#include <SimG4CMS/HcalTestBeam/interface/HcalTB06Analysis.h>
Public Member Functions | |
HcalTB06Analysis (const edm::ParameterSet &p) | |
virtual void | produce (edm::Event &, const edm::EventSetup &) |
virtual | ~HcalTB06Analysis () |
Private Member Functions | |
void | clear () |
void | fillBuffer (const EndOfEvent *evt) |
void | fillEvent (PHcalTB06Info &) |
void | finalAnalysis () |
HcalTB06Analysis (const HcalTB06Analysis &) | |
void | init () |
const HcalTB06Analysis & | operator= (const HcalTB06Analysis &) |
void | update (const BeginOfEvent *evt) |
This routine will be called when the appropriate signal arrives. | |
void | update (const BeginOfRun *run) |
This routine will be called when the appropriate signal arrives. | |
void | update (const EndOfEvent *evt) |
This routine will be called when the appropriate signal arrives. | |
void | update (const G4Step *step) |
This routine will be called when the appropriate signal arrives. | |
Private Attributes | |
G4RotationMatrix * | beamline_RM |
double | beamOffset |
int | count |
std::vector< CaloHit > | ecalHitCache |
double | eecals |
double | ehcals |
double | etaInit |
double | etots |
int | evNum |
std::vector< CaloHit > | hcalHitCache |
std::vector< CaloHit > | hcalHitLayer |
HcalTB06Histo * | histo |
int | iceta |
int | icphi |
std::vector< std::string > | names |
int | nPrimary |
int | particleType |
double | phiInit |
double | pInit |
bool | pvFound |
G4ThreeVector | pvMomentum |
G4ThreeVector | pvPosition |
int | pvType |
G4ThreeVector | pvUVW |
std::vector< double > | secEkin |
std::vector< G4ThreeVector > | secMomentum |
std::vector< int > | secPartID |
std::vector< int > | secTrackID |
std::vector< int > | shortLivedSecondaries |
Description: Analysis of 2004 Hcal Test beam simulation
Usage: A Simwatcher class and can be activated from Oscarproducer module
Definition at line 44 of file HcalTB06Analysis.h.
HcalTB06Analysis::HcalTB06Analysis | ( | const edm::ParameterSet & | p | ) |
Definition at line 47 of file HcalTB06Analysis.cc.
References beamline_RM, beamOffset, funct::exp(), edm::ParameterSet::getParameter(), histo, iceta, icphi, init(), and names.
: histo(0) { edm::ParameterSet m_Anal = p.getParameter<edm::ParameterSet>("HcalTB06Analysis"); names = m_Anal.getParameter<std::vector<std::string> >("Names"); beamOffset =-m_Anal.getParameter<double>("BeamPosition")*cm; double fMinEta = m_Anal.getParameter<double>("MinEta"); double fMaxEta = m_Anal.getParameter<double>("MaxEta"); double fMinPhi = m_Anal.getParameter<double>("MinPhi"); double fMaxPhi = m_Anal.getParameter<double>("MaxPhi"); double beamEta = (fMaxEta+fMinEta)/2.; double beamPhi = (fMaxPhi+fMinPhi)/2.; double beamThet= 2*atan(exp(-beamEta)); if (beamPhi < 0) beamPhi += twopi; iceta = (int)(beamEta/0.087) + 1; icphi = (int)(fabs(beamPhi)/0.087) + 5; if (icphi > 72) icphi -= 73; produces<PHcalTB06Info>(); beamline_RM = new G4RotationMatrix; beamline_RM->rotateZ(-beamPhi); beamline_RM->rotateY(-beamThet); edm::LogInfo("HcalTBSim") << "HcalTB06:: Initialised as observer of BeginOf" << "Job/BeginOfRun/BeginOfEvent/G4Step/EndOfEvent" << " with Parameter values:\n \tbeamOffset = " << beamOffset << "\ticeta = " << iceta << "\ticphi = " << icphi << "\n\tbeamline_RM = " << *beamline_RM; init(); histo = new HcalTB06Histo(m_Anal); }
HcalTB06Analysis::~HcalTB06Analysis | ( | ) | [virtual] |
Definition at line 82 of file HcalTB06Analysis.cc.
