![]() |
![]() |
#include <RecoJets/FFTJetProducers/plugins/FFTJetProducer.h>
Public Types | |
typedef fftjet::RecombinedJet < fftjetcms::VectorLike > | RecoFFTJet |
enum | Resolution { FIXED = 0, MAXIMALLY_STABLE, GLOBALLY_ADAPTIVE, LOCALLY_ADAPTIVE } |
typedef fftjet::SparseClusteringTree < fftjet::Peak, long > | SparseTree |
Public Member Functions | |
FFTJetProducer (const edm::ParameterSet &) | |
virtual | ~FFTJetProducer () |
Static Public Member Functions | |
static Resolution | parse_resolution (const std::string &name) |
Protected Member Functions | |
virtual void | assignMembershipFunctions (std::vector< fftjet::Peak > *preclusters) |
virtual void | beginJob () |
virtual void | endJob () |
virtual std::auto_ptr < fftjetcms::AbsBgFunctor > | parse_bgMembershipFunction (const edm::ParameterSet &) |
virtual std::auto_ptr < fftjet::Functor2< double, RecoFFTJet, RecoFFTJet > > | parse_jetDistanceCalc (const edm::ParameterSet &) |
virtual std::auto_ptr < fftjet::ScaleSpaceKernel > | parse_jetMembershipFunction (const edm::ParameterSet &) |
virtual std::auto_ptr < fftjet::Functor1< double, RecoFFTJet > > | parse_memberFactorCalcJet (const edm::ParameterSet &) |
virtual std::auto_ptr < fftjet::Functor1< double, fftjet::Peak > > | parse_memberFactorCalcPeak (const edm::ParameterSet &) |
virtual std::auto_ptr < fftjet::Functor1< bool, fftjet::Peak > > | parse_peakSelector (const edm::ParameterSet &) |
virtual std::auto_ptr < fftjet::Functor1< double, RecoFFTJet > > | parse_recoScaleCalcJet (const edm::ParameterSet &) |
virtual std::auto_ptr < fftjet::Functor1< double, fftjet::Peak > > | parse_recoScaleCalcPeak (const edm::ParameterSet &) |
virtual std::auto_ptr < fftjet::Functor1< double, RecoFFTJet > > | parse_recoScaleRatioCalcJet (const edm::ParameterSet &) |
virtual std::auto_ptr < fftjet::Functor1< double, fftjet::Peak > > | parse_recoScaleRatioCalcPeak (const edm::ParameterSet &) |
virtual void | produce (edm::Event &, const edm::EventSetup &) |
virtual void | selectPreclusters (const SparseTree &tree, const fftjet::Functor1< bool, fftjet::Peak > &peakSelector, std::vector< fftjet::Peak > *preclusters) |
void | selectTreeNodes (const SparseTree &tree, const fftjet::Functor1< bool, fftjet::Peak > &peakSelect, std::vector< SparseTree::NodeId > *nodes) |
Private Types | |
typedef fftjet::AbsRecombinationAlg < fftjetcms::Real, fftjetcms::VectorLike, fftjetcms::BgData > | GridAlg |
typedef fftjet::AbsVectorRecombinationAlg < fftjetcms::VectorLike, fftjetcms::BgData > | RecoAlg |
Private Member Functions | |
void | buildGridAlg () |
bool | checkConvergence (const std::vector< RecoFFTJet > &previousIterResult, std::vector< RecoFFTJet > &thisIterResult) |
void | determineGriddedConstituents () |
void | determineVectorConstituents () |
FFTJetProducer () | |
FFTJetProducer (const FFTJetProducer &) | |
unsigned | iterateJetReconstruction () |
void | loadEnergyFlow (const edm::Event &iEvent) |
template<class Real > | |
void | loadSparseTreeData (const edm::Event &) |
template<typename Jet > | |
void | makeProduces (const std::string &alias, const std::string &tag) |
FFTJetProducer & | operator= (const FFTJetProducer &) |
void | prepareRecombinationScales () |
void | saveResults (edm::Event &iEvent, const edm::EventSetup &) |
template<typename Jet > | |
void | writeJets (edm::Event &iEvent, const edm::EventSetup &) |
Private Attributes | |
const bool | assignConstituents |
std::auto_ptr < fftjetcms::AbsBgFunctor > | bgMembershipFunction |
std::vector< std::vector < reco::CandidatePtr > > | constituents |
const double | convergenceDistance |
const double | fixedScale |
std::auto_ptr< GridAlg > | gridAlg |
const double | gridScanMaxEta |
std::auto_ptr< std::vector < double > > | iniScales |
const bool | isCrisp |
unsigned | iterationsPerformed |
std::vector< RecoFFTJet > | iterJets |
std::vector< fftjet::Peak > | iterPreclusters |
std::auto_ptr < fftjet::Functor2< double, RecoFFTJet, RecoFFTJet > > | jetDistanceCalc |
std::auto_ptr < fftjet::ScaleSpaceKernel > | jetMembershipFunction |
const unsigned | maxIterations |
unsigned | maxLevel |
const double | maxStableScale |
std::auto_ptr < fftjet::Functor1< double, RecoFFTJet > > | memberFactorCalcJet |
std::auto_ptr < fftjet::Functor1< double, fftjet::Peak > > | memberFactorCalcPeak |
unsigned | minLevel |
const double | minStableScale |
const edm::ParameterSet | myConfiguration |
const unsigned | nClustersRequested |
const unsigned | nJetsRequiredToConverge |
std::vector< SparseTree::NodeId > | nodes |
const double | noiseLevel |
std::vector< unsigned > | occupancy |
std::auto_ptr < fftjet::Functor1< bool, fftjet::Peak > > | peakSelector |
std::vector< fftjet::Peak > | preclusters |
std::auto_ptr< RecoAlg > | recoAlg |
std::vector< RecoFFTJet > | recoJets |
const std::string | recombinationAlgorithm |
const double | recombinationDataCutoff |
std::auto_ptr < fftjet::Functor1< double, RecoFFTJet > > | recoScaleCalcJet |
std::auto_ptr < fftjet::Functor1< double, fftjet::Peak > > | recoScaleCalcPeak |
std::auto_ptr < fftjet::Functor1< double, RecoFFTJet > > | recoScaleRatioCalcJet |
std::auto_ptr < fftjet::Functor1< double, fftjet::Peak > > | recoScaleRatioCalcPeak |
Resolution | resolution |
const bool | resumConstituents |
const bool | reuseExistingGrid |
SparseTree | sparseTree |
const double | stabilityAlpha |
std::vector< double > | thresholds |
const edm::InputTag | treeLabel |
fftjetcms::VectorLike | unclustered |
const double | unlikelyBgWeight |
double | unused |
unsigned | usedLevel |
const bool | useGriddedAlgorithm |
Description: makes jets using FFTJet clustering tree
Implementation: [Notes on implementation]
Description: makes jets using FFTJet clustering tree
Implementation: If you want to change the jet algorithm functionality (for example, by providing your own jet membership function), derive from this class and override the appropriate parser method (for example, parse_jetMembershipFunction). At the end of your own parser, don't forget to call the parser of the base class in order to get the default behavior when your special configuration is not provided (this is known as the "chain-of-responsibility" design pattern). If you also need to override "beginJob" and/or "produce" methods, the first thing to do in your method is to call the corresponding method of this base.
