Typedefs | |
typedef boost::multi_array < float, 2 > | array_2d |
typedef boost::multi_array < bool, 2 > | array_2d_bool |
typedef boost::multi_array < float, 3 > | array_3d |
Functions | |
int | PixelTempSplit (int id, float cotalpha, float cotbeta, array_2d &cluster, std::vector< bool > &ydouble, std::vector< bool > &xdouble, SiPixelTemplate &templ, float &yrec1, float &yrec2, float &sigmay, float &prob2y, float &xrec1, float &xrec2, float &sigmax, float &prob2x, int &q2bin, float &prob2Q, bool resolve, int speed, float &dchisq, bool deadpix, std::vector< std::pair< int, int > > &zeropix, SiPixelTemplate2D &templ2D) |
int | PixelTempSplit (int id, float cotalpha, float cotbeta, array_2d &cluster, std::vector< bool > &ydouble, std::vector< bool > &xdouble, SiPixelTemplate &templ, float &yrec1, float &yrec2, float &sigmay, float &prob2y, float &xrec1, float &xrec2, float &sigmax, float &prob2x, int &q2bin, SiPixelTemplate2D &templ2D) |
int | PixelTempSplit (int id, float cotalpha, float cotbeta, array_2d &cluster, std::vector< bool > &ydouble, std::vector< bool > &xdouble, SiPixelTemplate &templ, float &yrec1, float &yrec2, float &sigmay, float &prob2y, float &xrec1, float &xrec2, float &sigmax, float &prob2x, int &q2bin, float &prob2Q, SiPixelTemplate2D &templ2D) |
int | PixelTempSplit (int id, float cotalpha, float cotbeta, array_2d &cluster, std::vector< bool > &ydouble, std::vector< bool > &xdouble, SiPixelTemplate &templ, float &yrec1, float &yrec2, float &sigmay, float &prob2y, float &xrec1, float &xrec2, float &sigmax, float &prob2x, int &q2bin, float &prob2Q, bool resolve, float &dchisq, SiPixelTemplate2D &templ2D) |
int | PixelTempSplit (int id, float cotalpha, float cotbeta, array_2d &cluster, std::vector< bool > &ydouble, std::vector< bool > &xdouble, SiPixelTemplate &templ, float &yrec1, float &yrec2, float &sigmay, float &prob2y, float &xrec1, float &xrec2, float &sigmax, float &prob2x, int &q2bin, float &prob2Q, bool resolve, int speed, float &dchisq, SiPixelTemplate2D &templ2D) |
typedef boost::multi_array<float, 2> SiPixelTemplateSplit::array_2d |
Definition at line 50 of file SiPixelTemplateSplit.h.
typedef boost::multi_array<bool, 2> SiPixelTemplateSplit::array_2d_bool |
Definition at line 51 of file SiPixelTemplateSplit.h.
typedef boost::multi_array<float, 3> SiPixelTemplateSplit::array_3d |
Definition at line 52 of file SiPixelTemplateSplit.h.
int SiPixelTemplateSplit::PixelTempSplit | ( | int | id, |
float | cotalpha, | ||
float | cotbeta, | ||
array_2d & | clust, | ||
std::vector< bool > & | ydouble, | ||
std::vector< bool > & | xdouble, | ||
SiPixelTemplate & | templ, | ||
float & | yrec1, | ||
float & | yrec2, | ||
float & | sigmay, | ||
float & | prob2y, | ||
float & | xrec1, | ||
float & | xrec2, | ||
float & | sigmax, | ||
float & | prob2x, | ||
int & | q2bin, | ||
float & | prob2Q, | ||
bool | resolve, | ||
int | speed, | ||
float & | dchisq, | ||
bool | deadpix, | ||
std::vector< std::pair< int, int > > & | zeropix, | ||
SiPixelTemplate2D & | templ2D | ||
) |
Reconstruct the best estimate of the hit positions for pixel clusters.
id | - (input) identifier of the template to use |
cotalpha | - (input) the cotangent of the alpha track angle (see CMS IN 2004/014) |
cotbeta | - (input) the cotangent of the beta track angle (see CMS IN 2004/014) |
cluster | - (input) boost multi_array container of 7x21 array of pixel signals, origin of local coords (0,0) at center of pixel cluster[0][0]. |
ydouble | - (input) STL vector of 21 element array to flag a double-pixel |
xdouble | - (input) STL vector of 7 element array to flag a double-pixel |
templ | - (input) the template used in the reconstruction |
yrec1 | - (output) best estimate of first y-coordinate of hit in microns |
yrec2 | - (output) best estimate of second y-coordinate of hit in microns |
sigmay | - (output) best estimate of uncertainty on yrec1 and yrec2 in microns |
prob2y | - (output) probability describing goodness-of-fit to a merged cluster hypothesis for y-reco |
xrec1 | - (output) best estimate of first x-coordinate of hit in microns |
xrec2 | - (output) best estimate of second x-coordinate of hit in microns |
sigmax | - (output) best estimate of uncertainty on xrec1 and xrec2 in microns |
prob2x | - (output) probability describing goodness-of-fit to a merged cluster hypothesis for x-reco |
q2bin | - (output) index (0-4) describing the charge of the cluster assuming a merged 2-hit cluster hypothesis [0: 1.5<Q/Qavg, 1: 1<Q/Qavg<1.5, 2: 0.85<Q/Qavg<1, 3: 0.95Qmin<Q<0.85Qavg, 4: Q<0.95Qmin] |
prob2Q | - (output) probability that the cluster charge is compatible with a 2-hit merging |
resolve | - (input) if true, use 2-D chisquare to resolve the 2-fold x-y association ambiguity (costs a factor of two in speed) |
speed | - (input) switch (-1->2) trading speed vs robustness -1 totally bombproof, searches the entire ranges of template bins, calculates Q probability w/ VVIObj 0 totally bombproof, searches the entire template bin range at full density (no Qprob) 1 faster, searches same range as 0 but at 1/2 density 2 fastest, searches same range as 1 but at 1/4 density (no big pix) and 1/2 density (big pix in cluster) |
dchisq | - (output) the delta chisquare estimator used to break the degeneracy (0 means no discrimination, larger than 0.1 is good) |
deadpix | - (input) bool to indicate that there are dead pixels to be included in the analysis |
zeropix | - (input) vector of index pairs pointing to the dead pixels |
Definition at line 97 of file SiPixelTemplateSplit.cc.
