#include <DTTime2DriftParametrization.h>
Classes | |
struct | drift_distance |
Structure used to return output values. More... | |
Public Member Functions | |
bool | computeDriftDistance_mean (double time, double alpha, double by, double bz, short interpolate, drift_distance *dx) const |
bool | computeDriftDistance_mode (double time, double alpha, double by, double bz, short interpolate, drift_distance *dx) const |
DTTime2DriftParametrization () | |
Constructor. | |
virtual | ~DTTime2DriftParametrization () |
Destructor. | |
Private Member Functions | |
unsigned short | MB_DT_Check_boundaries (double distime, double alpha, double by, double bz, short ifl) const |
double | MB_DT_delta_x (double, double *) const |
double | MB_DT_dist (double, double *) const |
unsigned short | MB_DT_drift_distance (double time, double alpha, double by, double bz, drift_distance *DX, short interpolate) const |
Calculate drift distance and spread. | |
void | MB_DT_Get_grid_points (double alpha, double by, double bz, unsigned short *p_alpha, unsigned short *p_By, unsigned short *p_Bz, unsigned short *q_alpha, unsigned short *q_By, unsigned short *q_Bz) const |
void | MB_DT_Get_grid_values (double Var, unsigned short *pi, unsigned short *pj, short Initial, unsigned short N, const double *Values) const |
double | MB_DT_MLInterpolation (double *al, double *by, double *bz, double *f) const |
double | MB_DT_sigma_t_m (double, double *) const |
double | MB_DT_sigma_t_p (double, double *) const |
Static Private Attributes | |
static const double | alpha_value [N_alpha] |
static const double | By_value [N_By] |
static const double | Bz_value [N_Bz] |
static const double | fun_sigma_t [N_alpha][N_By][N_Bz][N_Sigma_t] |
static const double | fun_x [N_alpha][N_By][N_Bz][N_Par_x] |
static const double | velocitySkew |
This class access the cell parametrization by Pablo Garcia-Abia and Jesus Puerta (CIEMAT). The two public methods act as an interface for the parametrization converting the reference frame and the units accordingly to CMSSW convention.
Definition at line 23 of file DTTime2DriftParametrization.h.
DTTime2DriftParametrization::DTTime2DriftParametrization | ( | ) |
DTTime2DriftParametrization::~DTTime2DriftParametrization | ( | ) | [virtual] |
bool DTTime2DriftParametrization::computeDriftDistance_mean | ( | double | time, |
double | alpha, | ||
double | by, | ||
double | bz, | ||
short | interpolate, | ||
drift_distance * | dx | ||
) | const |
Compute the drift distance and relative errors (cm). The drift distance is computed as the MEAN value of the distance distribution for this particular time. This method takes care of the conversions of units and reference frame used by CMSSW and the parametrization. time is in ns, alpha (=atan(x/-z)) in rad, by and bz are the magnetic field in the layer RF. False is returned if the parametrization fails
Definition at line 63 of file DTTime2DriftParametrization.cc.
References DTTime2DriftParametrization::drift_distance::delta_x, max(), MB_DT_drift_distance(), Geom::pi(), pi, mathSSE::sqrt(), DTTime2DriftParametrization::drift_distance::v_drift, DTTime2DriftParametrization::drift_distance::x_drift, DTTime2DriftParametrization::drift_distance::x_width_m, and DTTime2DriftParametrization::drift_distance::x_width_p.
{ // NOTE: This method takes care of convertion of the units in order to use the CMSSW conventions // The convention used by the parametrization for the reference frame are different // with respect to CMSSW // X_par = X_CMSSW; Y_par=Z_CMSSW; Z_par = -Y_CMSSW float By_par = bz; // Bnorm float Bz_par = -by; // Bwire // Express alpha in degrees float alpha_par = alpha * 180./Geom::pi(); //-------------------------------------------------------------------- // Calculate the drift distance and the resolution from the parametrization unsigned short flag = MB_DT_drift_distance(time, alpha_par, By_par, Bz_par, dx, interpolate); if(flag!=1) return false; // Convert from mm (used by the parametrization) to cm (used by CMSSW) dx->v_drift = dx->v_drift/10.; dx->x_drift = dx->x_drift/10.; dx->delta_x = dx->delta_x/10.; dx->x_width_m = dx->x_width_m/10.; dx->x_width_p = dx->x_width_p/10.; // Correct drift time for the difference between mode and mean dx->x_drift = std::max(0.,dx->x_drift - (dx->x_width_p-dx->x_width_m)*sqrt(2./Geom::pi())); return true; }
bool DTTime2DriftParametrization::computeDriftDistance_mode | ( | double | time, |
double | alpha, | ||
double | by, | ||
double | bz, | ||
short | interpolate, | ||
drift_distance * | dx | ||
) | const |
Compute the drift distance and relative errors (cm). The drift distance is computed as the MODE value of the distance distribution for this particular time. This method takes care of the conversions of units and reference frame used by CMSSW and the parametrization. time is in ns, alpha (=atan(x/-z)) in rad, by and bz are the magnetic field in the layer RF. False is returned if the parametrization fails
Definition at line 26 of file DTTime2DriftParametrization.cc.
