CMS 3D CMS Logo

Public Member Functions | Private Member Functions | Private Attributes

HFCherenkov Class Reference

#include <HFCherenkov.h>

List of all members.

Public Member Functions

void clearVectors ()
int computeNPE (G4ParticleDefinition *pDef, double pBeta, double u, double v, double w, double step_length, double zFiber, double Dose, int Npe_Dose)
int computeNPEinPMT (G4ParticleDefinition *pDef, double pBeta, double u, double v, double w, double step_length)
int computeNPhTrapped (double pBeta, double u, double v, double w, double step_length, double zFiber, double Dose, int Npe_Dose)
std::vector< double > getMom ()
std::vector< double > getWL ()
std::vector< double > getWLAtten ()
std::vector< double > getWLHEM ()
std::vector< double > getWLIni ()
std::vector< double > getWLQEff ()
std::vector< double > getWLTrap ()
 HFCherenkov (edm::ParameterSet const &p)
double smearNPE (G4int Npe)
virtual ~HFCherenkov ()

Private Member Functions

double computeHEMEff (double wavelength)
int computeNbOfPhotons (double pBeta, double step_length)
double computeQEff (double wavelength)
bool isApplicable (const G4ParticleDefinition *aParticleType)

Private Attributes

double aperture
double apertureTrap
bool checkSurvive
double gain
double lambda1
double lambda2
std::vector< double > momZ
G4ThreeVector phMom
double ref_index
std::vector< double > wl
std::vector< double > wlatten
std::vector< double > wlhem
std::vector< double > wlini
std::vector< double > wlqeff
std::vector< double > wltrap

Detailed Description

Definition at line 18 of file HFCherenkov.h.


Constructor & Destructor Documentation

HFCherenkov::HFCherenkov ( edm::ParameterSet const &  p)

Definition at line 13 of file HFCherenkov.cc.

References aperture, apertureTrap, checkSurvive, clearVectors(), funct::cos(), gain, edm::ParameterSet::getParameter(), lambda1, lambda2, funct::pow(), and ref_index.

                                                     {

  //Simple configurables
  //static SimpleConfigurable<double> p1(1.459, "HFCherenkov:RefIndex");
  //static SimpleConfigurable<double> p2(280.0, "HFCherenkov:Lambda1");
  //static SimpleConfigurable<double> p3(700.0, "HFCherenkov:Lambda2");
  //static SimpleConfigurable<double> p4(0.33,  "HFCherenkov:Aperture");
  //static SimpleConfigurable<double> p5(0.22,  "HFCherenkov:ApertureTrapped");
  //static SimpleConfigurable<double> p6(0.33,  "HFCherenkov:Gain");
  //static SimpleConfigurable<bool>   p7(false, "HFCherenkov:CheckSurvive");

  ref_index    = m_HF.getParameter<double>("RefIndex");
  lambda1      = ((m_HF.getParameter<double>("Lambda1"))/pow(double(10),7))*cm;
  lambda2      = ((m_HF.getParameter<double>("Lambda2"))/pow(double(10),7))*cm;
  aperture     = cos(asin(m_HF.getParameter<double>("Aperture")));
  apertureTrap = cos(asin(m_HF.getParameter<double>("ApertureTrapped")));
  gain         = m_HF.getParameter<double>("Gain");
  checkSurvive = m_HF.getParameter<bool>("CheckSurvive");

  edm::LogInfo("HFShower") << "HFCherenkov:: initialised with ref_index " 
                           << ref_index << " lambda1/lambda2 (cm) " 
                           << lambda1/cm << "/" << lambda2/cm
                           << " aperture(total/trapped) " << aperture << "/"
                           << apertureTrap << " Check photon survival in HF " 
                           << checkSurvive << " Gain " << gain;

  clearVectors();
}
HFCherenkov::~HFCherenkov ( ) [virtual]

Definition at line 42 of file HFCherenkov.cc.

{}

Member Function Documentation

void HFCherenkov::clearVectors ( )

Definition at line 394 of file HFCherenkov.cc.

References momZ, wl, wlatten, wlhem, wlini, wlqeff, and wltrap.

Referenced by computeNPE(), computeNPEinPMT(), and HFCherenkov().