{ edm::LogInfo("HcalTBSim") << "\n --------> Total number of selected entries" << " : " << count << "\nPointers:: Histo " <<histo; if (histo) { delete histo; histo = 0; } }
HcalTB06Analysis::HcalTB06Analysis | ( | const HcalTB06Analysis & | ) | [private] |
void HcalTB06Analysis::clear | ( | void | ) | [private] |
Definition at line 519 of file HcalTB06Analysis.cc.
References ecalHitCache, etaInit, hcalHitCache, nPrimary, particleType, phiInit, pInit, pvFound, pvMomentum, pvPosition, pvType, pvUVW, secEkin, secMomentum, secPartID, secTrackID, and shortLivedSecondaries.
Referenced by init(), and update().
{ pvFound = false; pvType =-2; pvPosition = G4ThreeVector(); pvMomentum = G4ThreeVector(); pvUVW = G4ThreeVector(); secTrackID.clear(); secPartID.clear(); secMomentum.clear(); secEkin.clear(); shortLivedSecondaries.clear(); ecalHitCache.erase(ecalHitCache.begin(), ecalHitCache.end()); hcalHitCache.erase(hcalHitCache.begin(), hcalHitCache.end()); nPrimary = particleType = 0; pInit = etaInit = phiInit = 0; }
void HcalTB06Analysis::fillBuffer | ( | const EndOfEvent * | evt | ) | [private] |
Definition at line 264 of file HcalTB06Analysis.cc.
References ecalHitCache, eta(), etaInit, evNum, CaloG4Hit::getEnergyDeposit(), CaloG4Hit::getEntry(), CaloG4Hit::getTimeSlice(), CaloG4Hit::getTrackID(), CaloG4Hit::getUnitID(), hcalHitCache, i, j, funct::log(), LogDebug, max(), min, names, npart, nPrimary, AlCaHLTBitMon_ParallelJobs::p, particleType, phi, phiInit, pInit, pos, funct::pow(), python::multivaluedict::sort(), mathSSE::sqrt(), funct::tan(), theta(), and cond::rpcobgas::time.
Referenced by update().
{ std::vector<CaloHit> hhits; int idHC, j; CaloG4HitCollection* theHC; std::map<int,float,std::less<int> > primaries; double etot1=0, etot2=0; // Look for the Hit Collection of HCal G4HCofThisEvent* allHC = (*evt)()->GetHCofThisEvent(); std::string sdName = names[0]; idHC = G4SDManager::GetSDMpointer()->GetCollectionID(sdName); theHC = (CaloG4HitCollection*) allHC->GetHC(idHC); LogDebug("HcalTBSim") << "HcalTB06Analysis:: Hit Collection for " << sdName << " of ID " << idHC << " is obtained at " << theHC; if (idHC >= 0 && theHC > 0) { hhits.reserve(theHC->entries()); for (j = 0; j < theHC->entries(); j++) { CaloG4Hit* aHit = (*theHC)[j]; double e = aHit->getEnergyDeposit()/GeV; double time = aHit->getTimeSlice(); math::XYZPoint pos = aHit->getEntry(); unsigned int id = aHit->getUnitID(); double theta = pos.theta(); double eta = -log(tan(theta * 0.5)); double phi = pos.phi(); CaloHit hit(2,1,e,eta,phi,time,id); hhits.push_back(hit); primaries[aHit->getTrackID()]+= e; etot1 += e; #ifdef ddebug LogDebug("HcalTBSim") << "HcalTB06Analysis:: Hcal Hit i/p " << j << " ID 0x" << std::hex << id << std::dec << " time " << std::setw(6) << time << " theta " << std::setw(8) << theta << " eta " << std::setw(8) << eta << " phi " << std::setw(8) << phi << " e " << std::setw(8) << e; #endif } } // Add hits in the same channel within same time slice std::vector<CaloHit>::iterator itr; int nHit = hhits.size(); std::vector<CaloHit*> hits(nHit); for (j = 0, itr = hhits.begin(); itr != hhits.end(); j++, itr++) { hits[j] = &hhits[j]; } sort(hits.begin(),hits.end(),CaloHitIdMore()); std::vector<CaloHit*>::iterator k1, k2; int nhit = 0; for (k1 = hits.begin(); k1 != hits.end(); k1++) { int det = (**k1).det(); int layer = (**k1).layer(); double ehit = (**k1).e(); double eta = (**k1).eta(); double phi = (**k1).phi(); double jitter = (**k1).t(); uint32_t unitID = (**k1).id(); int jump = 0; for (k2 = k1+1; k2 != hits.end() && fabs(jitter-(**k2).t())<1 && unitID==(**k2).id(); k2++) { ehit += (**k2).e(); jump++; } nhit++; CaloHit hit(det, layer, ehit, eta, phi, jitter, unitID); hcalHitCache.push_back(hit); etot2 += ehit; k1 += jump; #ifdef ddebug LogDebug("HcalTBSim") << "HcalTB06Analysis:: Hcal Hit store " << nhit << " ID 0x" << std::hex << unitID << std::dec << " time " << std::setw(6) << jitter << " eta " << std::setw(8) << eta << " phi " << std::setw(8) << phi << " e " << std::setw(8) << ehit; #endif } LogDebug("HcalTBSim") << "HcalTB06Analysis:: Stores " << nhit << " HCal hits" << " from " << nHit << " input hits E(Hcal) " << etot1 << " " << etot2; // Look for the Hit Collection of ECal std::vector<CaloHit> ehits; sdName= names[1]; idHC = G4SDManager::GetSDMpointer()->GetCollectionID(sdName); theHC = (CaloG4HitCollection*) allHC->GetHC(idHC); etot1 = etot2 = 0; LogDebug("HcalTBSim") << "HcalTB06Analysis:: Hit Collection for " << sdName << " of ID " << idHC << " is obtained at " << theHC; if (idHC >= 0 && theHC > 0) { ehits.reserve(theHC->entries()); for (j = 0; j < theHC->entries(); j++) { CaloG4Hit* aHit = (*theHC)[j]; double e = aHit->getEnergyDeposit()/GeV; double time = aHit->getTimeSlice(); math::XYZPoint pos = aHit->getEntry(); unsigned int id = aHit->getUnitID(); double theta = pos.theta(); double eta = -log(tan(theta * 0.5)); double phi = pos.phi(); if (e < 0 || e > 100000.) e = 0; CaloHit hit(1,0,e,eta,phi,time,id); ehits.push_back(hit); primaries[aHit->getTrackID()]+= e; etot1 += e; #ifdef ddebug LogDebug("HcalTBSim") << "HcalTB06Analysis:: Ecal Hit i/p " << j << " ID 0x" << std::hex << id << std::dec << " time " << std::setw(6) << time << " theta " << std::setw(8) << theta << " eta " <<std::setw(8) << eta << " phi " << std::setw(8) << phi << " e " << std::setw(8) << e; #endif } } // Add hits in the same channel within same time slice nHit = ehits.size(); std::vector<CaloHit*> hite(nHit); for (j = 0, itr = ehits.begin(); itr != ehits.end(); j++, itr++) { hite[j] = &ehits[j]; } sort(hite.begin(),hite.end(),CaloHitIdMore()); nhit = 0; for (k1 = hite.begin(); k1 != hite.end(); k1++) { int det = (**k1).det(); int layer = (**k1).layer(); double ehit = (**k1).e(); double eta = (**k1).eta(); double phi = (**k1).phi(); double jitter = (**k1).t(); uint32_t unitID = (**k1).id(); int jump = 0; for (k2 = k1+1; k2 != hite.end() && fabs(jitter-(**k2).t())<1 && unitID==(**k2).id(); k2++) { ehit += (**k2).e(); jump++; } nhit++; CaloHit hit(det, layer, ehit, eta, phi, jitter, unitID); ecalHitCache.push_back(hit); etot2 += ehit; k1 += jump; #ifdef ddebug LogDebug("HcalTBSim") << "HcalTB06Analysis:: Ecal Hit store " << nhit << " ID 0x" << std::hex << unitID << std::dec << " time " << std::setw(6) << jitter << " eta " << std::setw(8) << eta << " phi " << std::setw(8) << phi << " e " << std::setw(8) << ehit; #endif } LogDebug("HcalTBSim") << "HcalTB06Analysis:: Stores " << nhit << " ECal hits" << " from " << nHit << " input hits E(Ecal) " << etot1 << " " << etot2; // Find Primary info: nPrimary = (int)(primaries.size()); int trackID = 0; G4PrimaryParticle* thePrim=0; int nvertex = (*evt)()->GetNumberOfPrimaryVertex(); LogDebug("HcalTBSim") << "HcalTB06Analysis:: Event has " << nvertex << " verteices"; if (nvertex<=0) edm::LogInfo("HcalTBSim") << "HcalTB06Analysis::EndOfEvent ERROR: no " << "vertex found for event " << evNum; for (int i = 0 ; i<nvertex; i++) { G4PrimaryVertex* avertex = (*evt)()->GetPrimaryVertex(i); if (avertex == 0) { edm::LogInfo("HcalTBSim") << "HcalTB06Analysis::EndOfEvent ERR: pointer " << "to vertex = 0 for event " << evNum; } else { LogDebug("HcalTBSim") << "HcalTB06Analysis::Vertex number :" << i << " " << avertex->GetPosition(); int npart = avertex->GetNumberOfParticle(); if (npart == 0) edm::LogWarning("HcalTBSim") << "HcalTB06Analysis::End Of Event ERR: " << "no primary!"; if (thePrim==0) thePrim=avertex->GetPrimary(trackID); } } if (thePrim != 0) { double px = thePrim->GetPx(); double py = thePrim->GetPy(); double pz = thePrim->GetPz(); double p = std::sqrt(pow(px,2.)+pow(py,2.)+pow(pz,2.)); pInit = p/GeV; if (p==0) edm::LogWarning("HcalTBSim") << "HcalTB06Analysis:: EndOfEvent ERR: " << "primary has p=0 "; else { double costheta = pz/p; double theta = acos(std::min(std::max(costheta,-1.),1.)); etaInit = -log(tan(theta/2)); if (px != 0 || py != 0) phiInit = atan2(py,px); } particleType = thePrim->GetPDGcode(); } else edm::LogWarning("HcalTBSim") << "HcalTB06Analysis::EndOfEvent ERR: could " << "not find primary"; }
void HcalTB06Analysis::fillEvent | ( | PHcalTB06Info & | product | ) | [private] |
Definition at line 491 of file HcalTB06Analysis.cc.
References ecalHitCache, eecals, ehcals, etaInit, etots, evNum, hcalHitCache, i, nPrimary, particleType, phiInit, pInit, pvMomentum, pvPosition, pvType, pvUVW, PHcalTB06Info::saveHit(), secEkin, secMomentum, secPartID, secTrackID, PHcalTB06Info::setEdep(), PHcalTB06Info::setPrimary(), PHcalTB06Info::setVtxPrim(), PHcalTB06Info::setVtxSec(), x, detailsBasic3DVector::y, and z.
Referenced by produce().
