhiCSC_ME[6]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME-1/1","hResidualGlobalPhiCSC_ME-1/1",200,-1,1); hResidualGlobalThetaCSC_ME[6]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME-1/1","hResidualGlobalThetaCSC_ME-1/1",200,-1,1); hResidualGlobalRCSC_ME[6] = fs->make<TH1F>("hResidualGlobalRCSC_ME-1/1","hResidualGlobalRCSC_ME-1/1",200,-10,10); hResidualGlobalRPhiCSC_ME[7]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME-1/2","hResidualGlobalRPhiCSC_ME-1/2",200,-10,10); hResidualGlobalPhiCSC_ME[7]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME-1/2","hResidualGlobalPhiCSC_ME-1/2",200,-1,1); hResidualGlobalThetaCSC_ME[7]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME-1/2","hResidualGlobalThetaCSC_ME-1/2",200,-1,1); hResidualGlobalRCSC_ME[7] = fs->make<TH1F>("hResidualGlobalRCSC_ME-1/2","hResidualGlobalRCSC_ME-1/2",200,-10,10); hResidualGlobalRPhiCSC_ME[8]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME-1/3","hResidualGlobalRPhiCSC_ME-1/3",200,-10,10); hResidualGlobalPhiCSC_ME[8]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME-1/3","hResidualGlobalPhiCSC_ME-1/3",200,-1,1); hResidualGlobalThetaCSC_ME[8]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME-1/3","hResidualGlobalThetaCSC_ME-1/3",200,-1,1); hResidualGlobalRCSC_ME[8] = fs->make<TH1F>("hResidualGlobalRCSC_ME-1/3","hResidualGlobalRCSC_ME-1/3",200,-10,10); hResidualGlobalRPhiCSC_ME[9]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME1/1","hResidualGlobalRPhiCSC_ME1/1",200,-10,10); hResidualGlobalPhiCSC_ME[9]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME1/1","hResidualGlobalPhiCSC_ME1/1",100,-1,1); hResidualGlobalThetaCSC_ME[9]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME1/1","hResidualGlobalThetaCSC_ME1/1",200,-1,1); hResidualGlobalRCSC_ME[9] = fs->make<TH1F>("hResidualGlobalRCSC_ME1/1","hResidualGlobalRCSC_ME1/1",200,-10,10); hResidualGlobalRPhiCSC_ME[10]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME1/2","hResidualGlobalRPhiCSC_ME1/2",200,-10,10); hResidualGlobalPhiCSC_ME[10]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME1/2","hResidualGlobalPhiCSC_ME1/2",200,-1,1); hResidualGlobalThetaCSC_ME[10]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME1/2","hResidualGlobalThetaCSC_ME1/2",200,-1,1); hResidualGlobalRCSC_ME[10] = fs->make<TH1F>("hResidualGlobalRCSC_ME1/2","hResidualGlobalRCSC_ME1/2",200,-10,10); hResidualGlobalRPhiCSC_ME[11]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME1/3","hResidualGlobalRPhiCSC_ME1/3",200,-10,10); hResidualGlobalPhiCSC_ME[11]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME1/3","hResidualGlobalPhiCSC_ME1/3",200,-1,1); hResidualGlobalThetaCSC_ME[11]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME1/3","hResidualGlobalThetaCSC_ME1/3",200,-1,1); hResidualGlobalRCSC_ME[11] = fs->make<TH1F>("hResidualGlobalRCSC_ME1/3","hResidualGlobalRCSC_ME1/3",200,-10,10); hResidualGlobalRPhiCSC_ME[12]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME2/1","hResidualGlobalRPhiCSC_ME2/1",200,-10,10); hResidualGlobalPhiCSC_ME[12]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME2/1","hResidualGlobalPhiCSC_ME2/1",200,-1,1); hResidualGlobalThetaCSC_ME[12]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME2/1","hResidualGlobalThetaCSC_ME2/1",200,-1,1); hResidualGlobalRCSC_ME[12] = fs->make<TH1F>("hResidualGlobalRCSC_ME2/1","hResidualGlobalRCSC_ME2/1",200,-10,10); hResidualGlobalRPhiCSC_ME[13]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME2/2","hResidualGlobalRPhiCSC_ME2/2",200,-10,10); hResidualGlobalPhiCSC_ME[13]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME2/2","hResidualGlobalPhiCSC_ME2/2",200,-1,1); hResidualGlobalThetaCSC_ME[13]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME2/2","hResidualGlobalThetaCSC_ME2/2",200,-1,1); hResidualGlobalRCSC_ME[13] = fs->make<TH1F>("hResidualGlobalRCSC_ME2/2","hResidualGlobalRCSC_ME2/2",200,-10,10); hResidualGlobalRPhiCSC_ME[14]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME3/1","hResidualGlobalRPhiCSC_ME3/1",200,-10,10); hResidualGlobalPhiCSC_ME[14]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME3/1","hResidualGlobalPhiCSC_ME3/1",200,-1,1); hResidualGlobalThetaCSC_ME[14]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME3/1","hResidualGlobalThetaCSC_ME3/1",200,-1,1); hResidualGlobalRCSC_ME[14] = fs->make<TH1F>("hResidualGlobalRCSC_ME3/1","hResidualGlobalRCSC_ME3/1",200,-10,10); hResidualGlobalRPhiCSC_ME[15]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME3/2","hResidualGlobalRPhiCSC_ME3/2",200,-10,10); hResidualGlobalPhiCSC_ME[15]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME3/2","hResidualGlobalPhiCSC_ME3/2",200,-1,1); hResidualGlobalThetaCSC_ME[15]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME3/2","hResidualGlobalThetaCSC_ME3/2",200,-1,1); hResidualGlobalRCSC_ME[15] = fs->make<TH1F>("hResidualGlobalRCSC_ME3/2","hResidualGlobalRCSC_ME3/2",200,-10,10); hResidualGlobalRPhiCSC_ME[16]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME4/1","hResidualGlobalRPhiCSC_ME4/1",200,-10,10); hResidualGlobalPhiCSC_ME[16]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME4/1","hResidualGlobalPhiCSC_ME4/1",200,-1,1); hResidualGlobalThetaCSC_ME[16]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME4/1","hResidualGlobalThetaCSC_ME4/1",200,-1,1); hResidualGlobalRCSC_ME[16] = fs->make<TH1F>("hResidualGlobalRCSC_ME4/1","hResidualGlobalRCSC_ME4/1",200,-10,10); hResidualGlobalRPhiCSC_ME[17]=fs->make<TH1F>("hResidualGlobalRPhiCSC_ME4/2","hResidualGlobalRPhiCSC_ME4/2",200,-10,10); hResidualGlobalPhiCSC_ME[17]=fs->make<TH1F>("hResidualGlobalPhiCSC_ME4/2","hResidualGlobalPhiCSC_ME4/2",200,-1,1); hResidualGlobalThetaCSC_ME[17]=fs->make<TH1F>("hResidualGlobalThetaCSC_ME4/2","hResidualGlobalThetaCSC_ME4/2",200,-1,1); hResidualGlobalRCSC_ME[17] = fs->make<TH1F>("hResidualGlobalRCSC_ME4/2","hResidualGlobalRCSC_ME4/2",200,-10,10); //DQM plots: mean residual with RMS as error hprofLocalXDT=fs->make<TH1F>("hprofLocalXDT","Local X DT;;X (cm)", 280,0, 280); hprofLocalPhiDT=fs->make<TH1F>("hprofLocalPhiDT","Local Phi DT;;Phi (rad)", 280,0, 280); hprofLocalThetaDT=fs->make<TH1F>("hprofLocalThetaDT","Local Theta DT;;Theta (rad)", 280,0, 280); hprofLocalYDT=fs->make<TH1F>("hprofLocalYDT","Local Y DT;;Y (cm)", 280,0, 280); hprofLocalXCSC=fs->make<TH1F>("hprofLocalXCSC","Local X CSC;;X (cm)", 540,0, 540); hprofLocalPhiCSC=fs->make<TH1F>("hprofLocalPhiCSC","Local Phi CSC;;Phi (rad)", 540,0, 540); hprofLocalThetaCSC=fs->make<TH1F>("hprofLocalThetaCSC","Local