Definition at line 57 of file FFTJetProducer.h.
typedef fftjet::AbsRecombinationAlg< fftjetcms::Real,fftjetcms::VectorLike,fftjetcms::BgData> FFTJetProducer::GridAlg [private] |
Definition at line 150 of file FFTJetProducer.h.
typedef fftjet::AbsVectorRecombinationAlg< fftjetcms::VectorLike,fftjetcms::BgData> FFTJetProducer::RecoAlg [private] |
Definition at line 148 of file FFTJetProducer.h.
typedef fftjet::RecombinedJet<fftjetcms::VectorLike> FFTJetProducer::RecoFFTJet |
Definition at line 61 of file FFTJetProducer.h.
typedef fftjet::SparseClusteringTree<fftjet::Peak,long> FFTJetProducer::SparseTree |
Definition at line 62 of file FFTJetProducer.h.
Definition at line 64 of file FFTJetProducer.h.
{ FIXED = 0, MAXIMALLY_STABLE, GLOBALLY_ADAPTIVE, LOCALLY_ADAPTIVE };
FFTJetProducer::FFTJetProducer | ( | const edm::ParameterSet & | ps | ) | [explicit] |
Definition at line 123 of file FFTJetProducer.cc.
References assignConstituents, fftjetcms::FFTJetInterface::checkConfig(), Exception, fftjetcms::fftjet_ScaleSet_parser(), edm::ParameterSet::getParameter(), edm::ParameterSet::getUntrackedParameter(), iniScales, jet_type_switch, makeProduces(), fftjetcms::FFTJetInterface::outputLabel, resumConstituents, and python::multivaluedict::sort().
: FFTJetInterface(ps), myConfiguration(ps), init_param(edm::InputTag, treeLabel), init_param(bool, useGriddedAlgorithm), init_param(bool, reuseExistingGrid), init_param(unsigned, maxIterations), init_param(unsigned, nJetsRequiredToConverge), init_param(double, convergenceDistance), init_param(bool, assignConstituents), init_param(bool, resumConstituents), init_param(double, fixedScale), init_param(double, minStableScale), init_param(double, maxStableScale), init_param(double, stabilityAlpha), init_param(double, noiseLevel), init_param(unsigned, nClustersRequested), init_param(double, gridScanMaxEta), init_param(std::string, recombinationAlgorithm), init_param(bool, isCrisp), init_param(double, unlikelyBgWeight), init_param(double, recombinationDataCutoff), resolution(parse_resolution(ps.getParameter<std::string>("resolution"))), minLevel(0), maxLevel(0), usedLevel(0), unused(0.0), iterationsPerformed(1U), constituents(200) { // Check that the settings make sense if (resumConstituents && !assignConstituents) throw cms::Exception("FFTJetBadConfig") << "Can't resum constituents if they are not assigned" << std::endl; produces<reco::FFTJetProducerSummary>(outputLabel); const std::string alias(ps.getUntrackedParameter<std::string>( "alias", outputLabel)); jet_type_switch(makeProduces, alias, outputLabel); // Build the set of pattern recognition scales. // This is needed in order to read the clustering tree // from the event record. iniScales = fftjet_ScaleSet_parser( ps.getParameter<edm::ParameterSet>("InitialScales")); checkConfig(iniScales, "invalid set of scales"); std::sort(iniScales->begin(), iniScales->end(), std::greater<double>()); // Most of the configuration has to be performed inside // the "beginJob" method. This is because chaining of the // parsers between this base class and the derived classes // can not work from the constructor of the base class. }
FFTJetProducer::~FFTJetProducer | ( | ) | [virtual] |
Definition at line 180 of file FFTJetProducer.cc.
{ }
FFTJetProducer::FFTJetProducer | ( | ) | [private] |
FFTJetProducer::FFTJetProducer | ( | const FFTJetProducer & | ) | [private] |
void FFTJetProducer::assignMembershipFunctions | ( | std::vector< fftjet::Peak > * | preclusters | ) | [protected, virtual] |
void FFTJetProducer::beginJob | ( | void | ) | [protected, virtual] |
Reimplemented from edm::EDProducer.
Definition at line 810 of file FFTJetProducer.cc.
References assignConstituents, bgMembershipFunction, buildGridAlg(), fftjetcms::FFTJetInterface::checkConfig(), fftjetcms::FFTJetInterface::energyFlow, reco::tau::disc::Eta(), Exception, fftjetcms::fftjet_Grid2d_parser(), edm::ParameterSet::getParameter(), isCrisp, jetDistanceCalc, jetMembershipFunction, maxIterations, memberFactorCalcJet, memberFactorCalcPeak, myConfiguration, NULL, parse_bgMembershipFunction(), parse_jetDistanceCalc(), parse_jetMembershipFunction(), parse_memberFactorCalcJet(), parse_memberFactorCalcPeak(), parse_peakSelector(), parse_recoScaleCalcJet(), parse_recoScaleCalcPeak(), parse_recoScaleRatioCalcJet(), parse_recoScaleRatioCalcPeak(), peakSelector, colinearityKinematic::Phi, recoAlg, recombinationAlgorithm, recoScaleCalcJet, recoScaleCalcPeak, recoScaleRatioCalcJet, recoScaleRatioCalcPeak, reuseExistingGrid, unlikelyBgWeight, and useGriddedAlgorithm.