References BHX, BHY, BXM1, BXM2, BXM3, BXSIZE, BYM1, BYM2, BYM3, BYSIZE, SiPixelTemplate::chi2xavgc2m(), SiPixelTemplate::chi2xavgone(), SiPixelTemplate::chi2xminone(), SiPixelTemplate::chi2yavgc2m(), SiPixelTemplate::chi2yavgone(), SiPixelTemplate::chi2yminone(), SiPixelTemplate::cxtemp(), SiPixelTemplate::cytemp(), delta, SiPixelTemplate::dxone(), SiPixelTemplate::dxtwo(), SiPixelTemplate::dyone(), SiPixelTemplate::dytwo(), alignCSCRings::e, ENDL, Exception, f, VVIObj::fcn(), Gamma, i, SiPixelTemplate::interpolate(), j, gen::k, SiPixelTemplate2D::landau_par(), funct::log(), LOGDEBUG, LOGERROR, max(), maxpix, min, SiPixelTemplate::pixmax(), SiPixelTemplate::qavg(), SiPixelTemplate::qmin(), SiPixelTemplate::qscale(), SiPixelTemplate::s50(), SiPixelTemplate::simpletemplate2D(), python::multivaluedict::sort(), mathSSE::sqrt(), SiPixelTemplate::sxmax(), SiPixelTemplate::sxone(), SiPixelTemplate::sxtwo(), SiPixelTemplate::symax(), SiPixelTemplate::syone(), SiPixelTemplate::sytwo(), theVerboseLevel, TXSIZE, TYSIZE, SiPixelTemplate::vavilov2_pars(), SiPixelTemplate::xavgc2m(), SiPixelTemplate::xrmsc2m(), SiPixelTemplate::xsigma2(), SiPixelTemplate::xsize(), SiPixelTemplate::xtemp3d(), SiPixelTemplate::xtemp3d_int(), SiPixelTemplate2D::xytemp(), SiPixelTemplate::yavgc2m(), SiPixelTemplate::yrmsc2m(), SiPixelTemplate::ysigma2(), SiPixelTemplate::ysize(), SiPixelTemplate::ytemp3d(), and SiPixelTemplate::ytemp3d_int().
Referenced by PixelCPETemplateReco::localPosition(), PixelTempSplit(), and TrackClusterSplitter::splitCluster().
{ // Local variables int i, j, k, binq, midpix, fypix, nypix, lypix, logypx, lparm; int fxpix, nxpix, lxpix, logxpx, shifty, shiftx, nyzero[TYSIZE]; int nclusx, nclusy; int nybin, ycbin, nxbin, xcbin, minbinj, minbink; int deltaj, jmin, jmax, kmin, kmax, km, fxbin, lxbin, fybin, lybin, djy, djx; float sythr, sxthr, delta, sigma, sigavg, pseudopix, xsize, ysize, qscale, lanpar[2][5]; float ss2, ssa, sa2, rat, fq, qtotal, qpixel, qavg; float x1p, x2p, y1p, y2p, deltachi2; float originx, originy, bias, maxpix, minmax; double chi2x, meanx, chi2y, meany, chi2ymin, chi2xmin, chi21max; double hchi2, hndof, sigmal1, sigmal2, mpv1, mpv2, arg1, arg2, q05, like, loglike1, loglike2; double prvav, mpv, sigmaQ, kappa, xvav, beta2; float ysum[BYSIZE], xsum[BXSIZE], ysort[BYSIZE], xsort[BXSIZE]; float ysig2[BYSIZE], xsig2[BXSIZE]; float yw2[BYSIZE], xw2[BXSIZE], ysw[BYSIZE], xsw[BXSIZE]; float cluster2[BXM2][BYM2], temp2d1[BXM2][BYM2], temp2d2[BXM2][BYM2]; bool yd[BYSIZE], xd[BXSIZE], anyyd, anyxd, any2dfail; const float sqrt2x={3.0000}, sqrt2y={1.7000}; const float sqrt12={3.4641}; const float probmin={1.110223e-16}; const float prob2Qmin={1.e-5}; std::pair<int, int> pixel; // bool SiPixelTemplateSplit::SimpleTemplate2D(float cotalpha, float cotbeta, float xhit, float yhit, float thick, float lorxwidth, float lorywidth, // float qavg, std::vector<bool> ydouble, std::vector<bool> xdouble, float template2d[BXM2][BYM2]); // The minimum chi2 for a valid one pixel cluster = pseudopixel contribution only const double mean1pix={0.100}, chi21min={0.160}; // First, interpolate the template needed to analyze this cluster // check to see of the track direction is in the physical range of the loaded template if(!templ.interpolate(id, cotalpha, cotbeta)) { LOGDEBUG("SiPixelTemplateReco") << "input cluster direction cot(alpha) = " << cotalpha << ", cot(beta) = " << cotbeta << " is not within the acceptance of template ID = " << id << ", no reconstruction performed" << ENDL; return 20; } // Get pixel dimensions from the template (to allow multiple detectors in the future) xsize = templ.xsize(); ysize = templ.ysize(); // Define size of pseudopixel pseudopix = templ.s50(); // q05 = 0.28*pseudopix; q05 = 0.05f*pseudopix; // Get charge scaling factor qscale = templ.qscale(); // Make a local copy of the cluster container so that we can muck with it array_2d cluster = clust; // Check that the cluster container is (up to) a 7x21 matrix and matches the dimensions of the double pixel flags if(cluster.num_dimensions() != 2) { LOGERROR("SiPixelTemplateReco") << "input cluster container (BOOST Multiarray) has wrong number of dimensions" << ENDL; return 3; } nclusx = (int)cluster.shape()[0]; nclusy = (int)cluster.shape()[1]; if(nclusx != (int)xdouble.size()) { LOGERROR("SiPixelTemplateReco") << "input cluster container x-size is not equal to double pixel flag container size" << ENDL; return 4; } if(nclusy != (int)ydouble.size()) { LOGERROR("SiPixelTemplateReco") << "input cluster container y-size is not equal to double pixel flag container size" << ENDL; return 5; } // enforce maximum size if(nclusx > TXSIZE) {nclusx = TXSIZE;} if(nclusy > TYSIZE) {nclusy = TYSIZE;} // First, rescale all pixel charges for(i=0; i<nclusy; ++i) { for(j=0; j<nclusx; ++j) { if(cluster[j][i] > 0) {cluster[j][i] *= qscale;} } } // Next, sum the total charge and "decapitate" big pixels qtotal = 0.f; minmax = 2.0f*templ.pixmax(); for(i=0; i<nclusy; ++i) { maxpix = minmax; if(ydouble[i]) {maxpix *=2.f;} for(j=0; j<nclusx; ++j) { qtotal += cluster[j][i]; if(cluster[j][i] > maxpix) {cluster[j][i] = maxpix;} } } // Do