                               {

  wl.clear();
  wlini.clear();
  wltrap.clear();
  wlatten.clear();
  wlhem.clear();
  wlqeff.clear();
  momZ.clear();
}
double HFCherenkov::computeHEMEff ( double  wavelength) [private]

Definition at line 349 of file HFCherenkov.cc.

References LogDebug.

Referenced by computeNPE().

                                                   {

  double hEMEff = 0;
  if (wavelength < 400.) {
    hEMEff = 0.;
  } else if (wavelength >= 400. && wavelength < 410.) {
    //hEMEff = .99 * (wavelength - 400.) / 10.;
    hEMEff = (-1322.453 / wavelength) + 4.2056;
  } else if (wavelength >= 410.) {
    hEMEff = 0.99;
    if (wavelength > 415. && wavelength < 445.) {
      //abs(wavelength - 430.) < 15.
      //hEMEff = 0.95;
      hEMEff = 0.97;
    } else if (wavelength > 550. && wavelength < 600.) {
      // abs(wavelength - 575.) < 25.)
      //hEMEff = 0.96;
      hEMEff = 0.98;
    } else if (wavelength > 565. && wavelength <= 635.) { // added later
      // abs(wavelength - 600.) < 35.)
      hEMEff = (701.7268 / wavelength) - 0.186;
    }
  }
#ifdef DebugLog
  LogDebug("HFShower") << "HFCherenkov::computeHEMEff: wavelength "
                       << wavelength << " hEMEff " << hEMEff;
#endif
  return hEMEff;
}
int HFCherenkov::computeNbOfPhotons ( double  pBeta,
double  step_length 
) [private]

Definition at line 316 of file HFCherenkov.cc.

References alpha, beta, lambda1, lambda2, LogDebug, M_PI, ref_index, and funct::sin().

Referenced by computeNPE(), computeNPEinPMT(), and computeNPhTrapped().

                                                               {

  double pBeta = beta;
  double alpha = 0.0073;
  double step_length = stepL;
  double theta_C = acos(1./(pBeta*ref_index));
  double lambdaDiff = (1./lambda1 - 1./lambda2);
  double cherenPhPerLength = 2 * M_PI * alpha * lambdaDiff*cm;
  double d_NOfPhotons = cherenPhPerLength * sin(theta_C)*sin(theta_C) *  (step_length/cm);
  int nbOfPhotons = int(d_NOfPhotons);
#ifdef DebugLog
  LogDebug("HFShower") << "HFCherenkov::computeNbOfPhotons: StepLength " 
                       << step_length << " theta_C " << theta_C 
                       << " lambdaDiff " << lambdaDiff
                       << " cherenPhPerLength " << cherenPhPerLength 
                       << " Photons " << d_NOfPhotons << " " << nbOfPhotons;
#endif
  return nbOfPhotons;
}
int HFCherenkov::computeNPE ( G4ParticleDefinition *  pDef,
double  pBeta,
double  u,
double  v,
double  w,
double  step_length,
double  zFiber,
double  Dose,
int  Npe_Dose 
)

Definition at line 85 of file HFCherenkov.cc.

References aperture, checkSurvive, clearVectors(), computeHEMEff(), computeNbOfPhotons(), computeQEff(), funct::cos(), funct::exp(), i, isApplicable(), lambda1, lambda2, LogDebug, M_PI, momZ, funct::pow(), ref_index, funct::sin(), mathSSE::sqrt(), wl, wlatten, wlhem, wlini, wlqeff, and wltrap.

Referenced by HFShower::getHits().

                                                       {

  clearVectors();
  if (!isApplicable(pDef)) {return 0;}
  if (pBeta < (1/ref_index) || step_length < 0.0001) {
#ifdef DebugLog
    LogDebug("HFShower") << "HFCherenkov::computeNPE: pBeta " << pBeta 
                         << " 1/mu " << (1/ref_index) << " step_length " 
                         << step_length;
#endif
    return 0;
  }
   