{ const edm::ParameterSet& ps(myConfiguration); // Parse the peak selector definition peakSelector = parse_peakSelector(ps); checkConfig(peakSelector, "invalid peak selector"); jetMembershipFunction = parse_jetMembershipFunction(ps); checkConfig(jetMembershipFunction, "invalid jet membership function"); bgMembershipFunction = parse_bgMembershipFunction(ps); checkConfig(bgMembershipFunction, "invalid noise membership function"); // Build the energy recombination algorithm if (!useGriddedAlgorithm) { fftjet::DefaultVectorRecombinationAlgFactory< VectorLike,BgData,VBuilder> factory; if (factory[recombinationAlgorithm] == NULL) throw cms::Exception("FFTJetBadConfig") << "Invalid vector recombination algorithm \"" << recombinationAlgorithm << "\"" << std::endl; recoAlg = std::auto_ptr<RecoAlg>( factory[recombinationAlgorithm]->create( jetMembershipFunction.get(), &VectorLike::Et, &VectorLike::Eta, &VectorLike::Phi, bgMembershipFunction.get(), unlikelyBgWeight, isCrisp, false, assignConstituents)); } else if (!reuseExistingGrid) { energyFlow = fftjet_Grid2d_parser( ps.getParameter<edm::ParameterSet>("GridConfiguration")); checkConfig(energyFlow, "invalid discretization grid"); buildGridAlg(); } // Parse the calculator of the recombination scale recoScaleCalcPeak = parse_recoScaleCalcPeak(ps); checkConfig(recoScaleCalcPeak, "invalid spec for the " "reconstruction scale calculator from peaks"); // Parse the calculator of the recombination scale ratio recoScaleRatioCalcPeak = parse_recoScaleRatioCalcPeak(ps); checkConfig(recoScaleRatioCalcPeak, "invalid spec for the " "reconstruction scale ratio calculator from peaks"); // Calculator for the membership function factor memberFactorCalcPeak = parse_memberFactorCalcPeak(ps); checkConfig(memberFactorCalcPeak, "invalid spec for the " "membership function factor calculator from peaks"); if (maxIterations > 1) { // We are going to run iteratively. Make required objects. recoScaleCalcJet = parse_recoScaleCalcJet(ps); checkConfig(recoScaleCalcJet, "invalid spec for the " "reconstruction scale calculator from jets"); recoScaleRatioCalcJet = parse_recoScaleRatioCalcJet(ps); checkConfig(recoScaleRatioCalcJet, "invalid spec for the " "reconstruction scale ratio calculator from jets"); memberFactorCalcJet = parse_memberFactorCalcJet(ps); checkConfig(memberFactorCalcJet, "invalid spec for the " "membership function factor calculator from jets"); jetDistanceCalc = parse_jetDistanceCalc(ps); checkConfig(memberFactorCalcJet, "invalid spec for the " "jet distance calculator"); } }
void FFTJetProducer::buildGridAlg | ( | ) | [private] |
Definition at line 361 of file FFTJetProducer.cc.
References assignConstituents, bgMembershipFunction, fftjetcms::FFTJetInterface::energyFlow, Exception, gridAlg, gridScanMaxEta, isCrisp, jetMembershipFunction, NULL, recombinationAlgorithm, recombinationDataCutoff, and unlikelyBgWeight.
Referenced by beginJob(), and loadEnergyFlow().
{ int minBin = energyFlow->getEtaBin(-gridScanMaxEta); if (minBin < 0) minBin = 0; int maxBin = energyFlow->getEtaBin(gridScanMaxEta) + 1; if (maxBin < 0) maxBin = 0; fftjet::DefaultRecombinationAlgFactory< Real,VectorLike,BgData,VBuilder> factory; if (factory[recombinationAlgorithm] == NULL) throw cms::Exception("FFTJetBadConfig") << "Invalid grid recombination algorithm \"" << recombinationAlgorithm << "\"" << std::endl; gridAlg = std::auto_ptr<GridAlg>( factory[recombinationAlgorithm]->create( jetMembershipFunction.get(), bgMembershipFunction.get(), unlikelyBgWeight, recombinationDataCutoff, isCrisp, false, assignConstituents, minBin, maxBin)); }
bool FFTJetProducer::checkConvergence | ( | const std::vector< RecoFFTJet > & | previousIterResult, |
std::vector< RecoFFTJet > & | thisIterResult | ||
) | [private] |
Definition at line 412 of file FFTJetProducer.cc.
References convergenceDistance, i, and jetDistanceCalc.
Referenced by iterateJetReconstruction().
{ fftjet::Functor2<double,RecoFFTJet,RecoFFTJet>& distanceCalc(*jetDistanceCalc); const unsigned nJets = previous.size(); const RecoFFTJet* prev = &previous[0]; RecoFFTJet* next = &nextSet[0]; // Calculate convergence distances for all jets bool converged = true; for (unsigned i=0; i<nJets; ++i) { const double d = distanceCalc(prev[i], next[i]); next[i].setConvergenceDistance(d); if (i < nJetsRequiredToConverge && d > convergenceDistance) converged = false; } return converged; }
void FFTJetProducer::determineGriddedConstituents | ( | ) | [private] |
Definition at line 504 of file FFTJetProducer.cc.
References fftjetcms::FFTJetInterface::candidateIndex, constituents, fftjetcms::FFTJetInterface::energyFlow, fftjetcms::FFTJetInterface::eventData, g, gridAlg, i, fftjetcms::FFTJetInterface::inputCollection, and recoJets.
Referenced by produce().
{ const unsigned nJets = recoJets.size(); const unsigned* clusterMask = gridAlg->getClusterMask(); const int nEta = gridAlg->getLastNEta(); const int nPhi = gridAlg->getLastNPhi(); const fftjet::Grid2d<Real>& g(*energyFlow); const unsigned nInputs = eventData.size(); const VectorLike* inp = nInputs ? &eventData[0] : 0; const unsigned* candIdx = nInputs ? &candidateIndex[0] : 0; for (unsigned i=0; i<nInputs; ++i) { const VectorLike& item(inp[i]); const int iPhi = g.getPhiBin(item.Phi()); const int iEta = g.getEtaBin(item.Eta()); const unsigned mask = iEta >= 0 && iEta < nEta ? clusterMask[iEta*nPhi + iPhi] : 0; assert(mask <= nJets); constituents[mask].push_back(inputCollection->ptrAt(candIdx[i])); } }
void FFTJetProducer::determineVectorConstituents | ( | ) | [private] |
Definition at line 528 of file FFTJetProducer.cc.
References fftjetcms::FFTJetInterface::candidateIndex, constituents, fftjetcms::FFTJetInterface::eventData, i, fftjetcms::FFTJetInterface::inputCollection, recoAlg, and recoJets.
Referenced by produce().
{ const unsigned nJets = recoJets.size(); const unsigned* clusterMask = recoAlg->getClusterMask(); const unsigned maskLength = recoAlg->getLastNData(); assert(maskLength == eventData.size()); const unsigned* candIdx = maskLength ? &candidateIndex[0] : 0; for (unsigned i=0; i<maskLength; ++i) { // In FFTJet, the mask value of 0 corresponds to unclustered // energy. We will do the same here. Jet numbers are therefore // shifted by 1 wrt constituents vector, and constituents[1] // corresponds to jet number 0. const unsigned mask = clusterMask[i]; assert(mask <= nJets); constituents[mask].push_back(inputCollection->ptrAt(candIdx[i])); } }
void FFTJetProducer::endJob | ( | void | ) | [protected, virtual] |
unsigned FFTJetProducer::iterateJetReconstruction | ( | ) | [private] |
Definition at line 436 of file FFTJetProducer.cc.