{ //Beam Information product.setPrimary(nPrimary, particleType, pInit, etaInit, phiInit); // Total Energy product.setEdep(etots, eecals, ehcals); //Energy deposits in the crystals and towers for (unsigned int i=0; i<hcalHitCache.size(); i++) product.saveHit(hcalHitCache[i].id(), hcalHitCache[i].eta(), hcalHitCache[i].phi(), hcalHitCache[i].e(), hcalHitCache[i].t()); for (unsigned int i=0; i<ecalHitCache.size(); i++) product.saveHit(ecalHitCache[i].id(), ecalHitCache[i].eta(), ecalHitCache[i].phi(), ecalHitCache[i].e(), ecalHitCache[i].t()); //Vertex associated quantities product.setVtxPrim(evNum, pvType, pvPosition.x(), pvPosition.y(), pvPosition.z(), pvUVW.x(), pvUVW.y(), pvUVW.z(), pvMomentum.x(), pvMomentum.y(), pvMomentum.z()); for (unsigned int i = 0; i < secTrackID.size(); i++) { product.setVtxSec(secTrackID[i], secPartID[i], secMomentum[i].x(), secMomentum[i].y(), secMomentum[i].z(), secEkin[i]); } }
void HcalTB06Analysis::finalAnalysis | ( | ) | [private] |
Definition at line 470 of file HcalTB06Analysis.cc.
References ecalHitCache, eecals, ehcals, etaInit, etots, HcalTB06Histo::fillEdep(), HcalTB06Histo::fillPrimary(), hcalHitCache, histo, i, LogDebug, phiInit, and pInit.
Referenced by update().
{ //Beam Information histo->fillPrimary(pInit, etaInit, phiInit); // Total Energy eecals = ehcals = 0.; for (unsigned int i=0; i<hcalHitCache.size(); i++) { ehcals += hcalHitCache[i].e(); } for (unsigned int i=0; i<ecalHitCache.size(); i++) { eecals += ecalHitCache[i].e(); } etots = eecals + ehcals; LogDebug("HcalTBSim") << "HcalTB06Analysis:: Energy deposit at Sim Level " << "(Total) " << etots << " (ECal) " << eecals << " (HCal) " << ehcals; histo->fillEdep(etots, eecals, ehcals); }
void HcalTB06Analysis::init | ( | void | ) | [private] |
Definition at line 103 of file HcalTB06Analysis.cc.
References clear(), count, and evNum.
Referenced by HcalTB06Analysis().
const HcalTB06Analysis& HcalTB06Analysis::operator= | ( | const HcalTB06Analysis & | ) | [private] |
void HcalTB06Analysis::produce | ( | edm::Event & | e, |
const edm::EventSetup & | |||
) | [virtual] |
Implements SimProducer.
Definition at line 96 of file HcalTB06Analysis.cc.
References fillEvent(), and edm::Event::put().
{ std::auto_ptr<PHcalTB06Info> product(new PHcalTB06Info); fillEvent(*product); e.put(product); }
void HcalTB06Analysis::update | ( | const BeginOfEvent * | ) | [private, virtual] |
This routine will be called when the appropriate signal arrives.
Implements Observer< const BeginOfEvent * >.
Definition at line 118 of file HcalTB06Analysis.cc.
References clear(), and evNum.
{ evNum = (*evt) ()->GetEventID (); clear(); edm::LogInfo("HcalTBSim") << "HcalTB06Analysis: =====> Begin of event = " << evNum; }
void HcalTB06Analysis::update | ( | const BeginOfRun * | ) | [private, virtual] |
This routine will be called when the appropriate signal arrives.
Implements Observer< const BeginOfRun * >.
Definition at line 111 of file HcalTB06Analysis.cc.
{ int irun = (*run)()->GetRunID(); edm::LogInfo("HcalTBSim") <<" =====> Begin of Run = " << irun; }
void HcalTB06Analysis::update | ( | const EndOfEvent * | ) | [private, virtual] |
This routine will be called when the appropriate signal arrives.