References DTTime2DriftParametrization::drift_distance::delta_x, MB_DT_drift_distance(), pi, DTTime2DriftParametrization::drift_distance::v_drift, DTTime2DriftParametrization::drift_distance::x_drift, DTTime2DriftParametrization::drift_distance::x_width_m, and DTTime2DriftParametrization::drift_distance::x_width_p.
{ // NOTE: This method takes care of convertion of the units in order to use the CMSSW conventions // The convention used by the parametrization for the reference frame are different // with respect to CMSSW // X_par = X_CMSSW; Y_par=Z_CMSSW; Z_par = -Y_CMSSW float By_par = bz; // Bnorm float Bz_par = -by; // Bwire // Express alpha in degrees float alpha_par = alpha * 180./Geom::pi(); //-------------------------------------------------------------------- // Calculate the drift distance and the resolution from the parametrization unsigned short flag = MB_DT_drift_distance(time, alpha_par, By_par, Bz_par, dx, interpolate); if(flag!=1) return false; // Convert from mm (used by the parametrization) to cm (used by CMSSW) dx->v_drift = dx->v_drift/10.; dx->x_drift = dx->x_drift/10.; dx->delta_x = dx->delta_x/10.; dx->x_width_m = dx->x_width_m/10.; dx->x_width_p = dx->x_width_p/10.; return true; }
unsigned short DTTime2DriftParametrization::MB_DT_Check_boundaries | ( | double | distime, |
double | alpha, | ||
double | by, | ||
double | bz, | ||
short | ifl | ||
) | const [private] |
Referenced by MB_DT_drift_distance().
double DTTime2DriftParametrization::MB_DT_delta_x | ( | double | t, |
double * | par | ||
) | const [private] |
Definition at line 242 of file DTTime2DriftParametrization.cc.
References matplotRender::t.
Referenced by MB_DT_drift_distance().
{ double t2 = t*t; #ifdef MB_DT_DEBUG printf("MB_DT_delta_x: time = %f\n",t); #endif // // Now distances are in microns. Divide by 1000 to get mm. // if ( t <= par[12] ) { return ( -0.001 * (par[1] + par[2] *t + par[3] *t2) ); } if ( t <= par[13] ) { return ( -0.001 * (par[4] + par[5] *t + par[6] *t2 + par[7]*t2*t + par[8]*t2*t2) ); } return ( -0.001 * (par[9] + par[10]*t + par[11]*t2) ); }
double DTTime2DriftParametrization::MB_DT_dist | ( | double | time, |
double * | par | ||
) | const [private] |
Definition at line 258 of file DTTime2DriftParametrization.cc.
Referenced by MB_DT_drift_distance().
unsigned short DTTime2DriftParametrization::MB_DT_drift_distance | ( | double | time, |
double | alpha, | ||
double | by, | ||
double | bz, | ||
drift_distance * | DX, | ||
short | interpolate | ||
) | const [private] |
Calculate drift distance and spread.
Definition at line 102 of file DTTime2DriftParametrization.cc.
References alpha, alpha_value, By_value, Bz_value, DTTime2DriftParametrization::drift_distance::delta_x, fun_sigma_t, fun_x, i, j, MB_DT_Check_boundaries(), MB_DT_delta_x(), MB_DT_dist(), MB_DT_Get_grid_points(), MB_DT_MLInterpolation(), MB_DT_sigma_t_m(), MB_DT_sigma_t_p(), N_Par_x, N_Sigma_t, DTTime2DriftParametrization::drift_distance::v_drift, DTTime2DriftParametrization::drift_distance::x_drift, DTTime2DriftParametrization::drift_distance::x_width_m, and DTTime2DriftParametrization::drift_distance::x_width_p.