References checkConvergence(), fftjetcms::FFTJetInterface::energyFlow, fftjetcms::FFTJetInterface::eventData, Exception, gridAlg, i, iterJets, iterPreclusters, metsig::jet, analyzePatCleaning_cfg::jets, maxIterations, memberFactorCalcJet, noiseLevel, L1TEmulatorMonitor_cff::p, preclusters, recoAlg, recoJets, recoScaleCalcJet, recoScaleRatioCalcJet, ntuplemaker::status, unclustered, unused, and useGriddedAlgorithm.
Referenced by produce().
{ fftjet::Functor1<double,RecoFFTJet>& scaleCalc(*recoScaleCalcJet); fftjet::Functor1<double,RecoFFTJet>& ratioCalc(*recoScaleRatioCalcJet); fftjet::Functor1<double,RecoFFTJet>& factorCalc(*memberFactorCalcJet); const unsigned nJets = recoJets.size(); unsigned iterNum = 1U; bool converged = false; for (; iterNum<maxIterations && !converged; ++iterNum) { // Recreate the vector of preclusters using the jets const RecoFFTJet* jets = &recoJets[0]; iterPreclusters.clear(); iterPreclusters.reserve(nJets); for (unsigned i=0; i<nJets; ++i) { const RecoFFTJet& jet(jets[i]); fftjet::Peak p(jet.precluster()); p.setEtaPhi(jet.vec().Eta(), jet.vec().Phi()); p.setRecoScale(scaleCalc(jet)); p.setRecoScaleRatio(ratioCalc(jet)); p.setMembershipFactor(factorCalc(jet)); iterPreclusters.push_back(p); } // Run the algorithm int status = 0; if (useGriddedAlgorithm) status = gridAlg->run(iterPreclusters, *energyFlow, &noiseLevel, 1U, 1U, &iterJets, &unclustered, &unused); else status = recoAlg->run(iterPreclusters, eventData, &noiseLevel, 1U, &iterJets, &unclustered, &unused); if (status) throw cms::Exception("FFTJetInterface") << "FFTJet algorithm failed" << std::endl; assert(iterJets.size() == nJets); // Figure out if the iterations have converged converged = checkConvergence(recoJets, iterJets); // Prepare for the next cycle iterJets.swap(recoJets); } // Plug in the original precluster coordinates into the result assert(preclusters.size() == nJets); RecoFFTJet* jets = &recoJets[0]; for (unsigned i=0; i<nJets; ++i) { const fftjet::Peak& oldp(preclusters[i]); jets[i].setPeakEtaPhi(oldp.eta(), oldp.phi()); } // If we have converged on the last cycle, the result // would be indistinguishable from no convergence. // Because of this, raise the counter by one to indicate // the case when the convergence is not achieved. if (!converged) ++iterNum; return iterNum; }
void FFTJetProducer::loadEnergyFlow | ( | const edm::Event & | iEvent | ) | [private] |
Definition at line 385 of file FFTJetProducer.cc.
References buildGridAlg(), fftjetcms::FFTJetInterface::energyFlow, edm::Event::getByLabel(), collect_tpl::input, NULL, and treeLabel.
Referenced by produce().
{ edm::Handle<DiscretizedEnergyFlow> input; iEvent.getByLabel(treeLabel, input); // Make sure that the grid is compatible with the stored one bool rebuildGrid = energyFlow.get() == NULL; if (!rebuildGrid) rebuildGrid = !(energyFlow->nEta() == input->nEtaBins() && energyFlow->nPhi() == input->nPhiBins() && energyFlow->etaMin() == input->etaMin() && energyFlow->etaMax() == input->etaMax() && energyFlow->phiBin0Edge() == input->phiBin0Edge()); if (rebuildGrid) { // We should not get here very often... energyFlow = std::auto_ptr<fftjet::Grid2d<Real> >( new fftjet::Grid2d<Real>( input->nEtaBins(), input->etaMin(), input->etaMax(), input->nPhiBins(), input->phiBin0Edge(), input->title())); buildGridAlg(); } energyFlow->blockSet(input->data(), input->nEtaBins(), input->nPhiBins()); }
void FFTJetProducer::loadSparseTreeData | ( | const edm::Event & | iEvent | ) | [private] |
Definition at line 188 of file FFTJetProducer.cc.
References edm::Event::getByLabel(), fftjetcms::FFTJetInterface::getEventScale(), iniScales, collect_tpl::input, fftjetcms::sparsePeakTreeFromStorable(), sparseTree, and treeLabel.
{ typedef reco::PattRecoTree<Real,reco::PattRecoPeak<Real> > StoredTree; // Get the input edm::Handle<StoredTree> input; iEvent.getByLabel(treeLabel, input); if (!input->isSparse()) throw cms::Exception("FFTJetBadConfig") << "The stored clustering tree is not sparse" << std::endl; sparsePeakTreeFromStorable(*input, iniScales.get(), getEventScale(), &sparseTree); sparseTree.sortNodes(); }
void FFTJetProducer::makeProduces | ( | const std::string & | alias, |
const std::string & | tag | ||
) | [private] |
Definition at line 114 of file FFTJetProducer.cc.
References GlobalPosition_Frontier_DevDB_cff::tag.
Referenced by FFTJetProducer().
{ produces<std::vector<reco::FFTAnyJet<T> > >(tag).setBranchAlias(alias); }
FFTJetProducer& FFTJetProducer::operator= | ( | const FFTJetProducer & | ) | [private] |
std::auto_ptr< AbsBgFunctor > FFTJetProducer::parse_bgMembershipFunction | ( | const edm::ParameterSet & | ps | ) | [protected, virtual] |
Definition at line 737 of file FFTJetProducer.cc.
References fftjetcms::fftjet_BgFunctor_parser(), and edm::ParameterSet::getParameter().
Referenced by beginJob().
{ return fftjet_BgFunctor_parser( ps.getParameter<edm::ParameterSet>("bgMembershipFunction")); }
std::auto_ptr< fftjet::Functor2< double, FFTJetProducer::RecoFFTJet, FFTJetProducer::RecoFFTJet > > FFTJetProducer::parse_jetDistanceCalc | ( | const edm::ParameterSet & | ps | ) | [protected, virtual] |
Definition at line 797 of file FFTJetProducer.cc.
References fftjetcms::fftjet_JetDistance_parser(), and edm::ParameterSet::getParameter().
Referenced by beginJob().
{ return fftjet_JetDistance_parser( ps.getParameter<edm::ParameterSet>("jetDistanceCalc")); }
std::auto_ptr< fftjet::ScaleSpaceKernel > FFTJetProducer::parse_jetMembershipFunction | ( | const edm::ParameterSet & | ps | ) | [protected, virtual] |
Definition at line 728 of file FFTJetProducer.cc.
References fftjetcms::fftjet_MembershipFunction_parser(), and edm::ParameterSet::getParameter().
Referenced by beginJob().