Theta CSC;;Theta (rad)", 540,0, 540); hprofLocalYCSC=fs->make<TH1F>("hprofLocalYCSC","Local Y CSC;;Y (cm)", 540,0, 540); hprofGlobalRPhiDT=fs->make<TH1F>("hprofGlobalRPhiDT","Global RPhi DT;;RPhi (cm)", 280,0, 280); hprofGlobalPhiDT=fs->make<TH1F>("hprofGlobalPhiDT","Global Phi DT;;Phi (rad)", 280,0, 280); hprofGlobalThetaDT=fs->make<TH1F>("hprofGlobalThetaDT","Global Theta DT;;Theta (rad)", 280,0, 280); hprofGlobalZDT=fs->make<TH1F>("hprofGlobalZDT","Global Z DT;;Z (cm)", 280,0, 280); hprofGlobalRPhiCSC=fs->make<TH1F>("hprofGlobalRPhiCSC","Global RPhi CSC;;RPhi (cm)", 540,0, 540); hprofGlobalPhiCSC=fs->make<TH1F>("hprofGlobalPhiCSC","Global Phi CSC;;Phi (cm)", 540,0, 540); hprofGlobalThetaCSC=fs->make<TH1F>("hprofGlobalThetaCSC","Global Theta CSC;;Theta (rad)", 540,0, 540); hprofGlobalRCSC=fs->make<TH1F>("hprofGlobalRCSC","Global R CSC;;R (cm)", 540,0, 540); // TH1F options hprofLocalXDT->GetXaxis()->SetLabelSize(0.025); hprofLocalPhiDT->GetXaxis()->SetLabelSize(0.025); hprofLocalThetaDT->GetXaxis()->SetLabelSize(0.025); hprofLocalYDT->GetXaxis()->SetLabelSize(0.025); hprofLocalXCSC->GetXaxis()->SetLabelSize(0.025); hprofLocalPhiCSC->GetXaxis()->SetLabelSize(0.025); hprofLocalThetaCSC->GetXaxis()->SetLabelSize(0.025); hprofLocalYCSC->GetXaxis()->SetLabelSize(0.025); hprofGlobalRPhiDT->GetXaxis()->SetLabelSize(0.025); hprofGlobalPhiDT->GetXaxis()->SetLabelSize(0.025); hprofGlobalThetaDT->GetXaxis()->SetLabelSize(0.025); hprofGlobalZDT->GetXaxis()->SetLabelSize(0.025); hprofGlobalRPhiCSC->GetXaxis()->SetLabelSize(0.025); hprofGlobalPhiCSC->GetXaxis()->SetLabelSize(0.025); hprofGlobalThetaCSC->GetXaxis()->SetLabelSize(0.025); hprofGlobalRCSC->GetXaxis()->SetLabelSize(0.025); // TH2F histos definition hprofGlobalPositionDT=fs->make<TH2F>("hprofGlobalPositionDT","Global DT position (cm) absolute MEAN residuals;Sector;;cm", 14,0, 14,40,0,40); hprofGlobalAngleDT=fs->make<TH2F>("hprofGlobalAngleDT","Global DT angle (rad) absolute MEAN residuals;Sector;;rad", 14,0, 14,40,0,40); hprofGlobalPositionRmsDT=fs->make<TH2F>("hprofGlobalPositionRmsDT","Global DT position (cm) RMS residuals;Sector;;rad", 14,0, 14,40,0,40); hprofGlobalAngleRmsDT=fs->make<TH2F>("hprofGlobalAngleRmsDT","Global DT angle (rad) RMS residuals;Sector;;rad", 14,0, 14,40,0,40); hprofLocalPositionDT=fs->make<TH2F>("hprofLocalPositionDT","Local DT position (cm) absolute MEAN residuals;Sector;;cm", 14,0, 14,40,0,40); hprofLocalAngleDT=fs->make<TH2F>("hprofLocalAngleDT","Local DT angle (rad) absolute MEAN residuals;Sector;;rad", 14,0, 14,40,0,40); hprofLocalPositionRmsDT=fs->make<TH2F>("hprofLocalPositionRmsDT","Local DT position (cm) RMS residuals;Sector;;rad", 14,0, 14,40,0,40); hprofLocalAngleRmsDT=fs->make<TH2F>("hprofLocalAngleRmsDT","Local DT angle (rad) RMS residuals;Sector;;rad", 14,0, 14,40,0,40); hprofGlobalPositionCSC=fs->make<TH2F>("hprofGlobalPositionCSC","Global CSC position (cm) absolute MEAN residuals;Sector;;cm", 36,0,36,36,0,36); hprofGlobalAngleCSC=fs->make<TH2F>("hprofGlobalAngleCSC","Global CSC angle (rad) absolute MEAN residuals;Sector;;rad", 36,0,36,36,0,36); hprofGlobalPositionRmsCSC=fs->make<TH2F>("hprofGlobalPositionRmsCSC","Global CSC position (cm) RMS residuals;Sector;;rad", 36,0,36,36,0,36); hprofGlobalAngleRmsCSC=fs->make<TH2F>("hprofGlobalAngleRmsCSC","Global CSC angle (rad) RMS residuals;Sector;;rad", 36,0,36,36,0,36); hprofLocalPositionCSC=fs->make<TH2F>("hprofLocalPositionCSC","Local CSC position (cm) absolute MEAN residuals;Sector;;cm", 36,0,36,36,0,36); hprofLocalAngleCSC=fs->make<TH2F>("hprofLocalAngleCSC","Local CSC angle (rad) absolute MEAN residuals;Sector;;rad", 36,0,36,36,0,36); hprofLocalPositionRmsCSC=fs->make<TH2F>("hprofLocalPositionRmsCSC","Local CSC position (cm) RMS residuals;Sector;;rad", 36,0,36,36,0,36); hprofLocalAngleRmsCSC=fs->make<TH2F>("hprofLocalAngleRmsCSC","Local CSC angle (rad) RMS residuals;Sector;;rad", 36,0,36,36,0,36); // histos options Float_t labelSize=0.025; hprofGlobalPositionDT->GetYaxis()->SetLabelSize(labelSize); hprofGlobalAngleDT->GetYaxis()->SetLabelSize(labelSize); hprofGlobalPositionRmsDT->GetYaxis()->SetLabelSize(labelSize); hprofGlobalAngleRmsDT->GetYaxis()->SetLabelSize(labelSize); hprofLocalPositionDT->GetYaxis()->SetLabelSize(labelSize); hprofLocalAngleDT->GetYaxis()->SetLabelSize(labelSize); hprofLocalPositionRmsDT->GetYaxis()->SetLabelSize(labelSize); hprofLocalAngleRmsDT->GetYaxis()->SetLabelSize(labelSize); hprofGlobalPositionCSC->GetYaxis()->SetLabelSize(labelSize); hprofGlobalAngleCSC->GetYaxis()->SetLabelSize(labelSize); hprofGlobalPositionRmsCSC->GetYaxis()->SetLabelSize(labelSize); hprofGlobalAngleRmsCSC->GetYaxis()->SetLabelSize(labelSize); hprofLocalPositionCSC->GetYaxis()->SetLabelSize(labelSize); hprofLocalAngleCSC->GetYaxis()->SetLabelSize(labelSize); hprofLocalPositionRmsCSC->GetYaxis()->SetLabelSize(labelSize); hprofLocalAngleRmsCSC->GetYaxis()->SetLabelSize(labelSize); char binLabel[15]; for (int i=1;i<15;i++){ snprintf(binLabel, sizeof(binLabel), "Sec-%d", i ); hprofGlobalPositionDT->GetXaxis()->SetBinLabel(i,binLabel); hprofGlobalAngleDT->GetXaxis()->SetBinLabel(i,binLabel); hprofGlobalPositionRmsDT->GetXaxis()->SetBinLabel(i,binLabel); hprofGlobalAngleRmsDT->GetXaxis()->SetBinLabel(i,binLabel); hprofLocalPositionDT->GetXaxis()->SetBinLabel(i,binLabel); hprofLocalAngleDT->GetXaxis()->SetBinLabel(i,binLabel); hprofLocalPositionRmsDT->GetXaxis()->SetBinLabel(i,binLabel); hprofLocalAngleRmsDT->GetXaxis()->SetBinLabel(i,binLabel); } for (int i=1;i<37;i++){ snprintf(binLabel, sizeof(binLabel), "Ch-%d", i ); hprofGlobalPositionCSC->GetXaxis()->SetBinLabel(i,binLabel); hprofGlobalAngleCSC->GetXaxis()->SetBinLabel(i,binLabel); hprofGlobalPositionRmsCSC->GetXaxis()->SetBinLabel(i,binLabel); hprofGlobalAngleRmsCSC->GetXaxis()->SetBinLabel(i,binLabel); hprofLocalPositionCSC->GetXaxis()->SetBinLabel(i,binLabel); hprofLocalAngleCSC->GetXaxis()->SetBinLabel(i,binLabel); hprofLocalPositionRmsCSC->GetXaxis()->SetBinLabel(i,binLabel); hprofLocalAngleRmsCSC->GetXaxis()->SetBinLabel(i,binLabel); } } }
RecHitVector MuonAlignmentAnalyzer::doMatching | ( | const reco::Track & | staTrack, |
edm::Handle< DTRecSegment4DCollection > & | all4DSegmentsDT, | ||
edm::Handle< CSCSegmentCollection > & | all4DSegmentsCSC, | ||
intDVector * | indexCollectionDT, | ||
intDVector * | indexCollectionCSC, | ||
edm::ESHandle< GlobalTrackingGeometry > & | theTrackingGeometry | ||
) | [private] |
Definition at line 2071 of file MuonAlignmentAnalyzer.cc.
