CMS 3D CMS Logo

Public Member Functions | Private Attributes

MultiTrackVertexLinkKinematicConstraint Class Reference

#include <MultiTrackVertexLinkKinematicConstraint.h>

Inheritance diagram for MultiTrackVertexLinkKinematicConstraint:
MultiTrackKinematicConstraint

List of all members.

Public Member Functions

virtual
MultiTrackVertexLinkKinematicConstraint
clone () const
 MultiTrackVertexLinkKinematicConstraint (GlobalPoint &ref)
virtual int numberOfEquations () const
virtual AlgebraicMatrix parametersDerivative (const std::vector< KinematicState > states, const GlobalPoint &point) const
virtual AlgebraicMatrix positionDerivative (const std::vector< KinematicState > states, const GlobalPoint &point) const
virtual AlgebraicVector value (const std::vector< KinematicState > states, const GlobalPoint &point) const

Private Attributes

GlobalPoint refPoint

Detailed Description

This is an specialized version of MultiTrackVertexLinkKinematicConstraint. It constraints the sum of 4-vectors combined at a secondary vertex to be in parallel to the vertex link after considering the helix bend of the summed vector when propagating to the primary vertex.

Lars Perchalla, Philip Sauerland, July 2010

Definition at line 17 of file MultiTrackVertexLinkKinematicConstraint.h.


Constructor & Destructor Documentation

MultiTrackVertexLinkKinematicConstraint::MultiTrackVertexLinkKinematicConstraint ( GlobalPoint ref) [inline]

Definition at line 20 of file MultiTrackVertexLinkKinematicConstraint.h.

Referenced by clone().

                                                                 :refPoint(ref)
        {}

Member Function Documentation

virtual MultiTrackVertexLinkKinematicConstraint* MultiTrackVertexLinkKinematicConstraint::clone ( void  ) const [inline, virtual]
int MultiTrackVertexLinkKinematicConstraint::numberOfEquations ( ) const [virtual]

Number of equations per track used for the fit

Implements MultiTrackKinematicConstraint.

Definition at line 121 of file MultiTrackVertexLinkKinematicConstraint.cc.

                                                                    {
        return 2;
}
AlgebraicMatrix MultiTrackVertexLinkKinematicConstraint::parametersDerivative ( const std::vector< KinematicState states,
const GlobalPoint point 
) const [virtual]

Returns a matrix of derivatives of constraint equations w.r.t. particle parameters

Implements MultiTrackKinematicConstraint.

Definition at line 37 of file MultiTrackVertexLinkKinematicConstraint.cc.

References a, i, funct::pow(), refPoint, mathSSE::sqrt(), PV3DBase< T, PVType, FrameType >::x(), PV3DBase< T, PVType, FrameType >::y(), and z.

                                                                                                                                                   {
        int num = states.size();
        if(num<2) throw VertexException("MultiTrackVertexLinkKinematicConstraint::parametersDerivative <2 states passed");
        
        //2 equations (for all tracks)
        AlgebraicMatrix  matrix(2,num*7,0);//AlgebraicMatrix starts from 1
        double dx = point.x() - refPoint.x();
        double dy = point.y() - refPoint.y();
        double dT = sqrt(pow(dx,2) + pow(dy,2));
        
        double pxSum=0, pySum=0, pzSum=0;
        double aSum = 0;
        for(std::vector<KinematicState>::const_iterator i = states.begin(); i != states.end(); i++)
        {
                double a = - i->particleCharge() * i->magneticField()->inInverseGeV(i->globalPosition()).z();
                aSum += a;

                pxSum += i->kinematicParameters()(3) - a*(point.y() - i->kinematicParameters()(1));
                pySum += i->kinematicParameters()(4) + a*(point.x() - i->kinematicParameters()(0));
                pzSum += i->kinematicParameters()(5);
        }

        double pT = sqrt(pow(pxSum,2) + pow(pySum,2));
        double pSum = sqrt(pow(pxSum,2) + pow(pySum,2) + pow(pzSum,2));

        int col=0;
        for(std::vector<KinematicState>::const_iterator i = states.begin(); i != states.end(); i++){
                double a = - i->particleCharge() * i->magneticField()->inInverseGeV(i->globalPosition()).z();