{ return fftjet_MembershipFunction_parser( ps.getParameter<edm::ParameterSet>("jetMembershipFunction")); }
std::auto_ptr< fftjet::Functor1< double, FFTJetProducer::RecoFFTJet > > FFTJetProducer::parse_memberFactorCalcJet | ( | const edm::ParameterSet & | ps | ) | [protected, virtual] |
Definition at line 788 of file FFTJetProducer.cc.
References fftjetcms::fftjet_JetFunctor_parser(), and edm::ParameterSet::getParameter().
Referenced by beginJob().
{ return fftjet_JetFunctor_parser( ps.getParameter<edm::ParameterSet>("memberFactorCalcJet")); }
std::auto_ptr< fftjet::Functor1< double, fftjet::Peak > > FFTJetProducer::parse_memberFactorCalcPeak | ( | const edm::ParameterSet & | ps | ) | [protected, virtual] |
Definition at line 764 of file FFTJetProducer.cc.
References fftjetcms::fftjet_PeakFunctor_parser(), and edm::ParameterSet::getParameter().
Referenced by beginJob().
{ return fftjet_PeakFunctor_parser( ps.getParameter<edm::ParameterSet>("memberFactorCalcPeak")); }
std::auto_ptr< fftjet::Functor1< bool, fftjet::Peak > > FFTJetProducer::parse_peakSelector | ( | const edm::ParameterSet & | ps | ) | [protected, virtual] |
Definition at line 719 of file FFTJetProducer.cc.
References fftjetcms::fftjet_PeakSelector_parser(), and edm::ParameterSet::getParameter().
Referenced by beginJob().
{ return fftjet_PeakSelector_parser( ps.getParameter<edm::ParameterSet>("PeakSelectorConfiguration")); }
std::auto_ptr< fftjet::Functor1< double, FFTJetProducer::RecoFFTJet > > FFTJetProducer::parse_recoScaleCalcJet | ( | const edm::ParameterSet & | ps | ) | [protected, virtual] |
Definition at line 772 of file FFTJetProducer.cc.
References fftjetcms::fftjet_JetFunctor_parser(), and edm::ParameterSet::getParameter().
Referenced by beginJob().
{ return fftjet_JetFunctor_parser( ps.getParameter<edm::ParameterSet>("recoScaleCalcJet")); }
std::auto_ptr< fftjet::Functor1< double, fftjet::Peak > > FFTJetProducer::parse_recoScaleCalcPeak | ( | const edm::ParameterSet & | ps | ) | [protected, virtual] |
Definition at line 746 of file FFTJetProducer.cc.
References fftjetcms::fftjet_PeakFunctor_parser(), and edm::ParameterSet::getParameter().
Referenced by beginJob().
{ return fftjet_PeakFunctor_parser( ps.getParameter<edm::ParameterSet>("recoScaleCalcPeak")); }
std::auto_ptr< fftjet::Functor1< double, FFTJetProducer::RecoFFTJet > > FFTJetProducer::parse_recoScaleRatioCalcJet | ( | const edm::ParameterSet & | ps | ) | [protected, virtual] |
Definition at line 780 of file FFTJetProducer.cc.
References fftjetcms::fftjet_JetFunctor_parser(), and edm::ParameterSet::getParameter().
Referenced by beginJob().
{ return fftjet_JetFunctor_parser( ps.getParameter<edm::ParameterSet>("recoScaleRatioCalcJet")); }
std::auto_ptr< fftjet::Functor1< double, fftjet::Peak > > FFTJetProducer::parse_recoScaleRatioCalcPeak | ( | const edm::ParameterSet & | ps | ) | [protected, virtual] |
Definition at line 755 of file FFTJetProducer.cc.
References fftjetcms::fftjet_PeakFunctor_parser(), and edm::ParameterSet::getParameter().
Referenced by beginJob().
{ return fftjet_PeakFunctor_parser( ps.getParameter<edm::ParameterSet>("recoScaleRatioCalcPeak")); }
FFTJetProducer::Resolution FFTJetProducer::parse_resolution | ( | const std::string & | name | ) | [static] |
Definition at line 95 of file FFTJetProducer.cc.
References Exception.
{ if (!name.compare("fixed")) return FIXED; else if (!name.compare("maximallyStable")) return MAXIMALLY_STABLE; else if (!name.compare("globallyAdaptive")) return GLOBALLY_ADAPTIVE; else if (!name.compare("locallyAdaptive")) return LOCALLY_ADAPTIVE; else throw cms::Exception("FFTJetBadConfig") << "Invalid resolution specification \"" << name << "\"" << std::endl; }
void FFTJetProducer::prepareRecombinationScales | ( | ) | [private] |
Definition at line 338 of file FFTJetProducer.cc.
References i, memberFactorCalcPeak, preclusters, recoScaleCalcPeak, and recoScaleRatioCalcPeak.
Referenced by produce().
{ const unsigned nClus = preclusters.size(); if (nClus) { fftjet::Peak* clus = &preclusters[0]; fftjet::Functor1<double,fftjet::Peak>& scaleCalc(*recoScaleCalcPeak); fftjet::Functor1<double,fftjet::Peak>& ratioCalc(*recoScaleRatioCalcPeak); fftjet::Functor1<double,fftjet::Peak>& factorCalc(*memberFactorCalcPeak); for (unsigned i=0; i<nClus; ++i) { clus[i].setRecoScale(scaleCalc(clus[i])); clus[i].setRecoScaleRatio(ratioCalc(clus[i])); clus[i].setMembershipFactor(factorCalc(clus[i])); } } }
void FFTJetProducer::produce | ( | edm::Event & | iEvent, |
const edm::EventSetup & | iSetup | ||
) | [protected, virtual] |
Implements edm::EDProducer.
Definition at line 642 of file FFTJetProducer.cc.
References assignConstituents, assignMembershipFunctions(), constituents, determineGriddedConstituents(), determineVectorConstituents(), fftjetcms::FFTJetInterface::discretizeEnergyFlow(), fftjetcms::FFTJetInterface::energyFlow, fftjetcms::FFTJetInterface::eventData, Exception, gridAlg, i, iEvent, iterateJetReconstruction(), iterationsPerformed, loadEnergyFlow(), fftjetcms::FFTJetInterface::loadInputCollection(), maxIterations, noiseLevel, occupancy, peakSelector, preclusters, prepareRecombinationScales(), recoAlg, recoJets, reuseExistingGrid, saveResults(), selectPreclusters(), sparseTree, ntuplemaker::status, fftjetcms::FFTJetInterface::storeInSinglePrecision(), unclustered, unused, and useGriddedAlgorithm.