References CSC(), GeomDetEnumerators::DT, TrackingRecHit::geographicalId(), edm::Ref< C, T, F >::get(), reco::TrackBase::numberOfValidHits(), DetId::rawId(), reco::Track::recHit(), and GeomDet::subDetector().
Referenced by analyze().
{ DTRecSegment4DCollection::const_iterator segmentDT; CSCSegmentCollection::const_iterator segmentCSC; std::vector<int> positionDT; std::vector<int> positionCSC; RecHitVector my4DTrack; //Loop over the hits of the track for( int counter = 0; counter != staTrack.numberOfValidHits()-1; counter++) { TrackingRecHitRef myRef = staTrack.recHit(counter); const TrackingRecHit *rechit = myRef.get(); const GeomDet* geomDet = theTrackingGeometry->idToDet(rechit->geographicalId()); //It's a DT Hit if(geomDet->subDetector() == GeomDetEnumerators::DT) { //Take the layer associated to this hit DTLayerId myLayer(rechit->geographicalId().rawId()); int NumberOfDTSegment = 0; //Loop over segments for(segmentDT = all4DSegmentsDT->begin(); segmentDT != all4DSegmentsDT->end(); ++segmentDT) { //By default the chamber associated to this Segment is new bool isNewChamber = true; //Loop over segments already included in the vector of segments in the actual track for(std::vector<int>::iterator positionIt = positionDT.begin(); positionIt != positionDT.end(); positionIt++) { //If this segment has been used before isNewChamber = false if(NumberOfDTSegment == *positionIt) isNewChamber = false; } //Loop over vectors of segments associated to previous tracks for(std::vector<std::vector<int> >::iterator collect = indexCollectionDT->begin(); collect != indexCollectionDT->end(); ++collect) { //Loop over segments associated to a track for(std::vector<int>::iterator positionIt = (*collect).begin(); positionIt != (*collect).end(); positionIt++) { //If this segment was used in a previos track then isNewChamber = false if(NumberOfDTSegment == *positionIt) isNewChamber = false; } } //If the chamber is new if(isNewChamber) { DTChamberId myChamber((*segmentDT).geographicalId().rawId()); //If the layer of the hit belongs to the chamber of the 4D Segment if(myLayer.wheel() == myChamber.wheel() && myLayer.station() == myChamber.station() && myLayer.sector() == myChamber.sector()) { //push position of the segment and tracking rechit positionDT.push_back(NumberOfDTSegment); my4DTrack.push_back((TrackingRecHit *) &(*segmentDT)); } } NumberOfDTSegment++; } //In case is a CSC } else if (geomDet->subDetector() == GeomDetEnumerators::CSC) { //Take the layer associated to this hit CSCDetId myLayer(rechit->geographicalId().rawId()); int NumberOfCSCSegment = 0; //Loop over 4Dsegments for(segmentCSC = all4DSegmentsCSC->begin(); segmentCSC != all4DSegmentsCSC->end(); segmentCSC++) { //By default the chamber associated to the segment is new bool isNewChamber = true; //Loop over segments in the current track for(std::vector<int>::iterator positionIt = positionCSC.begin(); positionIt != positionCSC.end(); positionIt++) { //If this segment has been used then newchamber = false if(NumberOfCSCSegment == *positionIt) isNewChamber = false; } //Loop over vectors of segments in previous tracks for(std::vector<std::vector<int> >::iterator collect = indexCollectionCSC->begin(); collect != indexCollectionCSC->end(); ++collect) { //Loop over segments in a track for(std::vector<int>::iterator positionIt = (*collect).begin(); positionIt != (*collect).end(); positionIt++) { //If the segment was used in a previous track isNewChamber = false if(NumberOfCSCSegment == *positionIt) isNewChamber = false; } } //If the chamber is new if(isNewChamber) { CSCDetId myChamber((*segmentCSC).geographicalId().rawId()); //If the chambers are the same if(myLayer.chamberId() == myChamber.chamberId()) { //push positionCSC.push_back(NumberOfCSCSegment); my4DTrack.push_back((TrackingRecHit *) &(*segmentCSC)); } } NumberOfCSCSegment++; } } } indexCollectionDT->push_back(positionDT); indexCollectionCSC->push_back(positionCSC); return my4DTrack; }
void MuonAlignmentAnalyzer::endJob | ( | void | ) | [virtual] |
Reimplemented from edm::EDAnalyzer.
Definition at line 818 of file MuonAlignmentAnalyzer.cc.
References abs, doGBplots, doResplots, doSAplots, hprofGlobalAngleCSC, hprofGlobalAngleDT, hprofGlobalAngleRmsCSC, hprofGlobalAngleRmsDT, hprofGlobalPhiCSC, hprofGlobalPhiDT, hprofGlobalPositionCSC, hprofGlobalPositionDT, hprofGlobalPositionRmsCSC, hprofGlobalPositionRmsDT, hprofGlobalRCSC, hprofGlobalRPhiCSC, hprofGlobalRPhiDT, hprofGlobalThetaCSC, hprofGlobalThetaDT, hprofGlobalZDT, hprofLocalAngleCSC, hprofLocalAngleDT, hprofLocalAngleRmsCSC, hprofLocalAngleRmsDT, hprofLocalPhiCSC, hprofLocalPhiDT, hprofLocalPositionCSC, hprofLocalPositionDT, hprofLocalPositionRmsCSC, hprofLocalPositionRmsDT, hprofLocalThetaCSC, hprofLocalThetaDT, hprofLocalXCSC, hprofLocalXDT, hprofLocalYCSC, hprofLocalYDT, i, numberOfGBRecTracks, numberOfHits, numberOfSARecTracks, numberOfSimTracks, relativeConstraints::ring, relativeConstraints::station, theDataType, unitsGlobalPhi, unitsGlobalRPhi, unitsGlobalRZ, unitsGlobalTheta, unitsLocalPhi, unitsLocalTheta, unitsLocalX, and unitsLocalY.
{ edm::LogInfo("MuonAlignmentAnalyzer") << "----------------- " << std::endl << std::endl; if(theDataType == "SimData") edm::LogInfo("MuonAlignmentAnalyzer") << "Number of Sim tracks: " << numberOfSimTracks << std::endl << std::endl; if(doSAplots) edm::LogInfo("MuonAlignmentAnalyzer") << "Number of SA Reco tracks: " << numberOfSARecTracks << std::endl << std::endl; if(doGBplots) edm::LogInfo("MuonAlignmentAnalyzer") << "Number of GB Reco tracks: " << numberOfGBRecTracks << std::endl << std::endl; if(doResplots){ // delete thePropagator; edm::LogInfo("MuonAlignmentAnalyzer") << "Number of Hits considered for residuals: " << numberOfHits << std::endl << std::endl; char binLabel[15]; for(unsigned int i=0 ; i<unitsLocalX.size() ; i++) { TString nameHistoLocalX=unitsLocalX[i]->GetName(); TString nameHistoLocalPhi=unitsLocalPhi[i]->GetName(); TString nameHistoLocalTheta=unitsLocalTheta[i]->GetName(); TString nameHistoLocalY=unitsLocalY[i]->GetName(); TString nameHistoGlobalRPhi=unitsGlobalRPhi[i]->GetName(); TString nameHistoGlobalPhi=unitsGlobalPhi[i]->GetName(); TString nameHistoGlobalTheta=unitsGlobalTheta[i]->GetName(); TString nameHistoGlobalRZ=unitsGlobalRZ[i]->GetName(); if (nameHistoLocalX.Contains("MB")) // HistoLocalX DT { int wheel, station, sector; sscanf(nameHistoLocalX, "ResidualLocalX_W%dMB%1dS%d",&wheel,&station,§or); Int_t nstation=station - 1; Int_t nwheel=wheel+2; Double_t MeanRPhi=unitsLocalX[i]->GetMean(); Double_t ErrorRPhi=unitsLocalX[i]->GetMeanError(); Int_t xbin=sector+14*nstation+14*4*nwheel; snprintf(binLabel, sizeof(binLabel), "MB%d/%dS%d", wheel, station, sector ); hprofLocalXDT->SetMarkerStyle(21); hprofLocalXDT->SetMarkerColor(kRed); hprofLocalXDT->SetBinContent(xbin,MeanRPhi); hprofLocalXDT->SetBinError(xbin, ErrorRPhi); hprofLocalXDT->GetXaxis()->SetBinLabel(xbin, binLabel); Int_t ybin=1+nwheel*8+nstation*2; hprofLocalPositionDT->SetBinContent(sector,ybin,fabs(MeanRPhi)); snprintf(binLabel, sizeof(binLabel), "MB%d/%d_LocalX",wheel, station ); hprofLocalPositionDT->GetYaxis()->SetBinLabel(ybin,binLabel); hprofLocalPositionRmsDT->SetBinContent(sector,ybin,ErrorRPhi); hprofLocalPositionRmsDT->GetYaxis()->SetBinLabel(ybin,binLabel); } if (nameHistoLocalX.Contains("ME")) // HistoLocalX CSC { int station, ring, chamber; sscanf(nameHistoLocalX, "ResidualLocalX_ME%dR%1dC%d",&station,&ring,&chamber); Double_t MeanRPhi=unitsLocalX[i]->GetMean(); Double_t ErrorRPhi=unitsLocalX[i]->GetMeanError(); Int_t xbin=abs(station)*2+ring; if(abs(station)==1) xbin=ring; if (station>0) xbin=xbin+9; else xbin = 10 -xbin; // To avoid holes in xAxis, I can't imagine right now a simpler way... if(xbin<5) xbin= 18*(((Int_t)(xbin/3))*2+(Int_t)(xbin/2))+chamber; else if(xbin<6) xbin=108+chamber; else if(xbin<14) xbin=126 +(xbin-6)*36+chamber; else if(xbin<18) xbin=414+18*(((Int_t)(xbin-13)/3)*2+((Int_t)(xbin-13)/2))+chamber; else xbin=522+chamber; snprintf(binLabel, sizeof(binLabel), "ME%d/%dC%d", station, ring, chamber ); hprofLocalXCSC->SetMarkerStyle(21); hprofLocalXCSC->SetMarkerColor(kRed); hprofLocalXCSC->SetBinContent(xbin,MeanRPhi); hprofLocalXCSC->SetBinError(xbin, ErrorRPhi); hprofLocalXCSC->GetXaxis()->SetBinLabel(xbin, binLabel); Int_t ybin=abs(station)*2+ring; if(abs(station)==1) ybin=ring; if (station>0) ybin=ybin+9; else ybin = 10 -ybin; ybin=2*ybin-1; hprofLocalPositionCSC->SetBinContent(chamber,ybin,fabs(MeanRPhi)); snprintf(binLabel, sizeof(binLabel), "ME%d/%d_LocalX", station,ring ); hprofLocalPositionCSC->GetYaxis()->SetBinLabel(ybin,binLabel); hprofLocalPositionRmsCSC->SetBinContent(chamber,ybin,ErrorRPhi); hprofLocalPositionRmsCSC->GetYaxis()->SetBinLabel(ybin,binLabel); } if (nameHistoLocalTheta.Contains("MB")) // HistoLocalTheta DT { int wheel, station, sector; sscanf(nameHistoLocalTheta, "ResidualLocalTheta_W%dMB%1dS%d",&wheel,&station,§or); if(station != 4){ Int_t nstation=station - 1; Int_t nwheel=wheel+2; Double_t MeanTheta=unitsLocalTheta[i]->GetMean(); Double_t ErrorTheta=unitsLocalTheta[i]->GetMeanError(); Int_t xbin=sector+14*nstation+14*4*nwheel; snprintf(binLabel, sizeof(binLabel), "MB%d/%dS%d", wheel, station, sector ); hprofLocalThetaDT->SetBinContent(xbin,MeanTheta); hprofLocalThetaDT->SetBinError(xbin, ErrorTheta); hprofLocalThetaDT->SetMarkerStyle(21); hprofLocalThetaDT->SetMarkerColor(kRed); hprofLocalThetaDT->GetXaxis()->SetBinLabel(xbin, binLabel); Int_t ybin=2+nwheel*8+nstation*2; hprofLocalAngleDT->SetBinContent(sector,ybin,fabs(MeanTheta)); snprintf(binLabel, sizeof(binLabel), "MB%d/%d_LocalTheta",wheel,station ); hprofLocalAngleDT->GetYaxis()->SetBinLabel(ybin,binLabel); hprofLocalAngleRmsDT->SetBinContent(sector,ybin,ErrorTheta); hprofLocalAngleRmsDT->GetYaxis()->SetBinLabel(ybin,binLabel); } } if (nameHistoLocalPhi.Contains("MB")) // HistoLocalPhi DT { int wheel, station, sector; sscanf(nameHistoLocalPhi, "ResidualLocalPhi_W%dMB%1dS%d",&wheel,&station,§or); Int_t nstation=station - 1; Int_t nwheel=wheel+2; Double_t MeanPhi=unitsLocalPhi[i]->GetMean(); Double_t ErrorPhi=unitsLocalPhi[i]->GetMeanError(); Int_t xbin=sector+14*nstation+14*4*nwheel; snprintf(binLabel, sizeof(binLabel), "MB%d/%dS%d", wheel, station, sector ); hprofLocalPhiDT->SetBinContent(xbin,MeanPhi); hprofLocalPhiDT->SetBinError(xbin, ErrorPhi); hprofLocalPhiDT->SetMarkerStyle(21); hprofLocalPhiDT->SetMarkerColor(kRed); hprofLocalPhiDT->GetXaxis()->SetBinLabel(xbin, binLabel); Int_t ybin=1+nwheel*8+nstation*2; hprofLocalAngleDT->SetBinContent(sector,ybin,fabs(MeanPhi)); snprintf(binLabel, sizeof(binLabel), "MB%d/%d_LocalPhi", wheel,station ); hprofLocalAngleDT->GetYaxis()->SetBinLabel(ybin,binLabel); hprofLocalAngleRmsDT->SetBinContent(sector,ybin,ErrorPhi); hprofLocalAngleRmsDT->GetYaxis()->SetBinLabel(ybin,binLabel); } if (nameHistoLocalPhi.Contains("ME")) // HistoLocalPhi CSC { int station, ring, chamber; sscanf(nameHistoLocalPhi, "ResidualLocalPhi_ME%dR%1dC%d",&station,&ring,&chamber); Double_t MeanPhi=unitsLocalPhi[i]->GetMean(); Double_t ErrorPhi=unitsLocalPhi[i]->GetMeanError(); Int_t xbin=abs(station)*2+ring; if(abs(station)==1) xbin=ring; if (station>0) xbin=xbin+9; else xbin = 10 -xbin; // To avoid holes in xAxis, I can't imagine right now a simpler way... if(xbin<5) xbin= 18*(((Int_t)(xbin/3))*2+(Int_t)(xbin/2))+chamber; else if(xbin<6) xbin=108+chamber; else if(xbin<14) xbin=126 +(xbin-6)*36+chamber; else if(xbin<18) xbin=414+18*(((Int_t)(xbin-13)/3)*2+((Int_t)(xbin-13)/2))+chamber; else xbin=522+chamber; snprintf(binLabel, sizeof(binLabel), "ME%d/%dC%d", station, ring, chamber ); hprofLocalPhiCSC->SetMarkerStyle(21); hprofLocalPhiCSC->SetMarkerColor(kRed); hprofLocalPhiCSC->SetBinContent(xbin,MeanPhi); hprofLocalPhiCSC->SetBinError(xbin, ErrorPhi); hprofLocalPhiCSC->GetXaxis()->SetBinLabel(xbin, binLabel); Int_t ybin=abs(station)*2+ring; if(abs(station)==1) ybin=ring; if (station>0) ybin=ybin+9; else ybin = 10 -ybin; ybin=2*ybin-1; hprofLocalAngleCSC->SetBinContent(chamber,ybin,fabs(MeanPhi)); snprintf(binLabel, sizeof(binLabel), "ME%d/%d_LocalPhi", station,ring ); hprofLocalAngleCSC->GetYaxis()->SetBinLabel(ybin,binLabel); hprofLocalAngleRmsCSC->SetBinContent(chamber,ybin,ErrorPhi); hprofLocalAngleRmsCSC->GetYaxis()->SetBinLabel(ybin,binLabel); } if (nameHistoLocalTheta.Contains("ME")) // HistoLocalTheta CSC { int station, ring, chamber; sscanf(nameHistoLocalTheta, "ResidualLocalTheta_ME%dR%1dC%d",&station,&ring,&chamber); Double_t MeanTheta=unitsLocalTheta[i]->GetMean(); Double_t ErrorTheta=unitsLocalTheta[i]->GetMeanError(); Int_t xbin=abs(station)*2+ring; if(abs(station)==1) xbin=ring; if (station>0) xbin=xbin+9; else xbin = 10 -xbin; // To avoid holes in xAxis, I can't imagine right now a simpler way... if(xbin<5) xbin= 18*(((Int_t)(xbin/3))*2+(Int_t)(xbin/2))+chamber; else if(xbin<6) xbin=108+chamber; else if(xbin<14) xbin=126 +(xbin-6)*36+chamber; else if(xbin<18) xbin=414+18*(((Int_t)(xbin-13)/3)*2+((Int_t)(xbin-13)/2))+chamber; else xbin=522+chamber; snprintf(binLabel, sizeof(binLabel), "ME%d/%dC%d", station, ring, chamber ); hprofLocalThetaCSC->SetMarkerStyle(21); hprofLocalThetaCSC->SetMarkerColor(kRed); hprofLocalThetaCSC->SetBinContent(xbin,MeanTheta); hprofLocalThetaCSC->SetBinError(xbin, ErrorTheta); hprofLocalThetaCSC->GetXaxis()->SetBinLabel(xbin, binLabel); Int_t ybin=abs(station)*2+ring; if(abs(station)==1) ybin=ring; if (station>0) ybin=ybin+9; else ybin = 10 -ybin; ybin=2*ybin; hprofLocalAngleCSC->SetBinContent(chamber,ybin,fabs(MeanTheta)); snprintf(binLabel, sizeof(binLabel), "ME%d/%d_LocalTheta", station,ring ); hprofLocalAngleCSC->GetYaxis()->SetBinLabel(ybin,binLabel); hprofLocalAngleRmsCSC->SetBinContent(chamber,ybin,ErrorTheta); hprofLocalAngleRmsCSC->GetYaxis()->SetBinLabel(ybin,binLabel); } if (nameHistoLocalY.Contains("MB")) // HistoLocalY DT { int wheel, station, sector; sscanf(nameHistoLocalY, "ResidualLocalY_W%dMB%1dS%d",&wheel,&station,§or); if(station!