  double uv = sqrt(u*u + v*v);
  int nbOfPhotons = computeNbOfPhotons(pBeta, step_length);
#ifdef DebugLog
  LogDebug("HFShower") << "HFCherenkov::computeNPE: pBeta " << pBeta 
                       << " u/v/w " << u << "/" << v << "/" << w 
                       << " step_length " << step_length << " zFib " << zFiber 
                       << " nbOfPhotons " << nbOfPhotons;
#endif
  if (nbOfPhotons < 0) {
    return 0;
  } else if (nbOfPhotons > 0) {
    double u_ph, v_ph, w_ph=0;
    for (int i = 0; i < nbOfPhotons; i++) {
      double rand     = G4UniformRand();
      double theta_C  = acos(1./(pBeta*ref_index));
      double phi_C    = 2*M_PI*rand;
      double sinTheta = sin(theta_C);
      double cosTheta = cos(theta_C);
      double sinPhi   = sin(phi_C);
      double cosPhi   = cos(phi_C);
      //photon momentum
      if (uv < 0.001) { // aligned with z-axis
        u_ph = sinTheta * cosPhi;
        v_ph = sinTheta * sinPhi;
        w_ph = cosTheta;
      } else { // general case
        u_ph = u * cosTheta  + sinTheta * (v*sinPhi + u*w*cosPhi)/ uv;
        v_ph = v * cosTheta  + sinTheta * (-u*sinPhi + v*w*cosPhi)/ uv;
        w_ph = w * cosTheta - sinTheta * cosPhi * uv;
      }
      double r_lambda = G4UniformRand();
      double lambda0 = (lambda1 * lambda2) / (lambda2 - r_lambda *
                                              (lambda2 - lambda1));
      double lambda  = (lambda0/cm) * pow(double(10),7); // lambda is in nm
      wlini.push_back(lambda);
#ifdef DebugLog
      LogDebug("HFShower") << "HFCherenkov::computeNPE: " << i << " lambda "
                           << lambda << " w_ph " << w_ph << " aperture "
                           << aperture;
#endif
      if (w_ph > aperture) { // phton trapped inside fiber
        wltrap.push_back(lambda);
        double prob_HF  = 1.0; //photon survived in HF
        double a0_inv   = 0.1234;  //meter^-1
        double prob_MX  = exp( - 0.5 * a0_inv ); //light mixer
        if (checkSurvive) {
          double a_inv = a0_inv + 0.14 * pow(dose,0.30);
          double z_meters = zFiber;
          prob_HF  = exp(-z_meters * a_inv ); //photon survived in HF
        }
        rand = G4UniformRand();
#ifdef DebugLog
        LogDebug("HFShower") << "HFCherenkov::computeNPE: probHF " << prob_HF
                             << " prob_MX " << prob_MX << " Random " << rand 
                             << " Survive? " << (rand < (prob_HF * prob_MX));
#endif
        if (rand < (prob_HF * prob_MX)) { // survived and sent to light mixer
          wlatten.push_back(lambda);
          rand = G4UniformRand();
          double effHEM = computeHEMEff(lambda);
#ifdef DebugLog
          LogDebug("HFShower") << "HFCherenkov::computeNPE: w_ph " << w_ph 
                               << " effHEM " << effHEM << " Random " << rand 
                               << " Survive? " << (w_ph>0.997||(rand<effHEM));
#endif
          if (w_ph>0.997 || (rand<effHEM)) { // survived HEM
            wlhem.push_back(lambda);
            double qEffic = computeQEff(lambda);
            rand = G4UniformRand();
#ifdef DebugLog
            LogDebug("HFShower") << "HFCherenkov::computeNPE: qEffic "
                                 << qEffic << " Random " << rand
                                 << " Survive? " <<(rand < qEffic);
#endif
            if (rand < qEffic) { // made photoelectron
              npe_Dose += 1;
              momZ.push_back(w_ph);
              wl.push_back(lambda);
              wlqeff.push_back(lambda);
            } // made pe
          } // passed HEM
        } // passed fiber
      } // end of  if(w_ph < w_aperture), trapped inside fiber
    }// end of ++NbOfPhotons
  } // end of if(NbOfPhotons)}
  int npe =  npe_Dose; // Nb of photoelectrons
#ifdef DebugLog
  LogDebug("HFShower") << "HFCherenkov::computeNPE: npe " << npe;
#endif
  return npe;
}
int HFCherenkov::computeNPEinPMT ( G4ParticleDefinition *  pDef,
double  pBeta,
double  u,
double  v,
double  w,
double  step_length 
)

Definition at line 193 of file HFCherenkov.cc.