{ // Load the clustering tree made by FFTJetPatRecoProducer if (storeInSinglePrecision()) loadSparseTreeData<float>(iEvent); else loadSparseTreeData<double>(iEvent); // Do we need to load the candidate collection? if (assignConstituents || !(useGriddedAlgorithm && reuseExistingGrid)) loadInputCollection(iEvent); // Do we need to have discretized energy flow? if (useGriddedAlgorithm) { if (reuseExistingGrid) loadEnergyFlow(iEvent); else discretizeEnergyFlow(); } // Calculate cluster occupancy as a function of level number sparseTree.occupancyInScaleSpace(*peakSelector, &occupancy); // Select the preclusters using the requested resolution scheme preclusters.clear(); selectPreclusters(sparseTree, *peakSelector, &preclusters); // Prepare to run the jet recombination procedure prepareRecombinationScales(); // Assign membership functions to preclusters. If this function // is not overriden in a derived class, default algorithm membership // function will be used for every cluster. assignMembershipFunctions(&preclusters); // Run the recombination algorithm once int status = 0; if (useGriddedAlgorithm) status = gridAlg->run(preclusters, *energyFlow, &noiseLevel, 1U, 1U, &recoJets, &unclustered, &unused); else status = recoAlg->run(preclusters, eventData, &noiseLevel, 1U, &recoJets, &unclustered, &unused); if (status) throw cms::Exception("FFTJetInterface") << "FFTJet algorithm failed (first iteration)" << std::endl; // If requested, iterate the jet recombination procedure if (maxIterations > 1U && !recoJets.empty()) iterationsPerformed = iterateJetReconstruction(); else iterationsPerformed = 1U; // Determine jet constituents. FFTJet returns a map // of constituents which is inverse to what we need here. const unsigned nJets = recoJets.size(); if (constituents.size() <= nJets) constituents.resize(nJets + 1U); if (assignConstituents) { for (unsigned i=0; i<=nJets; ++i) constituents[i].clear(); if (useGriddedAlgorithm) determineGriddedConstituents(); else determineVectorConstituents(); } // Write out the results saveResults(iEvent, iSetup); }
void FFTJetProducer::saveResults | ( | edm::Event & | iEvent, |
const edm::EventSetup & | iSetup | ||
) | [private] |
Definition at line 212 of file SideBandSubtraction.cc.
References benchmark_cfg::cerr, i, combine::key, NULL, VarParsing::obj, convertSQLitetoXML_cfg::output, and stringify().
Referenced by produce().
{ //saves the ephemeral stuff to a root file for future //use/modification (ie everything printed by printResults()) TFile output(outname.c_str(),"UPDATE"); //open the output file, //create it if it doesn't //exist //Since keys are only available from files on disk, we need to write //out a new file. If the file already existed, then we opened to //update, and are writing nothing new. output.Write(); TString dirname; TIter nextkey(output.GetListOfKeys()); TKey *key; TDirectory* curDir=NULL; while((key=(TKey*)nextkey.Next())) { if(key==NULL) break; TObject *obj = key->ReadObj(); if(obj->IsA()->InheritsFrom("TDirectory")) dirname=obj->GetName(); } if(dirname=="") { //we didn't find any directories so, we'll make a new one curDir = output.mkdir("run0","Run 0"); output.cd("run0"); } else { //manipulate last dir string, make a new one, and get ready to fill dirname.Remove(0,3); Int_t run_num = dirname.Atoi(); run_num++; dirname = "run" + stringify(run_num); curDir = output.mkdir(dirname.Data(),("Run "+stringify(run_num)).c_str()); output.cd(dirname.Data()); } if(curDir==NULL) curDir = output.GetDirectory("",kTRUE,""); //these should all be the same size, but to be pedantic we'll loop //over each one individually, also, we need to associate them with //the directory because by default they "float" in memory to avoid //conflicts with other root files the user has open. If they want to //write to those files, they need to close their file, pass the name //here, and then let us work. for(unsigned int i=0; i < SideBandHistos.size(); ++i) { SideBandHistos[i].SetDirectory(curDir); SideBandHistos[i].Write(); } for(unsigned int i=0; i < RawHistos.size(); ++i) { RawHistos[i].SetDirectory(curDir); RawHistos[i].Write(); } for(unsigned int i=0; i < SBSHistos.size(); ++i) { SBSHistos[i].SetDirectory(curDir); SBSHistos[i].Write(); } if(Data!=NULL && ModelPDF!=NULL && BackgroundPDF!=NULL && SeparationVariable!=NULL) { RooPlot *sep_varFrame = SeparationVariable->frame(); Data->plotOn(sep_varFrame); ModelPDF->plotOn(sep_varFrame); BackgroundPDF->plotOn(sep_varFrame); sep_varFrame->Write(); } else cerr <<"ERROR: saveResults, did not save RooPlot of data and fit\n"; output.Write(); }
void FFTJetProducer::selectPreclusters | ( | const SparseTree & | tree, |
const fftjet::Functor1< bool, fftjet::Peak > & | peakSelector, | ||
std::vector< fftjet::Peak > * | preclusters | ||
) | [protected, virtual] |
Definition at line 205 of file FFTJetProducer.cc.
References i, nodes, resolution, selectTreeNodes(), and sparseTree.
Referenced by produce().
{ nodes.clear(); selectTreeNodes(tree, peakSelector, &nodes); // Fill out the vector of preclusters using the tree node ids const unsigned nNodes = nodes.size(); const SparseTree::NodeId* pnodes = nNodes ? &nodes[0] : 0; preclusters->reserve(nNodes); for (unsigned i=0; i<nNodes; ++i) preclusters->push_back( sparseTree.uncheckedNode(pnodes[i]).getCluster()); // Set the status word to indicate the resolution scheme used fftjet::Peak* clusters = nNodes ? &(*preclusters)[0] : 0; for (unsigned i=0; i<nNodes; ++i) clusters[i].setStatus(resolution); }
void FFTJetProducer::selectTreeNodes | ( | const SparseTree & | tree, |
const fftjet::Functor1< bool, fftjet::Peak > & | peakSelect, | ||
std::vector< SparseTree::NodeId > * | nodes | ||
) | [protected] |
Definition at line 228 of file FFTJetProducer.cc.
References delta, FIXED, fixedScale, GLOBALLY_ADAPTIVE, testEve_cfg::level, LOCALLY_ADAPTIVE, MAXIMALLY_STABLE, maxLevel, maxStableScale, minLevel, minStableScale, n, nClustersRequested, occupancy, resolution, stabilityAlpha, TopDecayID::stable, thresholds, and usedLevel.
Referenced by selectPreclusters().
