Variables | |
tuple | TtSemiLepHypGeom |
00001 cms.EDProducer("TtSemiLepHypGeom", 00002 ## met input 00003 mets = cms.InputTag("patMETs"), 00004 ## jet input 00005 jets = cms.InputTag("selectedPatJets"), 00006 ## lepton input 00007 leps = cms.InputTag("selectedPatMuons"), 00008 ## jet combination 00009 match = cms.InputTag("findTtSemiLepJetCombGeom"), 00010 ## specify jet correction level as, Uncorrected, L1Offset, L2Relative, L3Absolute, L4Emf, 00011 ## L5Hadron, L6UE, L7Parton, a flavor specification will be added automatically, when 00012 ## chosen 00013 jetCorrectionLevel = cms.string("L3Absolute"), 00014 ## different ways to calculate a neutrino pz: 00015 ## -1 : take MET as neutrino directly, i.e. pz = 0 00016 ## or use mW = 80.4 GeV to solve the quadratic equation for the neutrino pz; 00017 ## if two real solutions... 00018 ## 0 : take the one closer to the lepton pz if neutrino pz < 300 GeV, 00019 ## otherwise the more central one 00020 ## 1 : always take the one closer to the lepton pz 00021 ## 2 : always take the more central one, i.e. minimize neutrino pz 00022 ## 3 : maximize the cosine of the angle between lepton and reconstructed W 00023 ## in all these cases (0, 1, 2, 3), only the real part is used if solutions are complex 00024 neutrinoSolutionType = cms.int32(-1) 00025 )
Definition at line 6 of file TtSemiLepHypGeom_cfi.py.