                matrix(1,1+col*7) =     a*(-(pT/pow(pySum,2)) + pxSum/pow(pySum,2) - (4*pySum)/(aSum*dT*sqrt(-(pow(aSum,2)*pow(dT,2)) + 4*pow(pT,2))) + (1 + (2*pySum)/(aSum*dT))/pT);//dH/dx
                matrix(1,2+col*7) =     (a*(aSum*dT*(pT - pxSum) + 2*(-1 + (2*pT)/sqrt(-(pow(aSum,2)*pow(dT,2)) + 4*pow(pT,2)))*pxSum*pySum))/(aSum*dT*pT*pySum);//dH/dy
                //dH/dz=0
                matrix(1,4+col*7) =     (aSum*dT*(pT - pxSum) + 2*(-1 + (2*pT)/sqrt(-(pow(aSum,2)*pow(dT,2)) + 4*pow(pT,2)))*pxSum*pySum)/(aSum*dT*pT*pySum);//dH/dpx
                matrix(1,5+col*7) =     pT/pow(pySum,2) - pxSum/pow(pySum,2) + (4*pySum)/(aSum*dT*sqrt(-(pow(aSum,2)*pow(dT,2)) + 4*pow(pT,2))) + (-1 - (2*pySum)/(aSum*dT))/pT;//dH/dpy
                //dH/dpz=0
                //dH/dm=0
                matrix(2,1+col*7) =     (a*(-pSum + pT)*pySum)/(pSum*pT*pzSum);//dH/dx
                matrix(2,2+col*7) =     (a*( pSum - pT)*pxSum)/(pSum*pT*pzSum);//dH/dy
                //dH/dz
                matrix(2,4+col*7) =     ((-(1/pSum) + 1/pT)*pxSum)/pzSum;//dH/dpx
                matrix(2,5+col*7) =     ((-(1/pSum) + 1/pT)*pySum)/pzSum;//dH/dpy
                matrix(2,6+col*7) =     -(1/pSum) + (pSum - pT)/pow(pzSum,2);//dH/dpz
                //dH/dm=0               
                
                col++;
        }
        
        return matrix;
}
AlgebraicMatrix MultiTrackVertexLinkKinematicConstraint::positionDerivative ( const std::vector< KinematicState states,
const GlobalPoint point 
) const [virtual]

Returns a matrix of derivatives of constraint equations w.r.t. vertex position

Implements MultiTrackKinematicConstraint.

Definition at line 87 of file MultiTrackVertexLinkKinematicConstraint.cc.

References a, i, funct::pow(), refPoint, mathSSE::sqrt(), PV3DBase< T, PVType, FrameType >::x(), PV3DBase< T, PVType, FrameType >::y(), PV3DBase< T, PVType, FrameType >::z(), and z.

                                                                                                                                                 {
        int num = states.size();
        if(num<2) throw VertexException("MultiTrackVertexLinkKinematicConstraint::positionDerivative <2 states passed");
        
        //2 equations (for all tracks)
        AlgebraicMatrix  matrix(2,3,0);
        double dx = point.x() - refPoint.x();
        double dy = point.y() - refPoint.y();
        double dz = point.z() - refPoint.z();
        double dT = sqrt(pow(dx,2) + pow(dy,2));
        double ds = sqrt(pow(dx,2) + pow(dy,2) + pow(dz,2));
        
        double pxSum=0, pySum=0, pzSum=0, aSum = 0;
        for(std::vector<KinematicState>::const_iterator i = states.begin(); i != states.end(); i++){
                double a = - i->particleCharge() * i->magneticField()->inInverseGeV(i->globalPosition()).z();
                aSum += a;
                
                pxSum += i->kinematicParameters()(3) - a*(point.y() - i->kinematicParameters()(1));
                pySum += i->kinematicParameters()(4) + a*(point.x() - i->kinematicParameters()(0));
                pzSum += i->kinematicParameters()(5);
        }
        double pT = sqrt(pow(pxSum,2) + pow(pySum,2));
        double pSum = sqrt(pow(pxSum,2) + pow(pySum,2) + pow(pzSum,2));