=4){ Int_t nstation=station - 1; Int_t nwheel=wheel+2; Double_t MeanZ=unitsLocalY[i]->GetMean(); Double_t ErrorZ=unitsLocalY[i]->GetMeanError(); Int_t xbin=sector+14*nstation+14*4*nwheel; snprintf(binLabel, sizeof(binLabel), "MB%d/%dS%d", wheel, station, sector ); hprofLocalYDT->SetMarkerStyle(21); hprofLocalYDT->SetMarkerColor(kRed); hprofLocalYDT->SetBinContent(xbin,MeanZ); hprofLocalYDT->SetBinError(xbin, ErrorZ); hprofLocalYDT->GetXaxis()->SetBinLabel(xbin, binLabel); Int_t ybin=2+nwheel*8+nstation*2; hprofLocalPositionDT->SetBinContent(sector,ybin,fabs(MeanZ)); snprintf(binLabel, sizeof(binLabel), "MB%d/%d_LocalY", wheel,station ); hprofLocalPositionDT->GetYaxis()->SetBinLabel(ybin,binLabel); hprofLocalPositionRmsDT->SetBinContent(sector,ybin,ErrorZ); hprofLocalPositionRmsDT->GetYaxis()->SetBinLabel(ybin,binLabel); } } if (nameHistoLocalY.Contains("ME")) // HistoLocalY CSC { int station, ring, chamber; sscanf(nameHistoLocalY, "ResidualLocalY_ME%dR%1dC%d",&station,&ring,&chamber); Double_t MeanR=unitsLocalY[i]->GetMean(); Double_t ErrorR=unitsLocalY[i]->GetMeanError(); Int_t xbin=abs(station)*2+ring; if(abs(station)==1) xbin=ring; if (station>0) xbin=xbin+9; else xbin = 10 -xbin; // To avoid holes in xAxis, I can't imagine right now a simpler way... if(xbin<5) xbin= 18*(((Int_t)(xbin/3))*2+(Int_t)(xbin/2))+chamber; else if(xbin<6) xbin=108+chamber; else if(xbin<14) xbin=126 +(xbin-6)*36+chamber; else if(xbin<18) xbin=414+18*(((Int_t)(xbin-13)/3)*2+((Int_t)(xbin-13)/2))+chamber; else xbin=522+chamber; snprintf(binLabel, sizeof(binLabel), "ME%d/%dC%d", station, ring, chamber ); hprofLocalYCSC->SetMarkerStyle(21); hprofLocalYCSC->SetMarkerColor(kRed); hprofLocalYCSC->SetBinContent(xbin,MeanR); hprofLocalYCSC->SetBinError(xbin, ErrorR); hprofLocalYCSC->GetXaxis()->SetBinLabel(xbin, binLabel); Int_t ybin=abs(station)*2+ring; if(abs(station)==1) ybin=ring; if (station>0) ybin=ybin+9; else ybin = 10 -ybin; ybin=2*ybin; hprofLocalPositionCSC->SetBinContent(chamber,ybin,fabs(MeanR)); snprintf(binLabel, sizeof(binLabel), "ME%d/%d_LocalY", station,ring ); hprofLocalPositionCSC->GetYaxis()->SetBinLabel(ybin,binLabel); hprofLocalPositionRmsCSC->SetBinContent(chamber,ybin,ErrorR); hprofLocalPositionRmsCSC->GetYaxis()->SetBinLabel(ybin,binLabel); } if (nameHistoGlobalRPhi.Contains("MB")) // HistoGlobalRPhi DT { int wheel, station, sector; sscanf(nameHistoGlobalRPhi, "ResidualGlobalRPhi_W%dMB%1dS%d",&wheel,&station,§or); Int_t nstation=station - 1; Int_t nwheel=wheel+2; Double_t MeanRPhi=unitsGlobalRPhi[i]->GetMean(); Double_t ErrorRPhi=unitsGlobalRPhi[i]->GetMeanError(); Int_t xbin=sector+14*nstation+14*4*nwheel; snprintf(binLabel, sizeof(binLabel), "MB%d/%dS%d", wheel, station, sector ); hprofGlobalRPhiDT->SetMarkerStyle(21); hprofGlobalRPhiDT->SetMarkerColor(kRed); hprofGlobalRPhiDT->SetBinContent(xbin,MeanRPhi); hprofGlobalRPhiDT->SetBinError(xbin, ErrorRPhi); hprofGlobalRPhiDT->GetXaxis()->SetBinLabel(xbin, binLabel); Int_t ybin=1+nwheel*8+nstation*2; hprofGlobalPositionDT->SetBinContent(sector,ybin,fabs(MeanRPhi)); snprintf(binLabel, sizeof(binLabel), "MB%d/%d_GlobalRPhi", wheel,station ); hprofGlobalPositionDT->GetYaxis()->SetBinLabel(ybin,binLabel); hprofGlobalPositionRmsDT->SetBinContent(sector,ybin,ErrorRPhi); hprofGlobalPositionRmsDT->GetYaxis()->SetBinLabel(ybin,binLabel); } if (nameHistoGlobalRPhi.Contains("ME")) // HistoGlobalRPhi CSC { int station, ring, chamber; sscanf(nameHistoGlobalRPhi, "ResidualGlobalRPhi_ME%dR%1dC%d",&station,&ring,&chamber); Double_t MeanRPhi=unitsGlobalRPhi[i]->GetMean(); Double_t ErrorRPhi=unitsGlobalRPhi[i]->GetMeanError(); Int_t xbin=abs(station)*2+ring; if(abs(station)==1) xbin=ring; if (station>0) xbin=xbin+9; else xbin = 10 -xbin; // To avoid holes in xAxis, I can't imagine right now a simpler way... if(xbin<5) xbin= 18*(((Int_t)(xbin/3))*2+(Int_t)(xbin/2))+chamber; else if(xbin<6) xbin=108+chamber; else if(xbin<14) xbin=126 +(xbin-6)*36+chamber; else if(xbin<18) xbin=414+18*(((Int_t)(xbin-13)/3)*2+((Int_t)(xbin-13)/2))+chamber; else xbin=522+chamber; snprintf(binLabel, sizeof(binLabel), "ME%d/%dC%d", station, ring, chamber ); hprofGlobalRPhiCSC->SetMarkerStyle(21); hprofGlobalRPhiCSC->SetMarkerColor(kRed); hprofGlobalRPhiCSC->SetBinContent(xbin,MeanRPhi); hprofGlobalRPhiCSC->SetBinError(xbin, ErrorRPhi); hprofGlobalRPhiCSC->GetXaxis()->SetBinLabel(xbin, binLabel); Int_t ybin=abs(station)*2+ring; if(abs(station)==1) ybin=ring; if (station>0) ybin=ybin+9; else ybin = 10 -ybin; ybin=2*ybin-1; hprofGlobalPositionCSC->SetBinContent(chamber,ybin,fabs(MeanRPhi)); snprintf(binLabel, sizeof(binLabel), "ME%d/%d_GlobalRPhi", station,ring ); hprofGlobalPositionCSC->GetYaxis()->SetBinLabel(ybin,binLabel); hprofGlobalPositionRmsCSC->SetBinContent(chamber,ybin,ErrorRPhi); hprofGlobalPositionRmsCSC->GetYaxis()->SetBinLabel(ybin,binLabel); } if (nameHistoGlobalTheta.Contains("MB")) // HistoGlobalRTheta DT { int wheel, station, sector; sscanf(nameHistoGlobalTheta, "ResidualGlobalTheta_W%dMB%1dS%d",&wheel,&station,§or); if(station!