{ minLevel = maxLevel = usedLevel = 0; // Get the tree nodes which pass the cuts // (according to the selected resolution strategy) switch (resolution) { case FIXED: { usedLevel = tree.getLevel(fixedScale); tree.getPassingNodes(usedLevel, peakSelect, mynodes); } break; case MAXIMALLY_STABLE: { const unsigned minStartingLevel = maxStableScale > 0.0 ? tree.getLevel(maxStableScale) : 0; const unsigned maxStartingLevel = minStableScale > 0.0 ? tree.getLevel(minStableScale) : UINT_MAX; if (tree.stableClusterCount( peakSelect, &minLevel, &maxLevel, stabilityAlpha, minStartingLevel, maxStartingLevel)) { usedLevel = (minLevel + maxLevel)/2; tree.getPassingNodes(usedLevel, peakSelect, mynodes); } } break; case GLOBALLY_ADAPTIVE: { const bool stable = tree.clusterCountLevels( nClustersRequested, peakSelect, &minLevel, &maxLevel); if (minLevel || maxLevel) { usedLevel = (minLevel + maxLevel)/2; if (!stable) { const int maxlev = tree.maxStoredLevel(); bool levelFound = false; for (int delta=0; delta<=maxlev && !levelFound; ++delta) for (int ifac=1; ifac>-2 && !levelFound; ifac-=2) { const int level = usedLevel + ifac*delta; if (level > 0 && level <= maxlev) if (occupancy[level] == nClustersRequested) { usedLevel = level; levelFound = true; } } assert(levelFound); } } else { // Can't find that exact number of preclusters. // Try to get the next best thing. usedLevel = 1; const unsigned occ1 = occupancy[1]; if (nClustersRequested >= occ1) { const unsigned maxlev = tree.maxStoredLevel(); if (nClustersRequested > occupancy[maxlev]) usedLevel = maxlev; else { // It would be nice to use "lower_bound" here, // but the occupancy is not necessarily monotonous. unsigned bestDelta = nClustersRequested > occ1 ? nClustersRequested - occ1 : occ1 - nClustersRequested; for (unsigned level=2; level<=maxlev; ++level) { const unsigned n = occupancy[level]; const unsigned d = nClustersRequested > n ? nClustersRequested - n : n - nClustersRequested; if (d < bestDelta) { bestDelta = d; usedLevel = level; } } } } } tree.getPassingNodes(usedLevel, peakSelect, mynodes); } break; case LOCALLY_ADAPTIVE: { usedLevel = tree.getLevel(fixedScale); tree.getMagS2OptimalNodes(peakSelect, nClustersRequested, usedLevel, mynodes, &thresholds); } break; default: assert(!"ERROR in FFTJetProducer::selectTreeNodes : " "should never get here! This is a bug. Please report."); } }
void FFTJetProducer::writeJets | ( | edm::Event & | iEvent, |
const edm::EventSetup & | iSetup | ||
) | [private] |
Definition at line 552 of file FFTJetProducer.cc.
References constituents, fftjetcms::FFTJetInterface::energyFlow, i, metsig::jet, analyzePatCleaning_cfg::jets, fftjetcms::FFTJetInterface::outputLabel, p4, edm::Event::put(), dt_dqm_sourceclient_common_cff::reco, recoJets, recombinationDataCutoff, resumConstituents, useGriddedAlgorithm, fftjetcms::FFTJetInterface::vertexUsed(), and reco::writeSpecific().
{ using namespace reco; typedef FFTAnyJet<T> OutputJet; typedef std::vector<OutputJet> OutputCollection; // Area of a single eta-phi cell for jet area calculations. // Set it to 0 in case the module configuration does not allow // us to calculate jet areas reliably. const double cellArea = useGriddedAlgorithm && recombinationDataCutoff < 0.0 ? energyFlow->etaBinWidth() * energyFlow->phiBinWidth() : 0.0; // allocate output jet collection std::auto_ptr<OutputCollection> jets(new OutputCollection()); const unsigned nJets = recoJets.size(); jets->reserve(nJets); for (unsigned ijet=0; ijet<nJets; ++ijet) { const RecoFFTJet& myjet(recoJets[ijet]); // Check if we should resum jet constituents VectorLike jet4vec(myjet.vec()); if (resumConstituents) { VectorLike sum(0.0, 0.0, 0.0, 0.0); const unsigned nCon = constituents[ijet+1].size(); const reco::CandidatePtr* cn = nCon ? &constituents[ijet+1][0] : 0; for (unsigned i=0; i<nCon; ++i) sum += cn[i]->p4(); jet4vec = sum; } // Write the specifics to the jet (simultaneously sets 4-vector, // vertex, constituents). These are overridden functions that will // call the appropriate specific code. T jet; writeSpecific(jet, jet4vec, vertexUsed(), constituents[ijet+1], iSetup); // calcuate the jet area jet.setJetArea(cellArea*myjet.ncells()); // add jet to the list jets->push_back(OutputJet(jet, jetToStorable<float>(myjet))); } // put the collection into the event iEvent.put(jets, outputLabel); }
const bool FFTJetProducer::assignConstituents [private] |
Definition at line 211 of file FFTJetProducer.h.
Referenced by beginJob(), buildGridAlg(), FFTJetProducer(), and produce().
std::auto_ptr<fftjetcms::AbsBgFunctor> FFTJetProducer::bgMembershipFunction [private] |
Definition at line 262 of file FFTJetProducer.h.
Referenced by beginJob(), and buildGridAlg().
std::vector<std::vector<reco::CandidatePtr> > FFTJetProducer::constituents [private] |
Definition at line 312 of file FFTJetProducer.h.
Referenced by determineGriddedConstituents(), determineVectorConstituents(), produce(), and writeJets().
const double FFTJetProducer::convergenceDistance [private] |
Definition at line 208 of file FFTJetProducer.h.
Referenced by checkConvergence().
const double FFTJetProducer::fixedScale [private] |
Definition at line 219 of file FFTJetProducer.h.
Referenced by selectTreeNodes().
std::auto_ptr<GridAlg> FFTJetProducer::gridAlg [private] |
Definition at line 260 of file FFTJetProducer.h.
Referenced by buildGridAlg(), determineGriddedConstituents(), iterateJetReconstruction(), and produce().
const double FFTJetProducer::gridScanMaxEta [private] |
Definition at line 236 of file FFTJetProducer.h.
Referenced by buildGridAlg().
std::auto_ptr<std::vector<double> > FFTJetProducer::iniScales [private] |
Definition at line 250 of file FFTJetProducer.h.
Referenced by FFTJetProducer(), and loadSparseTreeData().
const bool FFTJetProducer::isCrisp [private] |
Definition at line 240 of file FFTJetProducer.h.
Referenced by beginJob(), and buildGridAlg().
unsigned FFTJetProducer::iterationsPerformed [private] |
Definition at line 309 of file FFTJetProducer.h.
Referenced by produce().
std::vector<RecoFFTJet> FFTJetProducer::iterJets [private] |
Definition at line 308 of file FFTJetProducer.h.
Referenced by iterateJetReconstruction().
std::vector<fftjet::Peak> FFTJetProducer::iterPreclusters [private] |
Definition at line 307 of file FFTJetProducer.h.
Referenced by iterateJetReconstruction().
std::auto_ptr<fftjet::Functor2<double,RecoFFTJet,RecoFFTJet> > FFTJetProducer::jetDistanceCalc [private] |
Definition at line 282 of file FFTJetProducer.h.
