#include <CSCSegAlgoPreClustering.h>
Public Types | |
typedef std::vector< const CSCRecHit2D * > | ChamberHitContainer |
Public Member Functions | |
std::vector< std::vector < const CSCRecHit2D * > > | clusterHits (const CSCChamber *aChamber, ChamberHitContainer rechits) |
clusterize | |
CSCSegAlgoPreClustering (const edm::ParameterSet &ps) | |
constructor | |
~CSCSegAlgoPreClustering () | |
destructor | |
Private Attributes | |
bool | debug |
double | dXclusBoxMax |
double | dYclusBoxMax |
float | err_x |
float | err_y |
float | mean_x |
float | mean_y |
const CSCChamber * | theChamber |
Definition at line 20 of file CSCSegAlgoPreClustering.h.
typedef std::vector<const CSCRecHit2D*> CSCSegAlgoPreClustering::ChamberHitContainer |
Definition at line 24 of file CSCSegAlgoPreClustering.h.
CSCSegAlgoPreClustering::CSCSegAlgoPreClustering | ( | const edm::ParameterSet & | ps | ) | [explicit] |
constructor
Definition at line 31 of file CSCSegAlgoPreClustering.cc.
References debug, dXclusBoxMax, dYclusBoxMax, edm::ParameterSet::getParameter(), and edm::ParameterSet::getUntrackedParameter().
{ dXclusBoxMax = ps.getParameter<double>("dXclusBoxMax"); dYclusBoxMax = ps.getParameter<double>("dYclusBoxMax"); debug = ps.getUntrackedParameter<bool>("CSCSegmentDebug"); }
CSCSegAlgoPreClustering::~CSCSegAlgoPreClustering | ( | ) |
std::vector< std::vector< const CSCRecHit2D * > > CSCSegAlgoPreClustering::clusterHits | ( | const CSCChamber * | aChamber, |
ChamberHitContainer | rechits | ||
) |
clusterize
Definition at line 50 of file CSCSegAlgoPreClustering.cc.
References begin, gather_cfg::cout, dXclusBoxMax, dYclusBoxMax, end, err_x, err_y, i, mean_x, mean_y, findQualityFiles::size, cond::rpcobtemp::temp, theChamber, x, and detailsBasic3DVector::y.
Referenced by CSCSegAlgoDF::run().
{ theChamber = aChamber; std::vector<ChamberHitContainer> rechits_clusters; // this is a collection of groups of rechits float dXclus = 0.0; float dYclus = 0.0; float dXclus_box = 0.0; float dYclus_box = 0.0; std::vector<const CSCRecHit2D*> temp; std::vector< ChamberHitContainer > seeds; std::vector<float> running_meanX; std::vector<float> running_meanY; std::vector<float> seed_minX; std::vector<float> seed_maxX; std::vector<float> seed_minY; std::vector<float> seed_maxY; // split rechits into subvectors and return vector of vectors: // Loop over rechits // Create one seed per hit for(unsigned int i = 0; i < rechits.size(); ++i) { temp.clear(); temp.push_back(rechits[i]); seeds.push_back(temp); // First added hit in seed defines the mean to which the next hit is compared // for this seed. running_meanX.push_back( rechits[i]->localPosition().x() ); running_meanY.push_back( rechits[i]->localPosition().y() ); // set min/max X and Y for box containing the hits in the precluster: seed_minX.push_back( rechits[i]->localPosition().x() ); seed_maxX.push_back( rechits[i]->localPosition().x() ); seed_minY.push_back( rechits[i]->localPosition().y() ); seed_maxY.push_back( rechits[i]->localPosition().y() ); } // merge clusters that are too close // measure distance between final "running mean" for(size_t NNN = 0; NNN < seeds.size(); ++NNN) { for(size_t MMM = NNN+1; MMM < seeds.size(); ++MMM) { if(running_meanX[MMM] == 999999. || running_meanX[NNN] == 999999. ) { std::cout<<"We should never see this line now!!!"