the cluster repair here if(deadpix) { fypix = BYM3; lypix = -1; for(i=0; i<nclusy; ++i) { ysum[i] = 0.f; nyzero[i] = 0; // Do preliminary cluster projection in y for(j=0; j<nclusx; ++j) { ysum[i] += cluster[j][i]; } if(ysum[i] > 0.f) { // identify ends of cluster to determine what the missing charge should be if(i < fypix) {fypix = i;} if(i > lypix) {lypix = i;} } } // Now loop over dead pixel list and "fix" everything //First see if the cluster ends are redefined and that we have only one dead pixel per column std::vector<std::pair<int, int> >::const_iterator zeroIter = zeropix.begin(), zeroEnd = zeropix.end(); for ( ; zeroIter != zeroEnd; ++zeroIter ) { i = zeroIter->second; if(i<0 || i>TYSIZE-1) {LOGERROR("SiPixelTemplateReco") << "dead pixel column y-index " << i << ", no reconstruction performed" << ENDL; return 11;} // count the number of dead pixels in each column ++nyzero[i]; // allow them to redefine the cluster ends if(i < fypix) {fypix = i;} if(i > lypix) {lypix = i;} } nypix = lypix-fypix+1; // Now adjust the charge in the dead pixels to sum to 0.5*truncation value in the end columns and the truncation value in the interior columns for (zeroIter = zeropix.begin(); zeroIter != zeroEnd; ++zeroIter ) { i = zeroIter->second; j = zeroIter->first; if(j<0 || j>TXSIZE-1) {LOGERROR("SiPixelTemplateReco") << "dead pixel column x-index " << j << ", no reconstruction performed" << ENDL; return 12;} if((i == fypix || i == lypix) && nypix > 1) {maxpix = templ.symax()/2.;} else {maxpix = templ.symax();} if(ydouble[i]) {maxpix *=2.;} if(nyzero[i] > 0 && nyzero[i] < 3) {qpixel = (maxpix - ysum[i])/(float)nyzero[i];} else {qpixel = 1.;} if(qpixel < 1.f) {qpixel = 1.f;} cluster[j][i] = qpixel; // Adjust the total cluster charge to reflect the charge of the "repaired" cluster qtotal += qpixel; } // End of cluster repair section } // Next, make y-projection of the cluster and copy the double pixel flags into a 25 element container for(i=0; i<BYSIZE; ++i) { ysum[i] = 0.f; yd[i] = false;} k=0; anyyd = false; for(i=0; i<nclusy; ++i) { for(j=0; j<nclusx; ++j) { ysum[k] += cluster[j][i]; } // If this is a double pixel, put 1/2 of the charge in 2 consective single pixels if(ydouble[i]) { ysum[k] /= 2.f; ysum[k+1] = ysum[k]; yd[k] = true; yd[k+1] = false; k=k+2; anyyd = true; } else { yd[k] = false; ++k; } if(k > BYM1) {break;} } // Next, make x-projection of the cluster and copy the double pixel flags into an 11 element container for(i=0; i<BXSIZE; ++i) { xsum[i] = 0.f; xd[i] = false;} k=0; anyxd = false; for(j=0; j<nclusx; ++j) { for(i=0; i<nclusy; ++i) { xsum[k] += cluster[j][i]; } // If this is a double pixel, put 1/2 of the charge in 2 consective single pixels if(xdouble[j]) { xsum[k] /= 2.f; xsum[k+1] = xsum[k]; xd[k]=true; xd[k+1]=false; k=k+2; anyxd = true; } else { xd[k]=false; ++k; } if(k > BXM1) {break;} } // next, identify the y-cluster ends, count total pixels, nypix, and logical pixels, logypx fypix=-1; nypix=0; lypix=0; logypx=0; for(i=0; i<BYSIZE; ++i) { if(ysum[i] > 0.) { if(fypix == -1) {fypix = i;} if(!yd[i]) { ysort[logypx] = ysum[i]; ++logypx; } ++nypix; lypix = i; } } // Make sure cluster is continuous if((lypix-fypix+1) != nypix || nypix == 0) { LOGDEBUG("SiPixelTemplateReco") << "y-length of pixel cluster doesn't agree with number of pixels above threshold" << ENDL; if (theVerboseLevel > 2) { LOGDEBUG("SiPixelTemplateReco") << "ysum[] = "; for(i=0; i<BYSIZE-1; ++i) {LOGDEBUG("SiPixelTemplateReco") << ysum[i] << ", ";} LOGDEBUG("SiPixelTemplateReco") << ysum[BYSIZE-1] << ENDL; } return 1; } // If cluster is longer than max template size, technique fails if(nypix > TYSIZE) { LOGDEBUG("SiPixelTemplateReco") << "y-length of pixel cluster is larger than maximum template size" << ENDL; if (theVerboseLevel > 2) { LOGDEBUG("SiPixelTemplateReco") << "ysum[] = "; for(i=0; i<BYSIZE-1; ++i) {LOGDEBUG("SiPixelTemplateReco") << ysum[i] << ", ";} LOGDEBUG("SiPixelTemplateReco") << ysum[BYSIZE-1] << ENDL; } return 6; } // next, center the cluster on template center if necessary midpix = (fypix+lypix)/2; // shifty = BHY - midpix; shifty = templ.cytemp() - midpix; if(shifty > 0) { for(i=lypix; i>=fypix; --i) { ysum[i+shifty] = ysum[i]; ysum[i] = 0.; yd[i+shifty] = yd[i]; yd[i] = false; } } else if (shifty < 0) { for(i=fypix; i<=lypix; ++i) { ysum[i+shifty] = ysum[i]; ysum[i] = 0.; yd[i+shifty] = yd[i]; yd[i] = false; } } lypix +=shifty; fypix +=shifty; // If the cluster boundaries are OK, add pesudopixels, otherwise quit if(fypix > 1 && fypix < BYM2) { ysum[fypix-1] = pseudopix; ysum[fypix-2] = 0.2f*pseudopix; } else {return 8;} if(lypix > 1 && lypix < BYM2) { ysum[lypix+1] = pseudopix; ysum[lypix+2] = 0.2f*pseudopix; } else {return 8;} // finally, determine if pixel[0] is a double pixel and make an origin correction if it is if(ydouble[0]) { originy = -0.5f; } else { originy = 0.f; } // next, identify the x-cluster ends, count total pixels, nxpix, and logical pixels, logxpx fxpix=-1; nxpix=0; lxpix=0; logxpx=0; for(i=0; i<BXSIZE; ++i) { if(xsum[i] > 0.) { if(fxpix == -1) {fxpix = i;} if(!xd[i]) { xsort[logxpx] = xsum[i]; ++logxpx; } ++nxpix; lxpix = i; } } // Make sure cluster is continuous if((lxpix-fxpix+1) != nxpix) { LOGDEBUG("SiPixelTemplateReco") << "x-length of pixel cluster doesn't agree with number of pixels above threshold" << ENDL; if (theVerboseLevel > 2) { LOGDEBUG("SiPixelTemplateReco") << "xsum[] = "; for(i=0; i<BXSIZE-1; ++i) {LOGDEBUG("SiPixelTemplateReco") << xsum[i] << ", ";} LOGDEBUG("SiPixelTemplateReco") << ysum[BXSIZE-1] << ENDL; } return 2; } // If cluster is longer than max template size, technique fails if(nxpix > TXSIZE) { LOGDEBUG("SiPixelTemplateReco") << "x-length of pixel cluster is larger than maximum template size" << ENDL; if (theVerboseLevel > 2) { LOGDEBUG("SiPixelTemplateReco") << "xsum[] = "; for(i=0; i<BXSIZE-1; ++i) {LOGDEBUG("SiPixelTemplateReco") << xsum[i] << ", ";} LOGDEBUG("SiPixelTemplateReco") << ysum[BXSIZE-1] << ENDL; } return 7; } // next, center the cluster on template center if necessary midpix = (fxpix+lxpix)/2; // shiftx = BHX - midpix; shiftx = templ.cxtemp() - midpix; if(shiftx > 0) { for(i=lxpix; i>=fxpix; --i) { xsum[i+shiftx] = xsum[i]; xsum[i] = 0.f; xd[i+shiftx] = xd[i]; xd[i] = false; } } else if (shiftx < 0) { for(i=fxpix; i<=lxpix; ++i) { xsum[i+shiftx] = xsum[i]; xsum[i] = 0.f; xd[i+shiftx] = xd[i]; xd[i] = false; } } lxpix +=shiftx; fxpix +=shiftx; // If the cluster boundaries are OK, add pesudopixels, otherwise quit if(fxpix > 1 && fxpix <BXM2) { xsum[fxpix-1] = pseudopix; xsum[fxpix-2] = 0.2f*pseudopix; } else {return 9;} if(lxpix > 1 && lxpix < BXM2) { xsum[lxpix+1] = pseudopix; xsum[lxpix+2] = 0.2f*pseudopix; } else {return 9;} // finally, determine if pixel[0] is a double pixel and make an origin correction if it is if(xdouble[0]) { originx = -0.5f; } else { originx = 0.f; } // uncertainty and final corrections depend upon total charge bin qavg = templ.qavg(); fq = qtotal/qavg; if(fq > 3.0f) { binq=0; } else { if(fq > 2.0f) { binq=1; } else { if(fq > 1.70f) { binq=2; } else { binq=3; } } } // Calculate the Vavilov probability that the cluster charge is consistent with a merged cluster if(speed < 0) { templ.vavilov2_pars(mpv, sigmaQ, kappa); #ifndef SI_PIXEL_TEMPLATE_STANDALONE if((sigmaQ <=0.) || (mpv <= 0.) || (kappa < 0.01) || (kappa > 9.9)) { throw cms::Exception("DataCorrupt") << "SiPixelTemplateSplit::Vavilov parameters mpv/sigmaQ/kappa = " << mpv << "/" << sigmaQ << "/" << kappa << std::endl; } #else assert((sigmaQ > 0.) && (mpv > 0.) && (kappa > 0.01) && (kappa < 10.)); #endif xvav = ((double)qtotal-mpv)/sigmaQ; beta2 = 1.; // VVIObj is a private port of CERNLIB VVIDIS VVIObj vvidist(kappa, beta2, 1); prvav = vvidist.fcn(xvav); prob2Q = 1. - prvav; if(prob2Q < prob2Qmin) {prob2Q = prob2Qmin;} } else { prob2Q = -1.f; } // Return the charge bin via the parameter list unless the charge is too small (then flag it) q2bin = binq; if(!deadpix && qtotal < 1.9f*templ.qmin()) {q2bin = 5;} else { if(!deadpix && qtotal < 1.9f*templ.qmin(1)) {q2bin = 4;} } if (theVerboseLevel > 9) { LOGDEBUG("SiPixelTemplateSplit") << "ID = " << id << " cot(alpha) = " << cotalpha << " cot(beta) = " << cotbeta << " nclusx = " << nclusx << " nclusy = " << nclusy << ENDL; } // Next, generate the 3d y- and x-templates templ.ytemp3d_int(nypix, nybin); ycbin = nybin/2; templ.xtemp3d_int(nxpix, nxbin); // retrieve the number of x-bins xcbin = nxbin/2; // First, decide on chi^2 min search parameters #ifndef SI_PIXEL_TEMPLATE_STANDALONE if(speed < -1 || speed > 2) { throw cms::Exception("DataCorrupt") << "SiPixelTemplateReco::PixelTempReco2D called with illegal speed = " << speed << std::endl; } #else assert(speed >= -1 && speed < 3); #endif fybin = 0; lybin = nybin-1; fxbin = 0; lxbin = nxbin-1; djy = 1; djx = 1; if(speed > 0) { djy = 2; djx = 2; if(speed > 1) { if(!anyyd) {djy = 4;} if(!anyxd) {djx = 4;} } } if (theVerboseLevel > 9) { LOGDEBUG("SiPixelTemplateReco") << "fypix " << fypix << " lypix = " << lypix << " fybin = " << fybin << " lybin = " << lybin << " djy = " << djy << " logypx = " << logypx << ENDL; LOGDEBUG("SiPixelTemplateReco") << "fxpix " << fxpix << " lxpix = " << lxpix << " fxbin = " << fxbin << " lxbin = " << lxbin << " djx = " << djx << " logxpx = " << logxpx << ENDL; } // Do the y-reconstruction first // Define the maximum signal to allow before de-weighting a pixel sythr = 2.1f*(templ.symax()); // Make sure that there will be at least two pixels that are not de-weighted std::sort(&ysort[0], &ysort[logypx]); if(logypx == 1) {sythr = 1.01f*ysort[0];} else { if (ysort[1] > sythr) { sythr = 1.01f*ysort[1]; } } // Evaluate pixel-by-pixel uncertainties (weights) for the templ analysis // for(i=0; i<BYSIZE; ++i) { ysig2[i] = 0.;} templ.ysigma2(fypix, lypix, sythr, ysum, ysig2); // Find the template bin that minimizes the Chi^2 chi2ymin = 1.e15; ss2 = 0.f; for(i=fypix-2; i<=lypix+2; ++i) { yw2[i] = 1.f/ysig2[i]; ysw[i] = ysum[i]*yw2[i]; ss2 += ysum[i]*ysw[i]; } minbinj = -1; minbink = -1; deltaj = djy; jmin = fybin; jmax = lybin; kmin = fybin; kmax = lybin; std::vector<float> ytemp(BYSIZE); while(deltaj > 0) { for(j=jmin; j<jmax; j+=deltaj) { km = std::min(kmax, j); for(k=kmin; k<=km; k+=deltaj) { // Get