References aperture, clearVectors(), computeNbOfPhotons(), computeQEff(), funct::cos(), i, isApplicable(), lambda1, lambda2, LogDebug, M_PI, momZ, funct::pow(), ref_index, funct::sin(), mathSSE::sqrt(), wl, wlatten, wlini, wlqeff, and wltrap.

Referenced by HFShowerFibreBundle::getHits(), and HFShowerPMT::getHits().

                                                    {
  clearVectors();
  int npe_ = 0;
  if (!isApplicable(pDef)) {return 0;}
  if (pBeta < (1/ref_index) || step_length < 0.0001) {
#ifdef DebugLog
    LogDebug("HFShower") << "HFCherenkov::computeNPEinPMT: pBeta " << pBeta 
                         << " 1/mu " << (1/ref_index) << " step_length " 
                         << step_length;
#endif
    return 0;
  }
   
  double uv = sqrt(u*u + v*v);
  int nbOfPhotons = computeNbOfPhotons(pBeta, step_length);
#ifdef DebugLog
  LogDebug("HFShower") << "HFCherenkov::computeNPEinPMT: pBeta " << pBeta 
                       << " u/v/w " << u << "/" << v << "/" << w 
                       << " step_length " << step_length  
                       << " nbOfPhotons " << nbOfPhotons;
#endif   
  if (nbOfPhotons < 0) {
    return 0;
  } else if (nbOfPhotons > 0) {
    double u_ph, v_ph, w_ph=0;
    for (int i = 0; i < nbOfPhotons; i++) {
      double rand     = G4UniformRand();
      double theta_C  = acos(1./(pBeta*ref_index));
      double phi_C    = 2*M_PI*rand;
      double sinTheta = sin(theta_C);
      double cosTheta = cos(theta_C);
      double sinPhi   = sin(phi_C);
      double cosPhi   = cos(phi_C); 
      //photon momentum
      if (uv < 0.001) { // aligned with z-axis
        u_ph = sinTheta * cosPhi;
        v_ph = sinTheta * sinPhi;
        w_ph = cosTheta;
      } else { // general case
        u_ph = u * cosTheta  + sinTheta * (v*sinPhi + u*w*cosPhi)/ uv;
        v_ph = v * cosTheta  + sinTheta * (-u*sinPhi + v*w*cosPhi)/ uv;
        w_ph = w * cosTheta - sinTheta * cosPhi * uv;
      }
      double r_lambda = G4UniformRand();
      double lambda0 = (lambda1 * lambda2) / (lambda2 - r_lambda *
                                              (lambda2 - lambda1));
      double lambda  = (lambda0/cm) * pow(double(10),7); // lambda is in nm
      wlini.push_back(lambda);
#ifdef DebugLog
      LogDebug("HFShower") << "HFCherenkov::computeNPEinPMT: " <<i <<" lambda "
                           << lambda << " w_ph " << w_ph << " aperture " 
                           << aperture;
#endif
      if (w_ph > aperture) { // phton trapped inside PMT glass
        wltrap.push_back(lambda);
        rand = G4UniformRand();
#ifdef DebugLog
        LogDebug("HFShower") << "HFCherenkov::computeNPEinPMT: Random " << rand
                             << " Survive? " << (rand < 1.);
#endif
        if (rand < 1.0) { // survived all the times and sent to photo-cathode
          wlatten.push_back(lambda);
          rand = G4UniformRand();
          double qEffic = computeQEff(lambda);//Quantum efficiency of the PMT
          rand = G4UniformRand();
#ifdef DebugLog
          LogDebug("HFShower") << "HFCherenkov::computeNPEinPMT: qEffic " 
                               << qEffic << " Random " << rand 
                               << " Survive? " <<(rand < qEffic);
#endif
          if (rand < qEffic) { // made photoelectron
            npe_ += 1;
            momZ.push_back(w_ph);
            wl.push_back(lambda);
            wlqeff.push_back(lambda);
          } // made pe
        } // accepted all Cherenkov photons
      } // end of  if(w_ph < w_aperture), trapped inside glass
    }// end of ++NbOfPhotons
  } // end of if(NbOfPhotons)}
#ifdef DebugLog
  LogDebug("HFShower") << "HFCherenkov::computeNPEinPMT: npe " << npe_;
#endif
  return npe_;
}
int HFCherenkov::computeNPhTrapped ( double  pBeta,
double  u,
double  v,
double  w,
double  step_length,
double  zFiber,
double  Dose,
int  Npe_Dose 
)

Definition at line 44 of file HFCherenkov.cc.