<<std::endl; continue; //skip seeds that have been used } // calculate cut criteria for simple running mean distance cut: dXclus = fabs(running_meanX[NNN] - running_meanX[MMM]); dYclus = fabs(running_meanY[NNN] - running_meanY[MMM]); // calculate minmal distance between precluster boxes containing the hits: if ( running_meanX[NNN] > running_meanX[MMM] ) dXclus_box = seed_minX[NNN] - seed_maxX[MMM]; else dXclus_box = seed_minX[MMM] - seed_maxX[NNN]; if ( running_meanY[NNN] > running_meanY[MMM] ) dYclus_box = seed_minY[NNN] - seed_maxY[MMM]; else dYclus_box = seed_minY[MMM] - seed_maxY[NNN]; if( dXclus_box < dXclusBoxMax && dYclus_box < dYclusBoxMax ) { // merge clusters! // merge by adding seed NNN to seed MMM and erasing seed NNN // calculate running mean for the merged seed: running_meanX[MMM] = (running_meanX[NNN]*seeds[NNN].size() + running_meanX[MMM]*seeds[MMM].size()) / (seeds[NNN].size()+seeds[MMM].size()); running_meanY[MMM] = (running_meanY[NNN]*seeds[NNN].size() + running_meanY[MMM]*seeds[MMM].size()) / (seeds[NNN].size()+seeds[MMM].size()); // update min/max X and Y for box containing the hits in the merged cluster: if ( seed_minX[NNN] <= seed_minX[MMM] ) seed_minX[MMM] = seed_minX[NNN]; if ( seed_maxX[NNN] > seed_maxX[MMM] ) seed_maxX[MMM] = seed_maxX[NNN]; if ( seed_minY[NNN] <= seed_minY[MMM] ) seed_minY[MMM] = seed_minY[NNN]; if ( seed_maxY[NNN] > seed_maxY[MMM] ) seed_maxY[MMM] = seed_maxY[NNN]; // add seed NNN to MMM (lower to larger number) seeds[MMM].insert(seeds[MMM].end(),seeds[NNN].begin(),seeds[NNN].end()); // mark seed NNN as used (at the moment just set running mean to 999999.) running_meanX[NNN] = 999999.; running_meanY[NNN] = 999999.; // we have merged a seed (NNN) to the highter seed (MMM) - need to contimue to // next seed (NNN+1) break; } } } // hand over the final seeds to the output // would be more elegant if we could do the above step with // erasing the merged ones, rather than the for(size_t NNN = 0; NNN < seeds.size(); ++NNN) { if (running_meanX[NNN] == 999999.) continue; //skip seeds that have been marked as used up in merging rechits_clusters.push_back(seeds[NNN]); mean_x = running_meanX[NNN]; mean_y = running_meanY[NNN]; err_x = (seed_maxX[NNN]-seed_minX[NNN])/3.464101615; // use box size divided by sqrt(12) as position error estimate err_y = (seed_maxY[NNN]-seed_minY[NNN])/3.464101615; // use box size divided by sqrt(12) as position error estimate } return rechits_clusters; }
bool CSCSegAlgoPreClustering::debug [private] |
Definition at line 36 of file CSCSegAlgoPreClustering.h.
Referenced by CSCSegAlgoPreClustering().
double CSCSegAlgoPreClustering::dXclusBoxMax [private] |
Definition at line 37 of file CSCSegAlgoPreClustering.h.
Referenced by clusterHits(), and CSCSegAlgoPreClustering().
double CSCSegAlgoPreClustering::dYclusBoxMax [private] |
Definition at line 38 of file CSCSegAlgoPreClustering.h.
Referenced by clusterHits(), and CSCSegAlgoPreClustering().
float CSCSegAlgoPreClustering::err_x [private] |
Definition at line 40 of file CSCSegAlgoPreClustering.h.
Referenced by clusterHits().
float CSCSegAlgoPreClustering::err_y [private] |
Definition at line 40 of file CSCSegAlgoPreClustering.h.
Referenced by clusterHits().
float CSCSegAlgoPreClustering::mean_x [private] |
Definition at line 40 of file CSCSegAlgoPreClustering.h.
Referenced by clusterHits().
float CSCSegAlgoPreClustering::mean_y [private] |
Definition at line 40 of file CSCSegAlgoPreClustering.h.
Referenced by clusterHits().
const CSCChamber* CSCSegAlgoPreClustering::theChamber [private] |
Definition at line 41 of file CSCSegAlgoPreClustering.h.
Referenced by clusterHits().