the template for this set of indices templ.ytemp3d(j, k, ytemp); // Modify the template if double pixels are present if(nypix > logypx) { i=fypix; while(i < lypix) { if(yd[i] && !yd[i+1]) { // Sum the adjacent cells and put the average signal in both sigavg = (ytemp[i] + ytemp[i+1])/2.f; ytemp[i] = sigavg; ytemp[i+1] = sigavg; i += 2; } else { ++i; } } } ssa = 0.f; sa2 = 0.f; for(i=fypix-2; i<=lypix+2; ++i) { ssa += ysw[i]*ytemp[i]; sa2 += ytemp[i]*ytemp[i]*yw2[i]; } rat=ssa/ss2; if(rat <= 0.) {LOGERROR("SiPixelTemplateSplit") << "illegal chi2ymin normalization = " << rat << ENDL; rat = 1.;} chi2y=ss2-2.f*ssa/rat+sa2/(rat*rat); if(chi2y < chi2ymin) { chi2ymin = chi2y; minbinj = j; minbink = k; } } } deltaj /= 2; if(minbinj > fybin) {jmin = minbinj - deltaj;} else {jmin = fybin;} if(minbinj < lybin) {jmax = minbinj + deltaj;} else {jmax = lybin;} if(minbink > fybin) {kmin = minbink - deltaj;} else {kmin = fybin;} if(minbink < lybin) {kmax = minbink + deltaj;} else {kmax = lybin;} } if (theVerboseLevel > 9) { LOGDEBUG("SiPixelTemplateReco") << "minbins " << minbinj << "," << minbink << " chi2ymin = " << chi2ymin << ENDL; } // Do not apply final template pass to 1-pixel clusters (use calibrated offset) if(logypx == 1) { if(nypix ==1) { delta = templ.dyone(); sigma = templ.syone(); } else { delta = templ.dytwo(); sigma = templ.sytwo(); } yrec1 = 0.5f*(fypix+lypix-2*shifty+2.f*originy)*ysize-delta; yrec2 = yrec1; if(sigma <= 0.) { sigmay = ysize/sqrt12; } else { sigmay = sigma; } // Do probability calculation for one-pixel clusters chi21max = fmax(chi21min, (double)templ.chi2yminone()); chi2ymin -=chi21max; if(chi2ymin < 0.) {chi2ymin = 0.;} // prob2y = gsl_cdf_chisq_Q(chi2ymin, mean1pix); meany = fmax(mean1pix, (double)templ.chi2yavgone()); hchi2 = chi2ymin/2.; hndof = meany/2.; prob2y = 1. - TMath::Gamma(hndof, hchi2); } else { // For cluster > 1 pix, use chi^2 minimm to recontruct the two y-positions // at small eta, the templates won't actually work on two pixel y-clusters so just return the pixel centers if(logypx == 2 && fabsf(cotbeta) < 0.25f) { switch(nypix) { case 2: // Both pixels are small yrec1 = (fypix-shifty+originy)*ysize; yrec2 = (lypix-shifty+originy)*ysize; sigmay = ysize/sqrt12; break; case 3: // One big pixel and one small pixel if(yd[fypix]) { yrec1 = (fypix+0.5f-shifty+originy)*ysize; yrec2 = (lypix-shifty+originy)*ysize; sigmay = ysize/sqrt12; } else { yrec1 = (fypix-shifty+originy)*ysize; yrec2 = (lypix-0.5f-shifty+originy)*ysize; sigmay = 1.5f*ysize/sqrt12; } break; case 4: // Two big pixels yrec1 = (fypix+0.5f-shifty+originy)*ysize; yrec2 = (lypix-0.5f-shifty+originy)*ysize; sigmay = 2.f*ysize/sqrt12; break; default: // Something is screwy ... LOGERROR("SiPixelTemplateReco") << "weird problem: logical y-pixels = " << logypx << ", total ysize in normal pixels = " << nypix << ENDL; return 10; } } else { // uncertainty and final correction depend upon charge bin bias = templ.yavgc2m(binq); yrec1 = (0.125f*(minbink-ycbin)+BHY-(float)shifty+originy)*ysize - bias; yrec2 = (0.125f*(minbinj-ycbin)+BHY-(float)shifty+originy)*ysize - bias; sigmay = sqrt2y*templ.yrmsc2m(binq); } // Do goodness of fit test in y if(chi2ymin < 0.0) {chi2ymin = 0.0;} meany = templ.chi2yavgc2m(binq); if(meany < 0.01) {meany = 0.01;} // gsl function that calculates the chi^2 tail prob for non-integral dof // prob2y = gsl_cdf_chisq_Q(chi2y, meany); // prob2y = ROOT::Math::chisquared_cdf_c(chi2y, meany); hchi2 = chi2ymin/2.; hndof = meany/2.; prob2y = 1. - TMath::Gamma(hndof, hchi2); } // Do the x-reconstruction next // Define the maximum signal to allow before de-weighting a pixel sxthr = 2.1f*templ.sxmax(); // Make sure that there will be at least two pixels that are not de-weighted std::sort(&xsort[0], &xsort[logxpx]); if(logxpx == 1) {sxthr = 1.01f*xsort[0];} else { if (xsort[1] > sxthr) { sxthr = 1.01f*xsort[1]; } } // Evaluate pixel-by-pixel uncertainties (weights) for the templ analysis // for(i=0; i<BYSIZE; ++i) { xsig2[i] = 0.; } templ.xsigma2(fxpix, lxpix, sxthr, xsum, xsig2); // Find the template bin that minimizes the Chi^2 chi2xmin = 1.e15; ss2 = 0.f; for(i=fxpix-2; i<=lxpix+2; ++i) { xw2[i] = 1.f/xsig2[i]; xsw[i] = xsum[i]*xw2[i]; ss2 += xsum[i]*xsw[i]; } minbinj = -1; minbink = -1; deltaj = djx; jmin = fxbin; jmax = lxbin; kmin = fxbin; kmax = lxbin; std::vector<float> xtemp(BXSIZE); while(deltaj > 0) { for(j=jmin; j<jmax; j+=deltaj) { km = std::min(kmax, j); for(k=kmin; k<=km; k+=deltaj) { // Get the template for this set of indices templ.xtemp3d(j, k, xtemp); // Modify the template if double pixels are present if(nxpix > logxpx) { i=fxpix; while(i < lxpix) { if(xd[i] && !xd[i+1]) { // Sum the adjacent cells and put the average signal in both sigavg = (xtemp[i] + xtemp[i+1])/2.f; xtemp[i] = sigavg; xtemp[i+1] = sigavg; i += 2; } else { ++i; } } } ssa = 0.f; sa2 = 0.f; for(i=fxpix-2; i<=lxpix+2; ++i) { ssa += xsw[i]*xtemp[i]; sa2 += xtemp[i]*xtemp[i]*xw2[i]; } rat=ssa/ss2; if(rat <= 0.f) {LOGERROR("SiPixelTemplateSplit") << "illegal chi2xmin normalization = " << rat << ENDL; rat = 1.;} chi2x=ss2-2.f*ssa/rat+sa2/(rat*rat); if(chi2x < chi2xmin) { chi2xmin = chi2x; minbinj = j; minbink = k; } } } deltaj /= 2; if(minbinj > fxbin) {jmin = minbinj - deltaj;} else {jmin = fxbin;} if(minbinj < lxbin) {jmax = minbinj + deltaj;} else {jmax = lxbin;} if(minbink > fxbin) {kmin = minbink - deltaj;} else {kmin = fxbin;} if(minbink < lxbin) {kmax = minbink + deltaj;} else {kmax = lxbin;} } if (theVerboseLevel > 9) { LOGDEBUG("SiPixelTemplateSplit") << "minbinj/minbink " << minbinj<< "/" << minbink << " chi2xmin = " << chi2xmin << ENDL; } // Do not apply final template pass to 1-pixel clusters (use calibrated offset) if(logxpx == 1) { if(nxpix ==1) { delta = templ.dxone(); sigma = templ.sxone(); } else { delta = templ.dxtwo(); sigma = templ.sxtwo(); } xrec1 = 0.5f*(fxpix+lxpix-2*shiftx+2.f*originx)*xsize-delta; xrec2 = xrec1; if(sigma <= 0.f) { sigmax = xsize/sqrt12; } else { sigmax = sigma; } // Do probability calculation for one-pixel clusters chi21max = fmax(chi21min, (double)templ.chi2xminone()); chi2xmin -=chi21max; if(chi2xmin < 0.) {chi2xmin = 0.;} meanx = fmax(mean1pix, (double)templ.chi2xavgone()); hchi2 = chi2xmin/2.; hndof = meanx/2.; prob2x = 1. - TMath::Gamma(hndof, hchi2); } else { // For cluster > 1 pix, use chi^2 minimm to recontruct the two x-positions // uncertainty and final correction depend upon charge bin bias = templ.xavgc2m(binq); k = std::min(minbink, minbinj); j = std::max(minbink, minbinj); xrec1 = (0.125f*(minbink-xcbin)+BHX-(float)shiftx+originx)*xsize - bias; xrec2 = (0.125f*(minbinj-xcbin)+BHX-(float)shiftx+originx)*xsize - bias; sigmax = sqrt2x*templ.xrmsc2m(binq); // Do goodness of fit test in y if(chi2xmin < 0.0) {chi2xmin = 0.0;} meanx = templ.chi2xavgc2m(binq); if(meanx < 0.01) {meanx = 0.01;} hchi2 = chi2xmin/2.; hndof = meanx/2.; prob2x = 1. - TMath::Gamma(hndof, hchi2); } // Don't return exact zeros for the probability if(prob2y < probmin) {prob2y = probmin;} if(prob2x < probmin) {prob2x = probmin;} // New code: resolve the ambiguity if resolve is set to true dchisq = 0.; if(resolve) { // First copy the unexpanded cluster into a new working buffer for(i=0; i<BYM2; ++i) { for(j=0; j<BXM2; ++j) { if((i>0 && i<BYM3)&&(j>0 && j<BXM3)) { cluster2[j][i] = qscale*clust[j-1][i-1]; } else { cluster2[j][i] = 0.f; } } } // Next, redefine the local coordinates to start at the lower LH corner of pixel[1][1]; if(xdouble[0]) { x1p = xrec1+xsize; x2p = xrec2+xsize; } else { x1p = xrec1+xsize/2.f; x2p = xrec2+xsize/2.f; } if(ydouble[0]) { y1p = yrec1+ysize; y2p = yrec2+ysize; } else { y1p = yrec1+ysize/2.f; y2p = yrec2+ysize/2.f; } // Next, calculate 2-d templates for the (x1,y1)+(x2,y2) and the (x1,y2)+(x2,y1) hypotheses // First zero the two 2-d hypotheses for(i=0; i<BYM2; ++i) { for(j=0; j<BXM2; ++j) { temp2d1[j][i] = 0.f; temp2d2[j][i] = 0.f; } } // Add the two hits in the first hypothesis any2dfail = templ2D.xytemp(id, cotalpha, cotbeta, x1p, y1p, xdouble, ydouble, temp2d1) && templ2D.xytemp(id, cotalpha, cotbeta, x2p, y2p, xdouble, ydouble, temp2d1); // And then the second hypothesis any2dfail = any2dfail && templ2D.xytemp(id, cotalpha, cotbeta, x1p, y2p, xdouble, ydouble, temp2d2); any2dfail = any2dfail && templ2D.xytemp(id, cotalpha, cotbeta, x2p, y1p, xdouble, ydouble, temp2d2); // If any of these have failed, use the simple templates instead if(!any2dfail) { // Rezero the two 2-d hypotheses for(i=0; i<BYM2; ++i) { for(j=0; j<BXM2; ++j) { temp2d1[j][i] = 0.f; temp2d2[j][i] = 0.f; } } // Add the two hits in the first hypothesis if(!templ.simpletemplate2D(x1p, y1p, xdouble, ydouble, temp2d1)) {return 1;} if(!templ.simpletemplate2D(x2p, y2p, xdouble, ydouble, temp2d1)) {return 1;} // And then the second hypothesis if(!templ.simpletemplate2D(x1p, y2p, xdouble, ydouble, temp2d2)) {return 1;} if(!templ.simpletemplate2D(x2p, y1p, xdouble, ydouble, temp2d2)) {return 1;} } // Keep lists of pixels and nearest neighbors std::list<std::pair<int, int> > pixellst; // Loop through the array and find non-zero elements for(i=0; i<BYM2; ++i) { for(j=0; j<BXM2; ++j) { if(cluster2[j][i] > 0.f || temp2d1[j][i] > 0.f || temp2d2[j][i] > 0.f) { pixel.first = j; pixel.second = i; pixellst.push_back(pixel); } } } // Now calculate the product of Landau probabilities (alpha probability) templ2D.landau_par(lanpar); loglike1 = 0.; loglike2 = 0.; // Now, for each neighbor, match it again the pixel list. // If found, delete it from the neighbor list std::list<std::pair<int, int> >::const_iterator pixIter, pixEnd; pixIter = pixellst.begin(); pixEnd = pixellst.end(); for( ; pixIter != pixEnd; ++pixIter ) { j = pixIter->first; i = pixIter->second; if((i < BHY && cotbeta > 0.) || (i >= BHY && cotbeta < 0.)) {lparm = 0;} else {lparm = 1;} mpv1 = lanpar[lparm][0] + lanpar[lparm][1]*temp2d1[j][i]; sigmal1 = lanpar[lparm][2]*mpv1; sigmal1 = sqrt(sigmal1*sigmal1+lanpar[lparm][3]*lanpar[lparm][3]); if(sigmal1 < q05) sigmal1 = q05; arg1 = (cluster2[j][i]-mpv1)/sigmal1-0.22278; mpv2 = lanpar[lparm][0] + lanpar[lparm][1]*temp2d2[j][i]; sigmal2 = lanpar[lparm][2]*mpv2; sigmal2 = sqrt(sigmal2*sigmal2+lanpar[lparm][3]*lanpar[lparm][3]); if(sigmal2 < q05) sigmal2 = q05; arg2 = (cluster2[j][i]-mpv2)/sigmal2-0.22278; // like = ROOT::Math::landau_pdf(arg1)/sigmal1; like = ROOT::Math::landau_pdf(arg1); if(like < 1.e-30) like = 1.e-30; loglike1 += log(like); // like = ROOT::Math::landau_pdf(arg2)/sigmal2; like = ROOT::Math::landau_pdf(arg2); if(like < 1.e-30) like = 1.e-30; loglike2 += log(like); } // Calculate chisquare difference for the two hypotheses 9don't multiply by 2 for less inconvenient scaling deltachi2 = loglike1 - loglike2; if(deltachi2 < 0.) { // Flip the x1 and x2 x1p = xrec1; xrec1 = xrec2; xrec2 = x1p; } // Return a positive definite value dchisq = fabs(deltachi2); } return 0; } // PixelTempSplit