References apertureTrap, computeNbOfPhotons(), funct::cos(), i, M_PI, ref_index, funct::sin(), and mathSSE::sqrt().

                                                              {

  if (pBeta < (1/ref_index) || step_length < 0.0001) {return 0;}

  double uv = sqrt(u*u + v*v);
  int nbOfPhotons = computeNbOfPhotons(pBeta, step_length);

  if (nbOfPhotons < 0) {
    return 0;
  } else if (nbOfPhotons > 0) {
    double u_ph, v_ph, w_ph=0;
    for (int i = 0; i < nbOfPhotons; i++) {
      double rand     = G4UniformRand();
      double theta_C  = acos(1./(pBeta*ref_index));
      double phi_C    = 2*M_PI*rand;
      double sinTheta = sin(theta_C);
      double cosTheta = cos(theta_C);
      double sinPhi   = sin(phi_C);
      double cosPhi   = cos(phi_C);
      //photon momentum
      if (uv < 0.001) { // aligned with z-axis
        u_ph = sinTheta * cosPhi;
        v_ph = sinTheta * sinPhi;
        w_ph = cosTheta;
      } else { // general case
        u_ph = u * cosTheta  + sinTheta * (v*sinPhi + u*w*cosPhi)/ uv;
        v_ph = v * cosTheta  + sinTheta * (-u*sinPhi + v*w*cosPhi)/ uv;
        w_ph = w * cosTheta  - sinTheta * cosPhi * uv;
      }
      if (w_ph > apertureTrap) { // phton trapped inside fiber
        npe_Dose += 1; 
      }
    }
  }
  int n_photons = npe_Dose;
  return n_photons;
}
double HFCherenkov::computeQEff ( double  wavelength) [private]

Definition at line 336 of file HFCherenkov.cc.

References funct::exp(), LogDebug, funct::pow(), and detailsBasic3DVector::y.

Referenced by computeNPE(), and computeNPEinPMT().

                                                 {

  double y        = (wavelength - 275.) /180.;
  double func     = 1. / (1. + 250.*pow((y/5.),4));
  double qE_R7525 = 0.77 * y * exp(-y) * func ;
  double qeff     = qE_R7525;
#ifdef DebugLog
  LogDebug("HFShower") << "HFCherenkov::computeQEff: wavelength " << wavelength
                       << " y/func " << y << "/" << func << " qeff " << qeff;
#endif
  return qeff;
}
std::vector< double > HFCherenkov::getMom ( )

Definition at line 311 of file HFCherenkov.cc.

References momZ, and v.

Referenced by HFShower::getHits().

                                       {
  std::vector<double> v = momZ;
  return v;
}
std::vector< double > HFCherenkov::getWL ( )

Definition at line 306 of file HFCherenkov.cc.

References v, and wl.

Referenced by HFShower::getHits().

                                      {
  std::vector<double> v = wl;
  return v;
}
std::vector< double > HFCherenkov::getWLAtten ( )

Definition at line 291 of file HFCherenkov.cc.

References v, and wlatten.

                                           {
  std::vector<double> v = wlatten;
  return v;
}
std::vector< double > HFCherenkov::getWLHEM ( )

Definition at line 296 of file HFCherenkov.cc.

References v, and wlhem.

                                         {
  std::vector<double> v  = wlhem;
  return v;
}
std::vector< double > HFCherenkov::getWLIni ( )

Definition at line 281 of file HFCherenkov.cc.

References v, and wlini.

                                         {
  std::vector<double> v = wlini;
  return v;
}
std::vector< double > HFCherenkov::getWLQEff ( )

Definition at line 301 of file HFCherenkov.cc.