Implements Observer< const EndOfEvent * >.
Definition at line 240 of file HcalTB06Analysis.cc.
References count, fillBuffer(), finalAnalysis(), and LogDebug.
{ count++; //fill the buffer LogDebug("HcalTBSim") << "HcalTB06Analysis::Fill event " << (*evt)()->GetEventID(); fillBuffer (evt); //Final Analysis LogDebug("HcalTBSim") << "HcalTB06Analysis::Final analysis"; finalAnalysis(); int iEvt = (*evt)()->GetEventID(); if (iEvt < 10) edm::LogInfo("HcalTBSim") << "HcalTB06Analysis:: Event " << iEvt; else if ((iEvt < 100) && (iEvt%10 == 0)) edm::LogInfo("HcalTBSim") << "HcalTB06Analysis:: Event " << iEvt; else if ((iEvt < 1000) && (iEvt%100 == 0)) edm::LogInfo("HcalTBSim") << "HcalTB06Analysis:: Event " << iEvt; else if ((iEvt < 10000) && (iEvt%1000 == 0)) edm::LogInfo("HcalTBSim") << "HcalTB06Analysis:: Event " << iEvt; }
void HcalTB06Analysis::update | ( | const G4Step * | ) | [private, virtual] |
This routine will be called when the appropriate signal arrives.
Implements Observer< const G4Step * >.
Definition at line 126 of file HcalTB06Analysis.cc.
References LogDebug, NULL, evf::utils::pid, pos, position, pvFound, pvMomentum, pvPosition, pvType, pvUVW, secEkin, secMomentum, secPartID, secTrackID, and shortLivedSecondaries.
{ if (aStep != NULL) { //Get Step properties G4ThreeVector thePreStepPoint = aStep->GetPreStepPoint()->GetPosition(); G4ThreeVector thePostStepPoint; // Get Tracks properties G4Track* aTrack = aStep->GetTrack(); int trackID = aTrack->GetTrackID(); int parentID = aTrack->GetParentID(); G4ThreeVector position = aTrack->GetPosition(); G4ThreeVector momentum = aTrack->GetMomentum(); G4String partType = aTrack->GetDefinition()->GetParticleType(); G4String partSubType = aTrack->GetDefinition()->GetParticleSubType(); int partPDGEncoding = aTrack->GetDefinition()->GetPDGEncoding(); #ifdef ddebug bool isPDGStable = aTrack->GetDefinition()->GetPDGStable(); #endif double pDGlifetime = aTrack->GetDefinition()->GetPDGLifeTime(); double gammaFactor = aStep->GetPreStepPoint()->GetGamma(); if (!pvFound) { //search for v1 double stepDeltaEnergy = aStep->GetDeltaEnergy (); double kinEnergy = aTrack->GetKineticEnergy (); // look for DeltaE > 10% kinEnergy of particle, or particle death - Ek=0 if (trackID == 1 && parentID == 0 && ((kinEnergy == 0.) || (fabs (stepDeltaEnergy / kinEnergy) > 0.1))) { int pvType = -1; if (kinEnergy == 0.) { pvType = 0; } else { if (fabs (stepDeltaEnergy / kinEnergy) > 0.1) pvType = 1; } pvFound = true; pvPosition = position; pvMomentum = momentum; // Rotated coord.system: pvUVW = (*beamline_RM)*(pvPosition); //Volume name requires some checks: G4String thePostPVname = "NoName"; G4StepPoint * thePostPoint = aStep->GetPostStepPoint (); if (thePostPoint) { thePostStepPoint = thePostPoint->GetPosition(); G4VPhysicalVolume * thePostPV = thePostPoint->GetPhysicalVolume (); if (thePostPV) thePostPVname = thePostPV->GetName (); } #ifdef ddebug LogDebug("HcalTBSim") << "HcalTB06Analysis:: V1 found at: " << thePostStepPoint << " G4VPhysicalVolume: " << thePostPVname; #endif LogDebug("HcalTBSim") << "HcalTB06Analysis::fill_v1Pos: Primary Track " << "momentum: " << pvMomentum << " psoition " << pvPosition << " u/v/w " << pvUVW; } } else { // watch for secondaries originating @v1, including the surviving primary if ((trackID != 1 && parentID == 1 && (aTrack->GetCurrentStepNumber () == 1) && (thePreStepPoint == pvPosition)) || (trackID == 1 && thePreStepPoint == pvPosition)) { #ifdef ddebug LogDebug("HcalTBSim") << "HcalTB06Analysis::A secondary... PDG:" << partPDGEncoding << " TrackID:" << trackID << " ParentID:" << parentID << " stable: " << isPDGStable << " Tau: " << pDGlifetime << " cTauGamma=" << c_light*pDGlifetime*gammaFactor*1000. << "um" << " GammaFactor: " << gammaFactor; #endif secTrackID.push_back(trackID); secPartID.push_back(partPDGEncoding); secMomentum.push_back(momentum); secEkin.push_back(aTrack->GetKineticEnergy()); // Check for short-lived secondaries: cTauGamma<100um double ctaugamma_um = c_light * pDGlifetime * gammaFactor * 1000.; if ((ctaugamma_um>0.) && (ctaugamma_um<100.)) {//short-lived secondary shortLivedSecondaries.push_back(trackID); } else {//normal secondary - enter into the V1-calorimetric tree // histos->fill_v1cSec (aTrack); } } // Also watch for tertiary particles coming from // short-lived secondaries from V1 if (aTrack->GetCurrentStepNumber() == 1) { if (shortLivedSecondaries.size() > 0) { int pid = parentID; std::vector<int>::iterator pos1= shortLivedSecondaries.begin(); std::vector<int>::iterator pos2 = shortLivedSecondaries.end(); std::vector<int>::iterator pos; for (pos = pos1; pos != pos2; pos++) { if (*pos == pid) {//ParentID is on the list of short-lived // secondary #ifdef ddebug LogDebug("HcalTBSim") << "HcalTB06Analysis:: A tertiary... PDG:" << partPDGEncoding << " TrackID:" <<trackID << " ParentID:" << parentID << " stable: " << isPDGStable << " Tau: " << pDGlifetime << " cTauGamma=" << c_light*pDGlifetime*gammaFactor*1000. << "um GammaFactor: " << gammaFactor; #endif } } } } } } }
G4RotationMatrix* HcalTB06Analysis::beamline_RM [private] |
Definition at line 85 of file HcalTB06Analysis.h.
Referenced by HcalTB06Analysis().
double HcalTB06Analysis::beamOffset [private] |
Definition at line 82 of file HcalTB06Analysis.h.
Referenced by HcalTB06Analysis().
int HcalTB06Analysis::count [private] |
Definition at line 88 of file HcalTB06Analysis.h.
Referenced by init(), update(), and ~HcalTB06Analysis().
std::vector<CaloHit> HcalTB06Analysis::ecalHitCache [private] |
Definition at line 93 of file HcalTB06Analysis.h.
Referenced by clear(), fillBuffer(), fillEvent(), and finalAnalysis().
double HcalTB06Analysis::eecals [private] |
Definition at line 95 of file HcalTB06Analysis.h.
Referenced by fillEvent(), and finalAnalysis().
double HcalTB06Analysis::ehcals [private] |
Definition at line 95 of file HcalTB06Analysis.h.
Referenced by fillEvent(), and finalAnalysis().
double HcalTB06Analysis::etaInit [private] |
Definition at line 92 of file HcalTB06Analysis.h.
Referenced by clear(), fillBuffer(), fillEvent(), and finalAnalysis().
double HcalTB06Analysis::etots [private] |
Definition at line 95 of file HcalTB06Analysis.h.