int SiPixelTemplateSplit::PixelTempSplit | ( | int | id, |
float | cotalpha, | ||
float | cotbeta, | ||
array_2d & | cluster, | ||
std::vector< bool > & | ydouble, | ||
std::vector< bool > & | xdouble, | ||
SiPixelTemplate & | templ, | ||
float & | yrec1, | ||
float & | yrec2, | ||
float & | sigmay, | ||
float & | prob2y, | ||
float & | xrec1, | ||
float & | xrec2, | ||
float & | sigmax, | ||
float & | prob2x, | ||
int & | q2bin, | ||
SiPixelTemplate2D & | templ2D | ||
) |
Reconstruct the best estimate of the hit positions for pixel clusters. Legacy interface to older code.
id | - (input) identifier of the template to use |
cotalpha | - (input) the cotangent of the alpha track angle (see CMS IN 2004/014) |
cotbeta | - (input) the cotangent of the beta track angle (see CMS IN 2004/014) |
cluster | - (input) boost multi_array container of 7x21 array of pixel signals, origin of local coords (0,0) at center of pixel cluster[0][0]. |
ydouble | - (input) STL vector of 21 element array to flag a double-pixel |
xdouble | - (input) STL vector of 7 element array to flag a double-pixel |
templ | - (input) the template used in the reconstruction |
yrec1 | - (output) best estimate of first y-coordinate of hit in microns |
yrec2 | - (output) best estimate of second y-coordinate of hit in microns |
sigmay | - (output) best estimate of uncertainty on yrec in microns |
prob2y | - (output) probability describing goodness-of-fit for y-reco |
xrec1 | - (output) best estimate of first x-coordinate of hit in microns |
xrec2 | - (output) best estimate of second x-coordinate of hit in microns |
sigmax | - (output) best estimate of uncertainty on xrec in microns |
prob2x | - (output) probability describing goodness-of-fit for x-reco |
q2bin | - (output) index (0-4) describing the charge of the cluster [0: 1.5<Q/Qavg, 1: 1<Q/Qavg<1.5, 2: 0.85<Q/Qavg<1, 3: 0.95Qmin<Q<0.85Qavg, 4: Q<0.95Qmin] |
Definition at line 1213 of file SiPixelTemplateSplit.cc.
References PixelTempSplit().
{ // Local variables const bool deadpix = false; const bool resolve = true; float dchisq, prob2Q; std::vector<std::pair<int, int> > zeropix; const int speed = 1; return SiPixelTemplateSplit::PixelTempSplit(id, cotalpha, cotbeta, cluster, ydouble, xdouble, templ, yrec1, yrec2, sigmay, prob2y, xrec1, xrec2, sigmax, prob2x, q2bin, prob2Q, resolve, speed, dchisq, deadpix, zeropix, templ2D); } // PixelTempSplit
int SiPixelTemplateSplit::PixelTempSplit | ( | int | id, |
float | cotalpha, | ||
float | cotbeta, | ||
array_2d & | cluster, | ||
std::vector< bool > & | ydouble, | ||
std::vector< bool > & | xdouble, | ||
SiPixelTemplate & | templ, | ||
float & | yrec1, | ||
float & | yrec2, | ||
float & | sigmay, | ||
float & | prob2y, | ||
float & | xrec1, | ||
float & | xrec2, | ||
float & | sigmax, | ||
float & | prob2x, | ||
int & | q2bin, | ||
float & | prob2Q, | ||
SiPixelTemplate2D & | templ2D | ||
) |
Reconstruct the best estimate of the hit positions for pixel clusters. Legacy interface to older code.
id | - (input) identifier of the template to use |
cotalpha | - (input) the cotangent of the alpha track angle (see CMS IN 2004/014) |
cotbeta | - (input) the cotangent of the beta track angle (see CMS IN 2004/014) |
cluster | - (input) boost multi_array container of 7x21 array of pixel signals, origin of local coords (0,0) at center of pixel cluster[0][0]. |
ydouble | - (input) STL vector of 21 element array to flag a double-pixel |
xdouble | - (input) STL vector of 7 element array to flag a double-pixel |
templ | - (input) the template used in the reconstruction |
yrec1 | - (output) best estimate of first y-coordinate of hit in microns |
yrec2 | - (output) best estimate of second y-coordinate of hit in microns |
sigmay | - (output) best estimate of uncertainty on yrec in microns |
prob2y | - (output) probability describing goodness-of-fit for y-reco |
xrec1 | - (output) best estimate of first x-coordinate of hit in microns |
xrec2 | - (output) best estimate of second x-coordinate of hit in microns |
sigmax | - (output) best estimate of uncertainty on xrec in microns |
prob2x | - (output) probability describing goodness-of-fit for x-reco |
q2bin | - (output) index (0-4) describing the charge of the cluster [0: 1.5<Q/Qavg, 1: 1<Q/Qavg<1.5, 2: 0.85<Q/Qavg<1, 3: 0.95Qmin<Q<0.85Qavg, 4: Q<0.95Qmin] |
prob2Q | - (output) probability that the cluster charge is compatible with a 2-hit merging |
Definition at line 1171 of file SiPixelTemplateSplit.cc.
References PixelTempSplit().