=4){ Int_t nstation=station - 1; Int_t nwheel=wheel+2; Double_t MeanTheta=unitsGlobalTheta[i]->GetMean(); Double_t ErrorTheta=unitsGlobalTheta[i]->GetMeanError(); Int_t xbin=sector+14*nstation+14*4*nwheel; snprintf(binLabel, sizeof(binLabel), "MB%d/%dS%d", wheel, station, sector ); hprofGlobalThetaDT->SetBinContent(xbin,MeanTheta); hprofGlobalThetaDT->SetBinError(xbin, ErrorTheta); hprofGlobalThetaDT->SetMarkerStyle(21); hprofGlobalThetaDT->SetMarkerColor(kRed); hprofGlobalThetaDT->GetXaxis()->SetBinLabel(xbin, binLabel); Int_t ybin=2+nwheel*8+nstation*2; hprofGlobalAngleDT->SetBinContent(sector,ybin,fabs(MeanTheta)); snprintf(binLabel, sizeof(binLabel), "MB%d/%d_GlobalTheta", wheel,station ); hprofGlobalAngleDT->GetYaxis()->SetBinLabel(ybin,binLabel); hprofGlobalAngleRmsDT->SetBinContent(sector,ybin,ErrorTheta); hprofGlobalAngleRmsDT->GetYaxis()->SetBinLabel(ybin,binLabel); } } if (nameHistoGlobalPhi.Contains("MB")) // HistoGlobalPhi DT { int wheel, station, sector; sscanf(nameHistoGlobalPhi, "ResidualGlobalPhi_W%dMB%1dS%d",&wheel,&station,§or); Int_t nstation=station - 1; Int_t nwheel=wheel+2; Double_t MeanPhi=unitsGlobalPhi[i]->GetMean(); Double_t ErrorPhi=unitsGlobalPhi[i]->GetMeanError(); Int_t xbin=sector+14*nstation+14*4*nwheel; snprintf(binLabel, sizeof(binLabel), "MB%d/%dS%d", wheel, station, sector ); hprofGlobalPhiDT->SetBinContent(xbin,MeanPhi); hprofGlobalPhiDT->SetBinError(xbin, ErrorPhi); hprofGlobalPhiDT->SetMarkerStyle(21); hprofGlobalPhiDT->SetMarkerColor(kRed); hprofGlobalPhiDT->GetXaxis()->SetBinLabel(xbin, binLabel); Int_t ybin=1+nwheel*8+nstation*2; hprofGlobalAngleDT->SetBinContent(sector,ybin,fabs(MeanPhi)); snprintf(binLabel, sizeof(binLabel), "MB%d/%d_GlobalPhi", wheel,station ); hprofGlobalAngleDT->GetYaxis()->SetBinLabel(ybin,binLabel); hprofGlobalAngleRmsDT->SetBinContent(sector,ybin,ErrorPhi); hprofGlobalAngleRmsDT->GetYaxis()->SetBinLabel(ybin,binLabel); } if (nameHistoGlobalPhi.Contains("ME")) // HistoGlobalPhi CSC { int station, ring, chamber; sscanf(nameHistoGlobalPhi, "ResidualGlobalPhi_ME%dR%1dC%d",&station,&ring,&chamber); Double_t MeanPhi=unitsGlobalPhi[i]->GetMean(); Double_t ErrorPhi=unitsGlobalPhi[i]->GetMeanError(); Int_t xbin=abs(station)*2+ring; if(abs(station)==1) xbin=ring; if (station>0) xbin=xbin+9; else xbin = 10 -xbin; // To avoid holes in xAxis, I can't imagine right now a simpler way... if(xbin<5) xbin= 18*(((Int_t)(xbin/3))*2+(Int_t)(xbin/2))+chamber; else if(xbin<6) xbin=108+chamber; else if(xbin<14) xbin=126 +(xbin-6)*36+chamber; else if(xbin<18) xbin=414+18*(((Int_t)(xbin-13)/3)*2+((Int_t)(xbin-13)/2))+chamber; else xbin=522+chamber; snprintf(binLabel, sizeof(binLabel), "ME%d/%dC%d", station, ring, chamber ); hprofGlobalPhiCSC->SetMarkerStyle(21); hprofGlobalPhiCSC->SetMarkerColor(kRed); hprofGlobalPhiCSC->SetBinContent(xbin,MeanPhi); hprofGlobalPhiCSC->SetBinError(xbin, ErrorPhi); hprofGlobalPhiCSC->GetXaxis()->SetBinLabel(xbin, binLabel); Int_t ybin=abs(station)*2+ring; if(abs(station)==1) ybin=ring; if (station>0) ybin=ybin+9; else ybin = 10 -ybin; ybin=2*ybin-1; hprofGlobalAngleCSC->SetBinContent(chamber,ybin,fabs(MeanPhi)); snprintf(binLabel, sizeof(binLabel), "ME%d/%d_GlobalPhi", station,ring ); hprofGlobalAngleCSC->GetYaxis()->SetBinLabel(ybin,binLabel); hprofGlobalAngleRmsCSC->SetBinContent(chamber,ybin,ErrorPhi); hprofGlobalAngleRmsCSC->GetYaxis()->SetBinLabel(ybin,binLabel); } if (nameHistoGlobalTheta.Contains("ME")) // HistoGlobalTheta CSC { int station, ring, chamber; sscanf(nameHistoGlobalTheta, "ResidualGlobalTheta_ME%dR%1dC%d",&station,&ring,&chamber); Double_t MeanTheta=unitsGlobalTheta[i]->GetMean(); Double_t ErrorTheta=unitsGlobalTheta[i]->GetMeanError(); Int_t xbin=abs(station)*2+ring; if(abs(station)==1) xbin=ring; if (station>0) xbin=xbin+9; else xbin = 10 -xbin; // To avoid holes in xAxis, I can't imagine right now a simpler way... if(xbin<5) xbin= 18*(((Int_t)(xbin/3))*2+(Int_t)(xbin/2))+chamber; else if(xbin<6) xbin=108+chamber; else if(xbin<14) xbin=126 +(xbin-6)*36+chamber; else if(xbin<18) xbin=414+18*(((Int_t)(xbin-13)/3)*2+((Int_t)(xbin-13)/2))+chamber; else xbin=522+chamber; snprintf(binLabel, sizeof(binLabel), "ME%d/%dC%d", station, ring, chamber ); hprofGlobalThetaCSC->SetMarkerStyle(21); hprofGlobalThetaCSC->SetMarkerColor(kRed); hprofGlobalThetaCSC->SetBinContent(xbin,MeanTheta); hprofGlobalThetaCSC->SetBinError(xbin, ErrorTheta); hprofGlobalThetaCSC->GetXaxis()->SetBinLabel(xbin, binLabel); Int_t ybin=abs(station)*2+ring; if(abs(station)==1) ybin=ring; if (station>0) ybin=ybin+9; else ybin = 10 -ybin; ybin=2*ybin; hprofGlobalAngleCSC->SetBinContent(chamber,ybin,fabs(MeanTheta)); snprintf(binLabel, sizeof(binLabel), "ME%d/%d_GlobalTheta", station,ring ); hprofGlobalAngleCSC->GetYaxis()->SetBinLabel(ybin,binLabel); hprofGlobalAngleRmsCSC->SetBinContent(chamber,ybin,ErrorTheta); hprofGlobalAngleRmsCSC->GetYaxis()->SetBinLabel(ybin,binLabel); } if (nameHistoGlobalRZ.Contains("MB")) // HistoGlobalZ DT { int wheel, station, sector; sscanf(nameHistoGlobalRZ, "ResidualGlobalZ_W%dMB%1dS%d",&wheel,&station,§or); if(station!=4){ Int_t nstation=station - 1; Int_t nwheel=wheel+2; Double_t MeanZ=unitsGlobalRZ[i]->GetMean(); Double_t ErrorZ=unitsGlobalRZ[i]->GetMeanError(); Int_t xbin=sector+14*nstation+14*4*nwheel; snprintf(binLabel, sizeof(binLabel), "MB%d/%dS%d", wheel, station, sector ); hprofGlobalZDT->SetMarkerStyle(21); hprofGlobalZDT->SetMarkerColor(kRed); hprofGlobalZDT->SetBinContent(xbin,MeanZ); hprofGlobalZDT->SetBinError(xbin, ErrorZ); hprofGlobalZDT->GetXaxis()->SetBinLabel(xbin, binLabel); Int_t ybin=2+nwheel*8+nstation*2; hprofGlobalPositionDT->SetBinContent(sector,ybin,fabs(MeanZ)); snprintf(binLabel, sizeof(binLabel), "MB%d/%d_GlobalZ", wheel,station ); hprofGlobalPositionDT->GetYaxis()->SetBinLabel(ybin,binLabel); hprofGlobalPositionRmsDT->SetBinContent(sector,ybin,ErrorZ); hprofGlobalPositionRmsDT->GetYaxis()->SetBinLabel(ybin,binLabel); } } if (nameHistoGlobalRZ.Contains("ME")) // HistoGlobalR CSC { int station, ring, chamber; sscanf(nameHistoGlobalRZ, "ResidualGlobalR_ME%dR%1dC%d",&station,&ring,&chamber); Double_t MeanR=unitsGlobalRZ[i]->GetMean(); Double_t ErrorR=unitsGlobalRZ[i]->GetMeanError(); Int_t xbin=abs(station)*2+ring; if(abs(station)==1) xbin=ring; if (station>0) xbin=xbin+9; else xbin = 10 -xbin; // To avoid holes in xAxis, I can't imagine right now a simpler way... if(xbin<5) xbin= 18*(((Int_t)(xbin/3))*2+(Int_t)(xbin/2))+chamber; else if(xbin<6) xbin=108+chamber; else if(xbin<14) xbin=126 +(xbin-6)*36+chamber; else if(xbin<18) xbin=414+18*(((Int_t)(xbin-13)/3)*2+((Int_t)(xbin-13)/2))+chamber; else xbin=522+chamber; snprintf(binLabel, sizeof(binLabel), "ME%d/%dC%d", station, ring, chamber ); hprofGlobalRCSC->SetMarkerStyle(21); hprofGlobalRCSC->SetMarkerColor(kRed); hprofGlobalRCSC->SetBinContent(xbin,MeanR); hprofGlobalRCSC->SetBinError(xbin, ErrorR); hprofGlobalRCSC->GetXaxis()->SetBinLabel(xbin, binLabel); Int_t ybin=abs(station)*2+ring; if(abs(station)==1) ybin=ring; if (station>0) ybin=ybin+9; else ybin = 10 -ybin; ybin=2*ybin; hprofGlobalPositionCSC->SetBinContent(chamber,ybin,fabs(MeanR)); snprintf(binLabel, sizeof(binLabel), "ME%d/%d_GlobalR", station,ring ); hprofGlobalPositionCSC->GetYaxis()->SetBinLabel(ybin,binLabel); hprofGlobalPositionRmsCSC->SetBinContent(chamber,ybin,ErrorR); hprofGlobalPositionRmsCSC->GetYaxis()->SetBinLabel(ybin,binLabel); } } // for in histos } // doResPlots }
std::vector<long> MuonAlignmentAnalyzer::detectorCollection [private] |
Definition at line 254 of file MuonAlignmentAnalyzer.h.