Referenced by beginJob(), and checkConvergence().
std::auto_ptr<fftjet::ScaleSpaceKernel> FFTJetProducer::jetMembershipFunction [private] |
Definition at line 261 of file FFTJetProducer.h.
Referenced by beginJob(), and buildGridAlg().
const unsigned FFTJetProducer::maxIterations [private] |
Definition at line 204 of file FFTJetProducer.h.
Referenced by beginJob(), iterateJetReconstruction(), and produce().
unsigned FFTJetProducer::maxLevel [private] |
Definition at line 300 of file FFTJetProducer.h.
Referenced by selectTreeNodes().
const double FFTJetProducer::maxStableScale [private] |
Definition at line 223 of file FFTJetProducer.h.
Referenced by selectTreeNodes().
std::auto_ptr<fftjet::Functor1<double,RecoFFTJet> > FFTJetProducer::memberFactorCalcJet [private] |
Definition at line 277 of file FFTJetProducer.h.
Referenced by beginJob(), and iterateJetReconstruction().
std::auto_ptr<fftjet::Functor1<double,fftjet::Peak> > FFTJetProducer::memberFactorCalcPeak [private] |
Definition at line 272 of file FFTJetProducer.h.
Referenced by beginJob(), and prepareRecombinationScales().
unsigned FFTJetProducer::minLevel [private] |
Definition at line 300 of file FFTJetProducer.h.
Referenced by selectTreeNodes().
const double FFTJetProducer::minStableScale [private] |
Definition at line 222 of file FFTJetProducer.h.
Referenced by selectTreeNodes().
const edm::ParameterSet FFTJetProducer::myConfiguration [private] |
Definition at line 190 of file FFTJetProducer.h.
Referenced by beginJob().
const unsigned FFTJetProducer::nClustersRequested [private] |
Definition at line 233 of file FFTJetProducer.h.
Referenced by selectTreeNodes().
const unsigned FFTJetProducer::nJetsRequiredToConverge [private] |
Definition at line 207 of file FFTJetProducer.h.
std::vector<SparseTree::NodeId> FFTJetProducer::nodes [private] |
Definition at line 285 of file FFTJetProducer.h.
Referenced by selectPreclusters().
const double FFTJetProducer::noiseLevel [private] |
Definition at line 230 of file FFTJetProducer.h.
Referenced by iterateJetReconstruction(), and produce().
std::vector<unsigned> FFTJetProducer::occupancy [private] |
Definition at line 294 of file FFTJetProducer.h.
Referenced by produce(), and selectTreeNodes().
std::auto_ptr<fftjet::Functor1<bool,fftjet::Peak> > FFTJetProducer::peakSelector [private] |
Definition at line 256 of file FFTJetProducer.h.
Referenced by beginJob(), and produce().
std::vector<fftjet::Peak> FFTJetProducer::preclusters [private] |
Definition at line 288 of file FFTJetProducer.h.
Referenced by iterateJetReconstruction(), prepareRecombinationScales(), and produce().
std::auto_ptr<RecoAlg> FFTJetProducer::recoAlg [private] |
Definition at line 259 of file FFTJetProducer.h.
Referenced by beginJob(), determineVectorConstituents(), iterateJetReconstruction(), and produce().
std::vector<RecoFFTJet> FFTJetProducer::recoJets [private] |
Definition at line 291 of file FFTJetProducer.h.
Referenced by determineGriddedConstituents(), determineVectorConstituents(), iterateJetReconstruction(), produce(), and writeJets().
const std::string FFTJetProducer::recombinationAlgorithm [private] |
Definition at line 239 of file FFTJetProducer.h.
Referenced by beginJob(), and buildGridAlg().
const double FFTJetProducer::recombinationDataCutoff [private] |
Definition at line 242 of file FFTJetProducer.h.
Referenced by buildGridAlg(), and writeJets().
std::auto_ptr<fftjet::Functor1<double,RecoFFTJet> > FFTJetProducer::recoScaleCalcJet [private] |
Definition at line 275 of file FFTJetProducer.h.
Referenced by beginJob(), and iterateJetReconstruction().
std::auto_ptr<fftjet::Functor1<double,fftjet::Peak> > FFTJetProducer::recoScaleCalcPeak [private] |
Definition at line 265 of file FFTJetProducer.h.
Referenced by beginJob(), and prepareRecombinationScales().
std::auto_ptr<fftjet::Functor1<double,RecoFFTJet> > FFTJetProducer::recoScaleRatioCalcJet [private] |
Definition at line 276 of file FFTJetProducer.h.
Referenced by beginJob(), and iterateJetReconstruction().
std::auto_ptr<fftjet::Functor1<double,fftjet::Peak> > FFTJetProducer::recoScaleRatioCalcPeak [private] |
Definition at line 269 of file FFTJetProducer.h.
Referenced by beginJob(), and prepareRecombinationScales().
Resolution FFTJetProducer::resolution [private] |
Definition at line 247 of file FFTJetProducer.h.
Referenced by selectPreclusters(), and selectTreeNodes().
const bool FFTJetProducer::resumConstituents [private] |
Definition at line 216 of file FFTJetProducer.h.
Referenced by FFTJetProducer(), and writeJets().
const bool FFTJetProducer::reuseExistingGrid [private] |
Definition at line 201 of file FFTJetProducer.h.
Referenced by beginJob(), and produce().
SparseTree FFTJetProducer::sparseTree [private] |
Definition at line 253 of file FFTJetProducer.h.
Referenced by loadSparseTreeData(), produce(), and selectPreclusters().
const double FFTJetProducer::stabilityAlpha [private] |
Definition at line 226 of file FFTJetProducer.h.
Referenced by selectTreeNodes().
std::vector<double> FFTJetProducer::thresholds [private] |
Definition at line 297 of file FFTJetProducer.h.
Referenced by selectTreeNodes().
const edm::InputTag FFTJetProducer::treeLabel [private] |
Definition at line 193 of file FFTJetProducer.h.
Referenced by loadEnergyFlow(), and loadSparseTreeData().
Definition at line 303 of file FFTJetProducer.h.
Referenced by iterateJetReconstruction(), and produce().
const double FFTJetProducer::unlikelyBgWeight [private] |
Definition at line 241 of file FFTJetProducer.h.
Referenced by beginJob(), and buildGridAlg().
double FFTJetProducer::unused [private] |
Definition at line 304 of file FFTJetProducer.h.
Referenced by iterateJetReconstruction(), and produce().
unsigned FFTJetProducer::usedLevel [private] |
Definition at line 300 of file FFTJetProducer.h.
Referenced by selectTreeNodes().
const bool FFTJetProducer::useGriddedAlgorithm [private] |
Definition at line 197 of file FFTJetProducer.h.
Referenced by beginJob(), iterateJetReconstruction(), produce(), and writeJets().