Referenced by computeDriftDistance_mean(), and computeDriftDistance_mode().
{ unsigned short i, j, n_func, ial, iby, ibz; unsigned short i_alpha, i_By, i_Bz; unsigned short j_alpha, j_By, j_Bz; double OffSet; double par_x[N_Par_x]; double par_sigma_t[N_Sigma_t]; double V_al[3], V_by[3], V_bz[3]; double DXV_v_drift [N_Func]; double DXV_x_drift [N_Func]; double DXV_delta_x [N_Func]; double DXV_x_width_m[N_Func]; double DXV_x_width_p[N_Func]; DX->v_drift = -1; DX->x_drift = -1; DX->delta_x = -1; DX->x_width_m = -1; DX->x_width_p = -1; /* Check 'interpolate' and initialize DXV */ switch(interpolate) { case 1: n_func = N_Func; for ( j=0 ; j<N_Func ; j++ ) { DXV_v_drift[j] = -1; DXV_x_drift[j] = -1; DXV_delta_x[j] = -1; DXV_x_width_m[j] = -1; DXV_x_width_p[j] = -1; } break ; case 0: n_func = 1; break ; default: printf ("*** ERROR, MB_DT_drift_distance: invalid interpolate value = %d\n",interpolate); return (0); } #ifdef MB_DT_DEBUG /* Dump input values */ printf ("\nMB_DT_drift_distance: Function called with values:\n\n"); printf ("MB_DT_drift_distance: time = %f\n",time ); printf ("MB_DT_drift_distance: alpha = %f\n",alpha); printf ("MB_DT_drift_distance: by = %f\n",by ); printf ("MB_DT_drift_distance: bz = %f\n",bz ); #endif /* Take into account the symmetries of the parametrisations */ by = fabs(by); // f-1 (By) = f-1 (-By) if ( bz < 0 ) { // f-1 (alpha,Bz) = f-1 (-alpha, -Bz) bz = -bz; alpha = -alpha; } /* Check boundaries of the variables and take the closest values */ MB_DT_Check_boundaries (time, alpha, by, bz, -1) ; MB_DT_Get_grid_points (alpha, by, bz, &i_alpha, &i_By, &i_Bz, &j_alpha, &j_By, &j_Bz) ; #ifdef MB_DT_DEBUG printf("MB_DT_drift_distance:\n"); printf("MB_DT_drift_distance: i_alpha j_alpha alpha_value's %d %d %.0f %.0f\n",i_alpha,j_alpha,alpha_value[i_alpha],alpha_value[j_alpha]); printf("MB_DT_drift_distance: i_By j_By By_value's %d %d %.2f %.2f\n",i_By ,j_By , By_value[i_By] , By_value[j_By]); printf("MB_DT_drift_distance: i_Bz j_Bz Bz_value's %d %d %.2f %.2f\n",i_Bz ,j_Bz , Bz_value[i_Bz] , Bz_value[j_Bz]); #endif /* Get the parametrisations for the different grid points */ for ( j=0 ; j<n_func ; j++ ) { ial = (j&4) ? j_alpha : i_alpha; iby = (j&2) ? j_By : i_By ; ibz = (j&1) ? j_Bz : i_Bz ; for ( i=0 ; i<N_Par_x ; i++ ) par_x[i] = fun_x[ial][iby][ibz][i]; for ( i=0 ; i<N_Sigma_t ; i++ ) par_sigma_t[i] = fun_sigma_t[ial][iby][ibz][i]; OffSet = par_x[N_Par_x-1]; DXV_v_drift[j] = par_x[0]; // drift velocity DXV_delta_x[j] = MB_DT_delta_x (time, par_x); // deviation from linearity DXV_x_drift[j] = MB_DT_dist (time, par_x) + DXV_delta_x[j] - OffSet*par_x[0]; // drift distance to the wire (signed) DXV_x_width_m[j] = MB_DT_sigma_t_m (DXV_x_drift[j], par_sigma_t) * DXV_v_drift[j]; // distance width ~ vd * sigma_t(x) (minus, left) DXV_x_width_p[j] = MB_DT_sigma_t_p (DXV_x_drift[j], par_sigma_t) * DXV_v_drift[j]; // distance width ~ vd * sigma_t(x) (plus, right) #ifdef MB_DT_DEBUG printf("MB_DT_drift_LOOP: OffSet = %f\n",OffSet); printf("MB_DT_drift_LOOP: time, v_drift, x_drift, lin, x_width_m, x_width_p = %f %f %f %f %f %f\n", time, DXV_v_drift[j], DXV_x_drift[j], DXV_delta_x[j], DXV_x_width_m[j], DXV_x_width_p[j]) ; #endif } /* Return interpolated or grid values */ if ( interpolate == 0 ) { DX->v_drift = DXV_v_drift[0]; DX->delta_x = DXV_delta_x[0]; DX->x_drift = DXV_x_drift[0]; DX->x_width_m = DXV_x_width_m[0]; DX->x_width_p = DXV_x_width_p[0]; } else { V_al[0] = alpha ; V_al[1] = alpha_value[i_alpha] ; V_al[2] = alpha_value[j_alpha]; V_by[0] = by ; V_by[1] = By_value[i_By] ; V_by[2] = By_value[j_By]; V_bz[0] = bz ; V_bz[1] = Bz_value[i_Bz] ; V_bz[2] = Bz_value[j_Bz]; DX->v_drift = MB_DT_MLInterpolation (V_al, V_by, V_bz, DXV_v_drift ); DX->delta_x = MB_DT_MLInterpolation (V_al, V_by, V_bz, DXV_delta_x ); DX->x_drift = MB_DT_MLInterpolation (V_al, V_by, V_bz, DXV_x_drift ); DX->x_width_m = MB_DT_MLInterpolation (V_al, V_by, V_bz, DXV_x_width_m); DX->x_width_p = MB_DT_MLInterpolation (V_al, V_by, V_bz, DXV_x_width_p); } #ifdef MB_DT_DEBUG printf("MB_DT_drift_distance: time, v_drift, x_drift, lin, x_width_m, x_width_p = %f %f %f %f %f %f\n", time, DX->v_drift, DX->x_drift, DX->delta_x, DX->x_width_m, DX->x_width_p) ; #endif return (1); }
void DTTime2DriftParametrization::MB_DT_Get_grid_points | ( | double | alpha, |
double | by, | ||
double | bz, | ||
unsigned short * | p_alpha, | ||
unsigned short * | p_By, | ||
unsigned short * | p_Bz, | ||
unsigned short * | q_alpha, | ||
unsigned short * | q_By, | ||
unsigned short * | q_Bz | ||
) | const [private] |
Referenced by MB_DT_drift_distance().
void DTTime2DriftParametrization::MB_DT_Get_grid_values | ( | double | Var, |
unsigned short * | pi, | ||
unsigned short * | pj, | ||
short | Initial, | ||
unsigned short | N, | ||
const double * | Values | ||
) | const [private] |
double DTTime2DriftParametrization::MB_DT_MLInterpolation | ( | double * | al, |
double * | by, | ||
double * | bz, | ||
double * | f | ||
) | const [private] |
Referenced by MB_DT_drift_distance().
double DTTime2DriftParametrization::MB_DT_sigma_t_m | ( | double | , |
double * | |||
) | const [private] |
Referenced by MB_DT_drift_distance().
double DTTime2DriftParametrization::MB_DT_sigma_t_p | ( | double | , |
double * | |||
) | const [private] |
Referenced by MB_DT_drift_distance().
const double DTTime2DriftParametrization::alpha_value[N_alpha] [static, private] |
Definition at line 110 of file DTTime2DriftParametrization.h.
Referenced by MB_DT_drift_distance().
const double DTTime2DriftParametrization::By_value[N_By] [static, private] |
Definition at line 111 of file DTTime2DriftParametrization.h.
Referenced by MB_DT_drift_distance().
const double DTTime2DriftParametrization::Bz_value[N_Bz] [static, private] |
Definition at line 112 of file DTTime2DriftParametrization.h.
Referenced by MB_DT_drift_distance().
const double DTTime2DriftParametrization::fun_sigma_t[N_alpha][N_By][N_Bz][N_Sigma_t] [static, private] |
Definition at line 116 of file DTTime2DriftParametrization.h.
Referenced by MB_DT_drift_distance().
const double DTTime2DriftParametrization::fun_x [static, private] |
Definition at line 115 of file DTTime2DriftParametrization.h.
Referenced by MB_DT_drift_distance().
const double DTTime2DriftParametrization::velocitySkew [static, private] |
Definition at line 119 of file DTTime2DriftParametrization.h.