Referenced by analyze().
bool MuonAlignmentAnalyzer::doGBplots [private] |
Definition at line 73 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), beginJob(), endJob(), and MuonAlignmentAnalyzer().
bool MuonAlignmentAnalyzer::doResplots [private] |
Definition at line 73 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), beginJob(), endJob(), and MuonAlignmentAnalyzer().
bool MuonAlignmentAnalyzer::doSAplots [private] |
Definition at line 73 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), beginJob(), endJob(), and MuonAlignmentAnalyzer().
edm::Service<TFileService> MuonAlignmentAnalyzer::fs [private] |
Definition at line 60 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBChi2 [private] |
Definition at line 97 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBChi2_Barrel [private] |
Definition at line 99 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBChi2_Endcap [private] |
Definition at line 101 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBInvM [private] |
Definition at line 105 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBInvM_Barrel [private] |
Definition at line 109 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBInvM_Endcap [private] |
Definition at line 113 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBInvM_Overlap [private] |
Definition at line 118 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBinvPTres [private] |
Definition at line 148 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hGBinvPTvsEta [private] |
Definition at line 160 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hGBinvPTvsNhits [private] |
Definition at line 165 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hGBinvPTvsPhi [private] |
Definition at line 161 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBNhits [private] |
Definition at line 89 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBNhits_Barrel [private] |
Definition at line 90 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBNhits_Endcap [private] |
Definition at line 91 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBNmuons [private] |
Definition at line 78 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBNmuons_Barrel [private] |
Definition at line 81 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBNmuons_Endcap [private] |
Definition at line 84 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hGBPhivsEta [private] |
Definition at line 142 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBPTDiff [private] |
Definition at line 155 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hGBPTDiffvsEta [private] |
Definition at line 158 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hGBPTDiffvsPhi [private] |
Definition at line 159 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBPTRec [private] |
Definition at line 124 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBPTRec_Barrel [private] |
Definition at line 127 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBPTRec_Endcap [private] |
Definition at line 130 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBPTres [private] |
Definition at line 147 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBPTres_Barrel [private] |
Definition at line 151 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hGBPTres_Endcap [private] |
Definition at line 152 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hGBPTvsEta [private] |
Definition at line 132 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hGBPTvsPhi [private] |
Definition at line 133 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hprofGlobalAngleCSC [private] |
Definition at line 225 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH2F* MuonAlignmentAnalyzer::hprofGlobalAngleDT [private] |
Definition at line 233 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH2F* MuonAlignmentAnalyzer::hprofGlobalAngleRmsCSC [private] |
Definition at line 227 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH2F* MuonAlignmentAnalyzer::hprofGlobalAngleRmsDT [private] |
Definition at line 235 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH1F* MuonAlignmentAnalyzer::hprofGlobalPhiCSC [private] |
Definition at line 250 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH1F* MuonAlignmentAnalyzer::hprofGlobalPhiDT [private] |
Definition at line 246 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH2F* MuonAlignmentAnalyzer::hprofGlobalPositionCSC [private] |
Definition at line 224 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH2F* MuonAlignmentAnalyzer::hprofGlobalPositionDT [private] |
Definition at line 232 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH2F* MuonAlignmentAnalyzer::hprofGlobalPositionRmsCSC [private] |
Definition at line 226 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH2F* MuonAlignmentAnalyzer::hprofGlobalPositionRmsDT [private] |
Definition at line 234 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH1F* MuonAlignmentAnalyzer::hprofGlobalRCSC [private] |
Definition at line 252 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH1F* MuonAlignmentAnalyzer::hprofGlobalRPhiCSC [private] |
Definition at line 249 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH1F* MuonAlignmentAnalyzer::hprofGlobalRPhiDT [private] |
Definition at line 245 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH1F* MuonAlignmentAnalyzer::hprofGlobalThetaCSC [private] |
Definition at line 251 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH1F* MuonAlignmentAnalyzer::hprofGlobalThetaDT [private] |
Definition at line 247 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH1F* MuonAlignmentAnalyzer::hprofGlobalZDT [private] |
Definition at line 248 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH2F* MuonAlignmentAnalyzer::hprofLocalAngleCSC [private] |
Definition at line 221 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH2F* MuonAlignmentAnalyzer::hprofLocalAngleDT [private] |
Definition at line 229 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH2F* MuonAlignmentAnalyzer::hprofLocalAngleRmsCSC [private] |
Definition at line 223 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH2F* MuonAlignmentAnalyzer::hprofLocalAngleRmsDT [private] |
Definition at line 231 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH1F* MuonAlignmentAnalyzer::hprofLocalPhiCSC [private] |
Definition at line 242 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH1F* MuonAlignmentAnalyzer::hprofLocalPhiDT [private] |
Definition at line 238 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH2F* MuonAlignmentAnalyzer::hprofLocalPositionCSC [private] |
Definition at line 220 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH2F* MuonAlignmentAnalyzer::hprofLocalPositionDT [private] |
Definition at line 228 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH2F* MuonAlignmentAnalyzer::hprofLocalPositionRmsCSC [private] |
Definition at line 222 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH2F* MuonAlignmentAnalyzer::hprofLocalPositionRmsDT [private] |
Definition at line 230 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH1F* MuonAlignmentAnalyzer::hprofLocalThetaCSC [private] |
Definition at line 243 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH1F* MuonAlignmentAnalyzer::hprofLocalThetaDT [private] |
Definition at line 239 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH1F* MuonAlignmentAnalyzer::hprofLocalXCSC [private] |
Definition at line 241 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH1F* MuonAlignmentAnalyzer::hprofLocalXDT [private] |
Definition at line 237 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH1F* MuonAlignmentAnalyzer::hprofLocalYCSC [private] |
Definition at line 244 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH1F* MuonAlignmentAnalyzer::hprofLocalYDT [private] |
Definition at line 240 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and endJob().