        matrix(1,1) = (-1 + dx/dT)/dy + (2*dx*pT*(1 - (2*pT)/sqrt(-(pow(aSum,2)*pow(dT,2)) + 4*pow(pT,2))))/(aSum*pow(dT,3)) + aSum*(-(1/pT) + pT/pow(pySum,2) - pxSum/pow(pySum,2)) + (2*(-(1/pT) + 2/sqrt(-(pow(aSum,2)*pow(dT,2)) + 4*pow(pT,2)))*pySum)/dT;//dH/dxv
        matrix(1,2) = 1/dT + (-dT + dx)/pow(dy,2) - (dy*(-2*pT + sqrt(-(pow(aSum,2)*pow(dT,2)) + 4*pow(pT,2))))/(aSum*pow(dT,3)) - ((-2 + sqrt(4 - (pow(aSum,2)*pow(dT,2))/pow(pT,2)))*pxSum)/(dT*pT) - (aSum*(dy*pow(pT,2) + aSum*pow(dT,2)*pxSum))/(dT*pow(pT,2)*sqrt(-(pow(aSum,2)*pow(dT,2)) + 4*pow(pT,2))) + (aSum*(-pT + pxSum))/(pT*pySum);//dH/dyv
        //dH/dzv=0
        matrix(2,1) = ((1/ds - 1/dT)*dx)/dz + (aSum*(pSum - pT)*pySum)/(pSum*pT*pzSum);//dH/dxv
        matrix(2,2) = ((1/ds - 1/dT)*dy)/dz - (aSum*(pSum - pT)*pxSum)/(pSum*pT*pzSum);//dH/dyv
        matrix(2,3) = 1/ds + (-ds + dT)/pow(dz,2);//dH/dzv
        
        return matrix;
}
AlgebraicVector MultiTrackVertexLinkKinematicConstraint::value ( const std::vector< KinematicState states,
const GlobalPoint point 
) const [virtual]

Returns a vector of values of constraint equations at the point where the input particles are defined.

Implements MultiTrackKinematicConstraint.

Definition at line 4 of file MultiTrackVertexLinkKinematicConstraint.cc.

References a, i, funct::pow(), refPoint, mathSSE::sqrt(), PV3DBase< T, PVType, FrameType >::x(), PV3DBase< T, PVType, FrameType >::y(), PV3DBase< T, PVType, FrameType >::z(), and z.

                                                                                                                                    {
        int num = states.size();
        if(num<2) throw VertexException("MultiTrackVertexLinkKinematicConstraint::value <2 states passed");

        //2 equations (for all tracks)
        AlgebraicVector  vl(2,0);
        double dx = point.x() - refPoint.x();
        double dy = point.y() - refPoint.y();
        double dz = point.z() - refPoint.z();
        double dT = sqrt(pow(dx,2) + pow(dy,2));
        double ds = sqrt(pow(dx,2) + pow(dy,2) + pow(dz,2));

        double pxSum=0, pySum=0, pzSum=0;
        double aSum = 0;
        for(std::vector<KinematicState>::const_iterator i = states.begin(); i != states.end(); i++)
        {
                double a = - i->particleCharge() * i->magneticField()->inInverseGeV(i->globalPosition()).z();
                aSum += a;

                pxSum += i->kinematicParameters()(3) - a*(point.y() - i->kinematicParameters()(1));
                pySum += i->kinematicParameters()(4) + a*(point.x() - i->kinematicParameters()(0));
                pzSum += i->kinematicParameters()(5);
        }
        
        double pT = sqrt(pow(pxSum,2) + pow(pySum,2));
        double pSum = sqrt(pow(pxSum,2) + pow(pySum,2) + pow(pzSum,2));
        
        vl(1) = (dT - dx)/dy + (-2*pT + sqrt(-(pow(aSum,2)*pow(dT,2)) + 4*pow(pT,2)))/(aSum*dT) + (-pT + pxSum)/pySum;
        vl(2) = (ds - dT)/dz + (pT - pSum)/pzSum;
        
        return vl;
}

Member Data Documentation