Referenced by fillEvent(), and finalAnalysis().
int HcalTB06Analysis::evNum [private] |
Definition at line 98 of file HcalTB06Analysis.h.
Referenced by fillBuffer(), fillEvent(), init(), and update().
std::vector<CaloHit> HcalTB06Analysis::hcalHitCache [private] |
Definition at line 94 of file HcalTB06Analysis.h.
Referenced by clear(), fillBuffer(), fillEvent(), and finalAnalysis().
std::vector<CaloHit> HcalTB06Analysis::hcalHitLayer [private] |
Definition at line 94 of file HcalTB06Analysis.h.
HcalTB06Histo* HcalTB06Analysis::histo [private] |
Definition at line 79 of file HcalTB06Analysis.h.
Referenced by finalAnalysis(), HcalTB06Analysis(), and ~HcalTB06Analysis().
int HcalTB06Analysis::iceta [private] |
Definition at line 83 of file HcalTB06Analysis.h.
Referenced by HcalTB06Analysis().
int HcalTB06Analysis::icphi [private] |
Definition at line 83 of file HcalTB06Analysis.h.
Referenced by HcalTB06Analysis().
std::vector<std::string> HcalTB06Analysis::names [private] |
Definition at line 84 of file HcalTB06Analysis.h.
Referenced by fillBuffer(), and HcalTB06Analysis().
int HcalTB06Analysis::nPrimary [private] |
Definition at line 91 of file HcalTB06Analysis.h.
Referenced by clear(), fillBuffer(), and fillEvent().
int HcalTB06Analysis::particleType [private] |
Definition at line 91 of file HcalTB06Analysis.h.
Referenced by clear(), fillBuffer(), and fillEvent().
double HcalTB06Analysis::phiInit [private] |
Definition at line 92 of file HcalTB06Analysis.h.
Referenced by clear(), fillBuffer(), fillEvent(), and finalAnalysis().
double HcalTB06Analysis::pInit [private] |
Definition at line 92 of file HcalTB06Analysis.h.
Referenced by clear(), fillBuffer(), fillEvent(), and finalAnalysis().
bool HcalTB06Analysis::pvFound [private] |
Definition at line 97 of file HcalTB06Analysis.h.
G4ThreeVector HcalTB06Analysis::pvMomentum [private] |
Definition at line 99 of file HcalTB06Analysis.h.
Referenced by clear(), fillEvent(), and update().
G4ThreeVector HcalTB06Analysis::pvPosition [private] |
Definition at line 99 of file HcalTB06Analysis.h.
Referenced by clear(), fillEvent(), and update().
int HcalTB06Analysis::pvType [private] |
Definition at line 98 of file HcalTB06Analysis.h.
Referenced by clear(), fillEvent(), and update().
G4ThreeVector HcalTB06Analysis::pvUVW [private] |
Definition at line 99 of file HcalTB06Analysis.h.
Referenced by clear(), fillEvent(), and update().
std::vector<double> HcalTB06Analysis::secEkin [private] |
Definition at line 102 of file HcalTB06Analysis.h.
Referenced by clear(), fillEvent(), and update().
std::vector<G4ThreeVector> HcalTB06Analysis::secMomentum [private] |
Definition at line 101 of file HcalTB06Analysis.h.
Referenced by clear(), fillEvent(), and update().
std::vector<int> HcalTB06Analysis::secPartID [private] |
Definition at line 100 of file HcalTB06Analysis.h.
Referenced by clear(), fillEvent(), and update().
std::vector<int> HcalTB06Analysis::secTrackID [private] |
Definition at line 100 of file HcalTB06Analysis.h.
Referenced by clear(), fillEvent(), and update().
std::vector<int> HcalTB06Analysis::shortLivedSecondaries [private] |
Definition at line 103 of file HcalTB06Analysis.h.