References v, and wlqeff.

                                          {
  std::vector<double> v = wlqeff;
  return v;
}
std::vector< double > HFCherenkov::getWLTrap ( )

Definition at line 286 of file HFCherenkov.cc.

References v, and wltrap.

                                          {
  std::vector<double> v = wltrap;
  return v;
}
bool HFCherenkov::isApplicable ( const G4ParticleDefinition *  aParticleType) [private]

Definition at line 405 of file HFCherenkov.cc.

References LogDebug, and tmp.

Referenced by computeNPE(), and computeNPEinPMT().

                                                                        {
  bool tmp = (aParticleType->GetPDGCharge() != 0);
#ifdef DebugLog
  LogDebug("HFShower") << "HFCherenkov::isApplicable: aParticleType " 
                       << aParticleType->GetParticleName() << " PDGCharge " 
                       << aParticleType->GetPDGCharge() << " Result " << tmp;
#endif
  return tmp;
}
double HFCherenkov::smearNPE ( G4int  Npe)

Definition at line 379 of file HFCherenkov.cc.

References gain, i, and LogDebug.

                                    {

  double pe = 0.;
  if (npe > 0) {
    for (int i = 0; i < npe; ++i) {
      double val =  G4Poisson(gain);
      pe += (val/gain) + 0.001*G4UniformRand();
    }
  }
#ifdef DebugLog
  LogDebug("HFShower") << "HFCherenkov::smearNPE: npe " << npe << " pe " << pe;
#endif
  return pe;
}

Member Data Documentation

double HFCherenkov::aperture [private]

Definition at line 61 of file HFCherenkov.h.

Referenced by computeNPE(), computeNPEinPMT(), and HFCherenkov().

double HFCherenkov::apertureTrap [private]

Definition at line 61 of file HFCherenkov.h.

Referenced by computeNPhTrapped(), and HFCherenkov().

bool HFCherenkov::checkSurvive [private]

Definition at line 63 of file HFCherenkov.h.

Referenced by computeNPE(), and HFCherenkov().

double HFCherenkov::gain [private]

Definition at line 62 of file HFCherenkov.h.

Referenced by HFCherenkov(), and smearNPE().

double HFCherenkov::lambda1 [private]

Definition at line 60 of file HFCherenkov.h.

Referenced by computeNbOfPhotons(), computeNPE(), computeNPEinPMT(), and HFCherenkov().

double HFCherenkov::lambda2 [private]

Definition at line 60 of file HFCherenkov.h.

Referenced by computeNbOfPhotons(), computeNPE(), computeNPEinPMT(), and HFCherenkov().

std::vector<double> HFCherenkov::momZ [private]

Definition at line 67 of file HFCherenkov.h.

Referenced by clearVectors(), computeNPE(), computeNPEinPMT(), and getMom().

G4ThreeVector HFCherenkov::phMom [private]

Definition at line 65 of file HFCherenkov.h.

double HFCherenkov::ref_index [private]
std::vector<double> HFCherenkov::wl [private]

Definition at line 66 of file HFCherenkov.h.

Referenced by clearVectors(), computeNPE(), computeNPEinPMT(), and getWL().

std::vector<double> HFCherenkov::wlatten [private]

Definition at line 70 of file HFCherenkov.h.

Referenced by clearVectors(), computeNPE(), computeNPEinPMT(), and getWLAtten().

std::vector<double> HFCherenkov::wlhem [private]

Definition at line 71 of file HFCherenkov.h.

Referenced by clearVectors(), computeNPE(), and getWLHEM().

std::vector<double> HFCherenkov::wlini [private]

Definition at line 68 of file HFCherenkov.h.

Referenced by clearVectors(), computeNPE(), computeNPEinPMT(), and getWLIni().

std::vector<double> HFCherenkov::wlqeff [private]

Definition at line 72 of file HFCherenkov.h.

Referenced by clearVectors(), computeNPE(), computeNPEinPMT(), and getWLQEff().

std::vector<double> HFCherenkov::wltrap [private]

Definition at line 69 of file HFCherenkov.h.

Referenced by clearVectors(), computeNPE(), computeNPEinPMT(), and getWLTrap().