{ // Local variables const bool deadpix = false; const bool resolve = true; float dchisq; std::vector<std::pair<int, int> > zeropix; const int speed = 1; return SiPixelTemplateSplit::PixelTempSplit(id, cotalpha, cotbeta, cluster, ydouble, xdouble, templ, yrec1, yrec2, sigmay, prob2y, xrec1, xrec2, sigmax, prob2x, q2bin, prob2Q, resolve, speed, dchisq, deadpix, zeropix, templ2D); } // PixelTempSplit
int SiPixelTemplateSplit::PixelTempSplit | ( | int | id, |
float | cotalpha, | ||
float | cotbeta, | ||
array_2d & | cluster, | ||
std::vector< bool > & | ydouble, | ||
std::vector< bool > & | xdouble, | ||
SiPixelTemplate & | templ, | ||
float & | yrec1, | ||
float & | yrec2, | ||
float & | sigmay, | ||
float & | prob2y, | ||
float & | xrec1, | ||
float & | xrec2, | ||
float & | sigmax, | ||
float & | prob2x, | ||
int & | q2bin, | ||
float & | prob2Q, | ||
bool | resolve, | ||
float & | dchisq, | ||
SiPixelTemplate2D & | templ2D | ||
) |
Reconstruct the best estimate of the hit positions for pixel clusters.
id | - (input) identifier of the template to use |
cotalpha | - (input) the cotangent of the alpha track angle (see CMS IN 2004/014) |
cotbeta | - (input) the cotangent of the beta track angle (see CMS IN 2004/014) |
cluster | - (input) boost multi_array container of 7x21 array of pixel signals, origin of local coords (0,0) at center of pixel cluster[0][0]. |
ydouble | - (input) STL vector of 21 element array to flag a double-pixel |
xdouble | - (input) STL vector of 7 element array to flag a double-pixel |
templ | - (input) the template used in the reconstruction |
yrec1 | - (output) best estimate of first y-coordinate of hit in microns |
yrec2 | - (output) best estimate of second y-coordinate of hit in microns |
sigmay | - (output) best estimate of uncertainty on yrec in microns |
prob2y | - (output) probability describing goodness-of-fit for y-reco |
xrec1 | - (output) best estimate of first x-coordinate of hit in microns |
xrec2 | - (output) best estimate of second x-coordinate of hit in microns |
sigmax | - (output) best estimate of uncertainty on xrec in microns |
prob2x | - (output) probability describing goodness-of-fit for x-reco |
q2bin | - (output) index (0-4) describing the charge of the cluster [0: 1.5<Q/Qavg, 1: 1<Q/Qavg<1.5, 2: 0.85<Q/Qavg<1, 3: 0.95Qmin<Q<0.85Qavg, 4: Q<0.95Qmin] |
prob2Q | - (output) probability that the cluster charge is compatible with a 2-hit merging |
resolve | - (input) use 2-D chisquare to resolve the 2-fold x-y association ambiguity (costs a factor of two in speed) |
dchisq | - (output) the delta chisquare estimator used to break the degeneracy (0 means no discrimination, larger than 0.1 is good) |
Definition at line 1132 of file SiPixelTemplateSplit.cc.
References PixelTempSplit().
{ // Local variables const bool deadpix = false; std::vector<std::pair<int, int> > zeropix; const int speed = 1; return SiPixelTemplateSplit::PixelTempSplit(id, cotalpha, cotbeta, cluster, ydouble, xdouble, templ, yrec1, yrec2, sigmay, prob2y, xrec1, xrec2, sigmax, prob2x, q2bin, prob2Q, resolve, speed, dchisq, deadpix, zeropix, templ2D); } // PixelTempSplit
int SiPixelTemplateSplit::PixelTempSplit | ( | int | id, |
float | cotalpha, | ||
float | cotbeta, | ||
array_2d & | cluster, | ||
std::vector< bool > & | ydouble, | ||
std::vector< bool > & | xdouble, | ||
SiPixelTemplate & | templ, | ||
float & | yrec1, | ||
float & | yrec2, | ||
float & | sigmay, | ||
float & | prob2y, | ||
float & | xrec1, | ||
float & | xrec2, | ||
float & | sigmax, | ||
float & | prob2x, | ||
int & | q2bin, | ||
float & | prob2Q, | ||
bool | resolve, | ||
int | speed, | ||
float & | dchisq, | ||
SiPixelTemplate2D & | templ2D | ||
) |
Reconstruct the best estimate of the hit positions for pixel clusters.
id | - (input) identifier of the template to use |
cotalpha | - (input) the cotangent of the alpha track angle (see CMS IN 2004/014) |
cotbeta | - (input) the cotangent of the beta track angle (see CMS IN 2004/014) |
cluster | - (input) boost multi_array container of 7x21 array of pixel signals, origin of local coords (0,0) at center of pixel cluster[0][0]. |
ydouble | - (input) STL vector of 21 element array to flag a double-pixel |
xdouble | - (input) STL vector of 7 element array to flag a double-pixel |
templ | - (input) the template used in the reconstruction |
yrec1 | - (output) best estimate of first y-coordinate of hit in microns |
yrec2 | - (output) best estimate of second y-coordinate of hit in microns |
sigmay | - (output) best estimate of uncertainty on yrec in microns |
prob2y | - (output) probability describing goodness-of-fit for y-reco |
xrec1 | - (output) best estimate of first x-coordinate of hit in microns |
xrec2 | - (output) best estimate of second x-coordinate of hit in microns |
sigmax | - (output) best estimate of uncertainty on xrec in microns |
prob2x | - (output) probability describing goodness-of-fit for x-reco |
q2bin | - (output) index (0-4) describing the charge of the cluster [0: 1.5<Q/Qavg, 1: 1<Q/Qavg<1.5, 2: 0.85<Q/Qavg<1, 3: 0.95Qmin<Q<0.85Qavg, 4: Q<0.95Qmin] |
prob2Q | - (output) probability that the cluster charge is compatible with a 2-hit merging |
resolve | - (input) use 2-D chisquare to resolve the 2-fold x-y association ambiguity (costs a factor of two in speed) |
dchisq | - (output) the delta chisquare estimator used to break the degeneracy (0 means no discrimination, larger than 0.1 is good) |
Definition at line 1091 of file SiPixelTemplateSplit.cc.
References PixelTempSplit().
{ // Local variables const bool deadpix = false; std::vector<std::pair<int, int> > zeropix; return SiPixelTemplateSplit::PixelTempSplit(id, cotalpha, cotbeta, cluster, ydouble, xdouble, templ, yrec1, yrec2, sigmay, prob2y, xrec1, xrec2, sigmax, prob2x, q2bin, prob2Q, resolve, speed, dchisq, deadpix, zeropix, templ2D); } // PixelTempSplit