TH1F* MuonAlignmentAnalyzer::hResidualGlobalPhiCSC [private] |
Definition at line 203 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualGlobalPhiCSC_ME [private] |
Definition at line 211 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hResidualGlobalPhiDT [private] |
Definition at line 199 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualGlobalPhiDT_MB [private] |
Definition at line 215 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualGlobalPhiDT_W [private] |
Definition at line 207 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hResidualGlobalRCSC [private] |
Definition at line 205 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualGlobalRCSC_ME [private] |
Definition at line 213 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hResidualGlobalRPhiCSC [private] |
Definition at line 202 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualGlobalRPhiCSC_ME [private] |
Definition at line 210 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hResidualGlobalRPhiDT [private] |
Definition at line 198 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualGlobalRPhiDT_MB [private] |
Definition at line 214 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualGlobalRPhiDT_W [private] |
Definition at line 206 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hResidualGlobalThetaCSC [private] |
Definition at line 204 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualGlobalThetaCSC_ME [private] |
Definition at line 212 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hResidualGlobalThetaDT [private] |
Definition at line 200 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualGlobalThetaDT_MB [private] |
Definition at line 216 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualGlobalThetaDT_W [private] |
Definition at line 208 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hResidualGlobalZDT [private] |
Definition at line 201 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualGlobalZDT_MB [private] |
Definition at line 217 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualGlobalZDT_W [private] |
Definition at line 209 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hResidualLocalPhiCSC [private] |
Definition at line 183 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualLocalPhiCSC_ME [private] |
Definition at line 191 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hResidualLocalPhiDT [private] |
Definition at line 179 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualLocalPhiDT_MB [private] |
Definition at line 195 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualLocalPhiDT_W [private] |
Definition at line 187 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hResidualLocalThetaCSC [private] |
Definition at line 184 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualLocalThetaCSC_ME [private] |
Definition at line 192 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hResidualLocalThetaDT [private] |
Definition at line 180 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualLocalThetaDT_MB [private] |
Definition at line 196 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualLocalThetaDT_W [private] |
Definition at line 188 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hResidualLocalXCSC [private] |
Definition at line 182 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualLocalXCSC_ME [private] |
Definition at line 190 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hResidualLocalXDT [private] |
Definition at line 178 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualLocalXDT_MB [private] |
Definition at line 194 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualLocalXDT_W [private] |
Definition at line 186 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hResidualLocalYCSC [private] |
Definition at line 185 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualLocalYCSC_ME [private] |
Definition at line 193 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hResidualLocalYDT [private] |
Definition at line 181 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualLocalYDT_MB [private] |
Definition at line 197 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
std::vector<TH1F*> MuonAlignmentAnalyzer::hResidualLocalYDT_W [private] |
Definition at line 189 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSAChi2 [private] |
Definition at line 98 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSAChi2_Barrel [private] |
Definition at line 100 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSAChi2_Endcap [private] |
Definition at line 102 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSAInvM [private] |
Definition at line 106 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSAInvM_Barrel [private] |
Definition at line 110 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSAInvM_Endcap [private] |
Definition at line 114 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSAInvM_Overlap [private] |
Definition at line 119 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSAinvPTres [private] |
Definition at line 146 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hSAinvPTvsEta [private] |
Definition at line 162 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hSAinvPTvsNhits [private] |
Definition at line 164 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hSAinvPTvsPhi [private] |
Definition at line 163 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSANhits [private] |
Definition at line 92 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSANhits_Barrel [private] |
Definition at line 93 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSANhits_Endcap [private] |
Definition at line 94 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSANmuons [private] |
Definition at line 79 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSANmuons_Barrel [private] |
Definition at line 82 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSANmuons_Endcap [private] |
Definition at line 85 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hSAPhivsEta [private] |
Definition at line 141 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSAPTDiff [private] |
Definition at line 154 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hSAPTDiffvsEta [private] |
Definition at line 156 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hSAPTDiffvsPhi [private] |
Definition at line 157 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSAPTRec [private] |
Definition at line 123 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSAPTRec_Barrel [private] |
Definition at line 126 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSAPTRec_Endcap [private] |
Definition at line 129 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSAPTres [private] |
Definition at line 145 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSAPTres_Barrel [private] |
Definition at line 149 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSAPTres_Endcap [private] |
Definition at line 150 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hSAPTvsEta [private] |
Definition at line 134 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hSAPTvsPhi [private] |
Definition at line 135 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSimInvM [private] |
Definition at line 107 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSimInvM_Barrel [private] |
Definition at line 111 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSimInvM_Endcap [private] |
Definition at line 115 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSimInvM_Overlap [private] |
Definition at line 120 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSimNmuons [private] |
Definition at line 80 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSimNmuons_Barrel [private] |
Definition at line 83 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSimNmuons_Endcap [private] |
Definition at line 86 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hSimPhivsEta [private] |
Definition at line 140 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSimPT [private] |
Definition at line 125 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSimPT_Barrel [private] |
Definition at line 128 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH1F* MuonAlignmentAnalyzer::hSimPT_Endcap [private] |
Definition at line 131 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hSimPTvsEta [private] |
Definition at line 136 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
TH2F* MuonAlignmentAnalyzer::hSimPTvsPhi [private] |
Definition at line 137 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and beginJob().
double MuonAlignmentAnalyzer::invMassRangeMax [private] |
Definition at line 267 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and MuonAlignmentAnalyzer().
double MuonAlignmentAnalyzer::invMassRangeMin [private] |
Definition at line 267 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and MuonAlignmentAnalyzer().
unsigned int MuonAlignmentAnalyzer::min1DTrackRecHitSize [private] |
Definition at line 272 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and MuonAlignmentAnalyzer().
unsigned int MuonAlignmentAnalyzer::min4DTrackSegmentSize [private] |
Definition at line 272 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and MuonAlignmentAnalyzer().
unsigned int MuonAlignmentAnalyzer::nbins [private] |
Definition at line 272 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and MuonAlignmentAnalyzer().
int MuonAlignmentAnalyzer::numberOfGBRecTracks [private] |
Definition at line 262 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), endJob(), and MuonAlignmentAnalyzer().
int MuonAlignmentAnalyzer::numberOfHits [private] |
Definition at line 264 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), endJob(), and MuonAlignmentAnalyzer().
int MuonAlignmentAnalyzer::numberOfSARecTracks [private] |
Definition at line 263 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), endJob(), and MuonAlignmentAnalyzer().
int MuonAlignmentAnalyzer::numberOfSimTracks [private] |
Definition at line 261 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), endJob(), and MuonAlignmentAnalyzer().
double MuonAlignmentAnalyzer::ptRangeMax [private] |
Definition at line 267 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and MuonAlignmentAnalyzer().
double MuonAlignmentAnalyzer::ptRangeMin [private] |
Definition at line 267 of file MuonAlignmentAnalyzer.h.
Referenced by beginJob(), and MuonAlignmentAnalyzer().
double MuonAlignmentAnalyzer::resLocalXRangeStation1 [private] |
Definition at line 269 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and MuonAlignmentAnalyzer().
double MuonAlignmentAnalyzer::resLocalXRangeStation2 [private] |
Definition at line 269 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and MuonAlignmentAnalyzer().
double MuonAlignmentAnalyzer::resLocalXRangeStation3 [private] |
Definition at line 269 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and MuonAlignmentAnalyzer().
double MuonAlignmentAnalyzer::resLocalXRangeStation4 [private] |
Definition at line 269 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and MuonAlignmentAnalyzer().
double MuonAlignmentAnalyzer::resLocalYRangeStation1 [private] |
Definition at line 270 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and MuonAlignmentAnalyzer().
double MuonAlignmentAnalyzer::resLocalYRangeStation2 [private] |
Definition at line 270 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and MuonAlignmentAnalyzer().
double MuonAlignmentAnalyzer::resLocalYRangeStation3 [private] |
Definition at line 270 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and MuonAlignmentAnalyzer().
double MuonAlignmentAnalyzer::resLocalYRangeStation4 [private] |
Definition at line 270 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and MuonAlignmentAnalyzer().
double MuonAlignmentAnalyzer::resPhiRange [private] |
Definition at line 271 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and MuonAlignmentAnalyzer().
double MuonAlignmentAnalyzer::resThetaRange [private] |
Definition at line 271 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and MuonAlignmentAnalyzer().
std::string MuonAlignmentAnalyzer::theDataType [private] |
Definition at line 71 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), beginJob(), endJob(), and MuonAlignmentAnalyzer().
Definition at line 63 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and MuonAlignmentAnalyzer().
Propagator* MuonAlignmentAnalyzer::thePropagator [private] |
Definition at line 258 of file MuonAlignmentAnalyzer.h.
Referenced by analyze().
Definition at line 68 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and MuonAlignmentAnalyzer().
Definition at line 67 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and MuonAlignmentAnalyzer().
Definition at line 64 of file MuonAlignmentAnalyzer.h.
Referenced by analyze(), and MuonAlignmentAnalyzer().
std::vector<TH1F *> MuonAlignmentAnalyzer::unitsGlobalPhi [private] |
Definition at line 173 of file MuonAlignmentAnalyzer.h.
std::vector<TH1F *> MuonAlignmentAnalyzer::unitsGlobalRPhi [private] |
Definition at line 172 of file MuonAlignmentAnalyzer.h.
std::vector<TH1F *> MuonAlignmentAnalyzer::unitsGlobalRZ [private] |
Definition at line 175 of file MuonAlignmentAnalyzer.h.
std::vector<TH1F *> MuonAlignmentAnalyzer::unitsGlobalTheta [private] |
Definition at line 174 of file MuonAlignmentAnalyzer.h.
std::vector<TH1F *> MuonAlignmentAnalyzer::unitsLocalPhi [private] |
Definition at line 169 of file MuonAlignmentAnalyzer.h.
std::vector<TH1F *> MuonAlignmentAnalyzer::unitsLocalTheta [private] |
Definition at line 170 of file MuonAlignmentAnalyzer.h.
std::vector<TH1F *> MuonAlignmentAnalyzer::unitsLocalX [private] |
Definition at line 168 of file MuonAlignmentAnalyzer.h.
std::vector<TH1F *> MuonAlignmentAnalyzer::unitsLocalY [private] |
Definition at line 171 of file MuonAlignmentAnalyzer.h.