#include <Decay3Body.h>
Public Member Functions | |
Decay3Body () | |
void | doDecay (const G4LorentzVector &mother, G4LorentzVector &daughter1, G4LorentzVector &daughter2, G4LorentzVector &daughter3) |
~Decay3Body () | |
Private Member Functions | |
double | sqr (double a) |
Definition at line 6 of file Decay3Body.h.
Decay3Body::Decay3Body | ( | ) |
Definition at line 16 of file Decay3Body.cc.
{ }
Decay3Body::~Decay3Body | ( | ) |
Definition at line 19 of file Decay3Body.cc.
{ }
void Decay3Body::doDecay | ( | const G4LorentzVector & | mother, |
G4LorentzVector & | daughter1, | ||
G4LorentzVector & | daughter2, | ||
G4LorentzVector & | daughter3 | ||
) |
Definition at line 23 of file Decay3Body.cc.
References funct::cos(), gather_cfg::cout, p1, p2, p3, phi, pi, q1, q2, funct::sin(), sqr(), mathSSE::sqrt(), and theta().
{ double m0 = mother.m(); double m1 = daughter1.m(); double m2 = daughter2.m(); double m3 = daughter3.m(); double sumM2 = m0*m0 + m1*m1 + m2*m2 + m3*m3; double tolerance = 1.0e-9; math::XYZTLorentzVectorD mmm(mother.px(),mother.py(),mother.pz(),mother.e()); if (m0 < m1+m2+m3) { std::cout << "Error: Daughters too heavy!" << std::endl; std::cout << "M: " << m0/GeV << " < m1+m2+m3: " << m1/GeV + m2/GeV + m3/GeV << std::endl; return; } else { double m2_12max = sqr(m0-m3); double m2_12min = sqr(m1+m2); double m2_23max = sqr(m0-m1); double m2_23min = sqr(m2+m3); double x1,x2; double m2_12 = 0.0; double m2_23 = 0.0; double E2_12,E3_12; double m2_23max_12,m2_23min_12; do { // Pick values for m2_12 and m2_23 uniformly: x1 = G4UniformRand(); m2_12 = m2_12min + x1*(m2_12max-m2_12min); x2 = G4UniformRand(); m2_23 = m2_23min + x2*(m2_23max-m2_23min); // From the allowed range of m2_23 (given m2_12), determine if the point is valid: // (formulae taken from PDG booklet 2004 kinematics, page 305, Eqs. 38.22a+b) E2_12 = (m2_12 - m1*m1 + m2*m2)/(2.0*sqrt(m2_12)); E3_12 = (m0*m0 - m2_12 - m3*m3)/(2.0*sqrt(m2_12)); m2_23max_12 = sqr(E2_12+E3_12)-sqr(sqrt(sqr(E2_12)-m2*m2)-sqrt(sqr(E3_12)-m3*m3)); m2_23min_12 = sqr(E2_12+E3_12)-sqr(sqrt(sqr(E2_12)-m2*m2)+sqrt(sqr(E3_12)-m3*m3)); } while ((m2_23 > m2_23max_12) || (m2_23 < m2_23min_12)); // Determine the value of the third invariant mass squared: double m2_13 = sumM2 - m2_12 - m2_23; // Calculate the energy and size of the momentum of the three daughters: double e1 = (m0*m0 + m1*m1 - m2_23)/(2.0*m0); double e2 = (m0*m0 + m2*m2 - m2_13)/(2.0*m0); double e3 = (m0*m0 + m3*m3 - m2_12)/(2.0*m0); double p1 = sqrt(e1*e1 - m1*m1); double p2 = sqrt(e2*e2 - m2*m2); double p3 = sqrt(e3*e3 - m3*m3); // Calculate cosine of the relative angles between the three daughters: double cos12 = (m1*m1 + m2*m2 + 2.0*e1*e2 - m2_12)/(2.0*p1*p2); double cos13 = (m1*m1 + m3*m3 + 2.0*e1*e3 - m2_13)/(2.0*p1*p3); double cos23 = (m2*m2 + m3*m3 + 2.0*e2*e3 - m2_23)/(2.0*p2*p3); if (fabs(cos12) > 1.0) std::cout << "Error: Undefined angle12!" << std::endl; if (fabs(cos13) > 1.0) std::cout << "Error: Undefined angle13!" << std::endl; if (fabs(cos23) > 1.0) std::cout << "Error: Undefined angle23!" << std::endl; // Find the four vectors of the particles in a chosen (i.e. simple) frame: double xi = 2.0 * pi * G4UniformRand(); math::XYZVectorD q1(0.0,0.0,p1); math::XYZVectorD q2( sin(acos(cos12))*cos(xi)*p2, sin(acos(cos12))*sin(xi)*p2,cos12*p2); math::XYZVectorD q3(-sin(acos(cos13))*cos(xi)*p3,-sin(acos(cos13))*sin(xi)*p3,cos13*p3); // Rotate all three daughters momentum with the angles theta and phi: double theta = acos(2.0 * G4UniformRand() - 1.0); double phi = 2.0 * pi * G4UniformRand(); double psi = 2.0 * pi * G4UniformRand(); ROOT::Math::EulerAngles ang(phi,theta,psi); ROOT::Math::Rotation3D rot(ang); math::XYZVectorD q1rot = rot*q1; math::XYZVectorD q2rot = rot*q2; math::XYZVectorD q3rot = rot*q3; math::XYZTLorentzVectorD daughter1_orig(q1rot.X(),q1rot.Y(),q1rot.Z(),e1); math::XYZTLorentzVectorD daughter2_orig(q2rot.X(),q2rot.Y(),q2rot.Z(),e2); math::XYZTLorentzVectorD daughter3_orig(q3rot.X(),q3rot.Y(),q3rot.Z(),e3); ROOT::Math::Boost cmboost(mmm.BoostToCM()); // Check of total angle and momentum: if (acos(cos12)+acos(cos13)+acos(cos23)-2.0*pi > tolerance) std::cout << "Error: Total angle not 2pi! " << acos(cos12)+acos(cos13)+acos(cos23)-2.0*pi << std::endl; if (fabs(daughter1_orig.px()+daughter2_orig.px()+daughter3_orig.px())/GeV > tolerance) std::cout << "Error: Total 3B Px not conserved! " << (daughter1_orig.px()+daughter2_orig.px()+daughter3_orig.px())/GeV << std::endl; if (fabs(daughter1_orig.py()+daughter2_orig.py()+daughter3_orig.py())/GeV > tolerance) std::cout << "Error: Total 3B Py not conserved! " << (daughter1_orig.py()+daughter2_orig.py()+daughter3_orig.py())/GeV << std::endl; if (fabs(daughter1_orig.pz()+daughter2_orig.pz()+daughter3_orig.pz())/GeV > tolerance) std::cout << "Error: Total 3B Pz not conserved! " << (daughter1.pz()+daughter2.pz()+daughter3.pz())/GeV << std::endl; // Boost the daughters back to the frame of the mother: math::XYZTLorentzVectorD temp1(cmboost(daughter1_orig)); math::XYZTLorentzVectorD temp2(cmboost(daughter2_orig)); math::XYZTLorentzVectorD temp3(cmboost(daughter3_orig)); daughter1.setPx(temp1.Px()); daughter1.setPy(temp1.Py()); daughter1.setPz(temp1.Pz()); daughter1.setE(temp1.e()); daughter2.setPx(temp2.Px()); daughter2.setPy(temp2.Py()); daughter2.setPz(temp2.Pz()); daughter2.setE(temp2.e()); daughter3.setPx(temp3.Px()); daughter3.setPy(temp3.Py()); daughter3.setPz(temp3.Pz()); daughter3.setE(temp3.e()); return; } }