![]() |
![]() |
#include <myJetAna.h>
Definition at line 46 of file myJetAna.h.
myJetAna::myJetAna | ( | const edm::ParameterSet & | cfg | ) |
Definition at line 115 of file myJetAna.cc.
References edm::ParameterSet::getParameter(), and theTriggerResultsLabel.
: CaloJetAlgorithm( cfg.getParameter<string>( "CaloJetAlgorithm" ) ), GenJetAlgorithm( cfg.getParameter<string>( "GenJetAlgorithm" ) ) { theTriggerResultsLabel = cfg.getParameter<edm::InputTag>("TriggerResultsLabel"); }
void myJetAna::analyze | ( | const edm::Event & | evt, |
const edm::EventSetup & | es | ||
) | [private, virtual] |
Implements edm::EDAnalyzer.
Definition at line 395 of file myJetAna.cc.
References abs, edm::EventBase::bunchCrossing(), caloEta, caloEtaEt, CaloJetAlgorithm, caloPhi, HiRecoJets_cff::caloTowers, funct::cos(), gather_cfg::cout, DEBUG, Geom::deltaPhi(), dijetMass, EBEne, EBEneTh, EBEneX, EBEneY, EBTime, EBTimeTh, EBTimeX, EBTimeY, EBvHB, EcalBarrel, EcalEndcap, RBX_struct::ecalTime, HPD_struct::ecalTime, ECALvHCAL, ECALvHCALEta1, ECALvHCALEta2, ECALvHCALEta3, EEEne, EEEneTh, EEEneX, EEEneY, EETime, EETimeTh, EETimeX, EETimeY, EEvHE, emEneLeadJetEta1, emEneLeadJetEta2, emEneLeadJetEta3, HPD_struct::emEnergy, RBX_struct::emEnergy, EMF_Eta, EMF_EtaX, EMF_Phi, EMF_PhiX, relval_parameters_module::energy, RBX_struct::et, HPD_struct::et, ETime, edm::EventID::event(), edm::Event::getByLabel(), edm::Event::getManyByType(), h_ClusteredE, h_EmEnergy, h_et, h_eta, h_etaCal, h_HadEnergy, h_jet1Pt, h_jet1PtHLT, h_jet2Pt, h_jetEt, h_nCalJets, h_phi, h_phiCal, h_pt, h_ptCal, h_ptHPD, h_ptRBX, h_ptTower, h_TotalClusteredE, h_TotalUnclusteredE, h_TotalUnclusteredEt, h_Trk_NTrk, h_Trk_pt, h_UnclusteredE, h_UnclusteredEt, h_UnclusteredEts, h_Vx, h_Vy, h_Vz, hadEneLeadJetEta1, hadEneLeadJetEta2, hadEneLeadJetEta3, HPD_struct::hadEnergy, RBX_struct::hadEnergy, hadFracEta1, hadFracEta2, hadFracEta3, HBEne, HBEneOOT, HBEneTh, HBEneX, HBEneY, HBocc, HBTime, HBTimeTh, HBTimeX, HBTimeY, HBTvsE, HcalBarrel, HcalEndcap, HcalForward, HcalOuter, HPD_struct::hcalTime, RBX_struct::hcalTime, HEEne, HEEneOOT, HEEneTh, HEEneX, HEEneY, HEnegEne, HEnegTime, HEocc, HEposEne, HEposTime, HETime, HETimeTh, HETimeX, HETimeY, HETvsE, hf_sumTowerAllEx, hf_sumTowerAllEy, hf_TowerJetEt, HFEne, HFEneM, HFEneP, HFEneTh, HFLEne, HFLTime, HFLvsS, HFocc, HFSEne, HFSTime, HFTime, HFTimeM, HFTimeP, HFTimePM, HFTimePMa, HFTimeTh, HFTvsE, HFvsZ, hitEta, hitPhi, HOEne, HOEneTh, HOHEne, HOHr0Ene, HOHr0Time, HOHrm1Ene, HOHrm1Time, HOHrm2Ene, HOHrm2Time, HOHrp1Ene, HOHrp1Time, HOHrp2Ene, HOHrp2Time, HOHTime, HOocc, HOSEne, HOSTime, HOTime, HOTimeTh, HOTvsE, HPD_et, HPD_hadEnergy, HPD_hcalTime, HPD_N, HPD_nTowers, HPDColl, HTime, i, edm::EventBase::id(), HcalDetId::ieta(), INVALID, edm::HandleBase::isValid(), j, jetEMFraction, reco::btau::jetEta, jetHOEne, reco::btau::jetPhi, reco::btau::jetPt, edm::EventBase::luminosityBlock(), MET_HPD, MET_RBX, MET_Tower, METPhi, reco::MET::mEtSig(), METSig, MEx, MEy, n, nBNC, RBX_struct::nTowers, HPD_struct::nTowers, NTowers, nTowers1, nTowers2, nTowers3, nTowers4, nTowersLeadJetPt1, nTowersLeadJetPt2, nTowersLeadJetPt3, nTowersLeadJetPt4, edm::EventBase::orbitNumber(), Pass, reco::LeafCandidate::phi(), phi, edm::Handle< T >::product(), reco::LeafCandidate::pt(), reco::LeafCandidate::px(), reco::LeafCandidate::py(), RBX_et, RBX_hadEnergy, RBX_hcalTime, RBX_N, RBX_nTowers, RBXColl, edm::EventID::run(), funct::sin(), st_Constituents, st_EmEnergy, st_Energy, st_Eta, st_Frac, st_HadEnergy, st_iEta, st_iPhi, st_OuterEnergy, st_Phi, st_Pt, reco::MET::sumEt(), SumEt, matplotRender::t, theTriggerResultsLabel, totBNC, totEneLeadJetEta1, totEneLeadJetEta2, totEneLeadJetEta3, towerEmEn, towerEmFrac, towerHadEn, towerOuterEn, edm::TriggerNames::triggerName(), edm::Event::triggerNames(), and GoodVertex_cfg::vertexCollection.
{ using namespace edm; bool Pass, Pass_HFTime, Pass_DiJet, Pass_BunchCrossing, Pass_Trigger, Pass_Vertex; int EtaOk10, EtaOk13, EtaOk40; double LeadMass; double HFRecHit[100][100][2]; double towerEtCut, towerECut, towerE; towerEtCut = 1.0; towerECut = 1.0; double HBHEThreshold = 2.0; double HFThreshold = 2.0; double HOThreshold = 2.0; double EBEEThreshold = 2.0; float pt1; float minJetPt = 5.; float minJetPt10 = 10.; int jetInd, allJetInd; LeadMass = -1; // Handle<DcsStatusCollection> dcsStatus; // evt.getByLabel("scalersRawToDigi", dcsStatus); // std::cout << dcsStatus << std::endl; // if (dcsStatus.isValid()) { // } // DcsStatus dcsStatus; // Handle<DcsStatus> dcsStatus; // evt.getByLabel("dcsStatus", dcsStatus); math::XYZTLorentzVector p4tmp[2], p4cortmp[2]; // -------------------------------------------------------------- // -------------------------------------------------------------- std::cout << ">>>> ANA: Run = " << evt.id().run() << " Event = " << evt.id().event() << " Bunch Crossing = " << evt.bunchCrossing() << " Orbit Number = " << evt.orbitNumber() << " Luminosity Block = " << evt.luminosityBlock() << std::endl; // ********************* // *** Filter Event // ********************* Pass = false; /*** if (evt.bunchCrossing()== 100) { Pass = true; } else { Pass = false; } ***/ // *********************** // *** Pass Trigger // *********************** // **** Get the TriggerResults container Handle<TriggerResults> triggerResults; evt.getByLabel(theTriggerResultsLabel, triggerResults); // evt.getByLabel("TriggerResults::HLT", triggerResults); if (triggerResults.isValid()) { if (DEBUG) std::cout << "trigger valid " << std::endl; const edm::TriggerNames & triggerNames = evt.triggerNames(*triggerResults); unsigned int n = triggerResults->size(); for (unsigned int i=0; i!=n; i++) { /*** std::cout << ">>> Trigger Name (" << i << ") = " << triggerNames.triggerName(i) << " Accept = " << triggerResults->accept(i) << std::endl; ***/ /**** if (triggerResults->accept(i) == 1) { std::cout << "+++ Trigger Name (" << i << ") = " << triggerNames.triggerName(i) << " Accept = " << triggerResults->accept(i) << std::endl; } ****/ if (DEBUG) std::cout << triggerNames.triggerName(i) << std::endl; // if ( (triggerNames.triggerName(i) == "HLT_ZeroBias") || // (triggerNames.triggerName(i) == "HLT_MinBias") || // (triggerNames.triggerName(i) == "HLT_MinBiasHcal") ) { if (triggerNames.triggerName(i) == "HLT_MinBiasBSC") { Pass_Trigger = true; } else { Pass_Trigger = false; } } } else { edm::Handle<TriggerResults> *tr = new edm::Handle<TriggerResults>; triggerResults = (*tr); // std::cout << "triggerResults is not valid" << std::endl; // std::cout << triggerResults << std::endl; // std::cout << triggerResults.isValid() << std::endl; if (DEBUG) std::cout << "trigger not valid " << std::endl; edm::LogInfo("myJetAna") << "TriggerResults::HLT not found, " "automatically select events"; Pass_Trigger = true; //return; } /*** Handle<L1GlobalTriggerReadoutRecord> gtRecord; evt.getByLabel("gtDigis",gtRecord); const TechnicalTriggerWord tWord = gtRecord->technicalTriggerWord(); if (gtRecord.isValid()) { if (tWord.at(40)) { Pass_Trigger = true; } else { Pass_Trigger = false; } } else { Pass_Trigger = false; } ****/ // ************************* // *** Pass Bunch Crossing // ************************* // *** Check Luminosity Section if (evt.id().run() == 122294) if ( (evt.luminosityBlock() >= 37) && (evt.luminosityBlock() <= 43) ) Pass = true; if (evt.id().run() == 122314) if ( (evt.luminosityBlock() >= 24) && (evt.luminosityBlock() <= 37) ) Pass = true; if (evt.id().run() == 123575) Pass = true; if (evt.id().run() == 123596) Pass = true; // *********** if (evt.id().run() == 124009) { if ( (evt.bunchCrossing() == 51) || (evt.bunchCrossing() == 151) || (evt.bunchCrossing() == 2824) ) { Pass = true; } } if (evt.id().run() == 124020) { if ( (evt.bunchCrossing() == 51) || (evt.bunchCrossing() == 151) || (evt.bunchCrossing() == 2824) ) { Pass = true; } } if (evt.id().run() == 124024) { if ( (evt.bunchCrossing() == 51) || (evt.bunchCrossing() == 151) || (evt.bunchCrossing() == 2824) ) { Pass = true; } } if ( (evt.bunchCrossing() == 51) || (evt.bunchCrossing() == 151) || (evt.bunchCrossing() == 2596) || (evt.bunchCrossing() == 2724) || (evt.bunchCrossing() == 2824) || (evt.bunchCrossing() == 3487) ) { Pass_BunchCrossing = true; } else { Pass_BunchCrossing = false; } // *********************** // *** Pass HF Timing // *********************** double HFM_ETime, HFP_ETime; double HFM_E, HFP_E; double HF_PMM; HFM_ETime = 0.; HFM_E = 0.; HFP_ETime = 0.; HFP_E = 0.; for (int i=0; i<100; i++) { for (int j=0; j<100; j++) { HFRecHit[i][j][0] = -10.; HFRecHit[i][j][1] = -10.; } } try { std::vector<edm::Handle<HFRecHitCollection> > colls; evt.getManyByType(colls); std::vector<edm::Handle<HFRecHitCollection> >::iterator i; for (i=colls.begin(); i!=colls.end(); i++) { for (HFRecHitCollection::const_iterator j=(*i)->begin(); j!=(*i)->end(); j++) { if (j->id().subdet() == HcalForward) { float en = j->energy(); HcalDetId id(j->detid().rawId()); int ieta = id.ieta(); int iphi = id.iphi(); int depth = id.depth(); HFRecHit[ieta+41][iphi][depth-1] = en; if (j->id().ieta()<0) { if (j->energy() > HFThreshold) { HFM_ETime += j->energy()*j->time(); HFM_E += j->energy(); } } else { if (j->energy() > HFThreshold) { HFP_ETime += j->energy()*j->time(); HFP_E += j->energy(); } } } } } } catch (...) { cout << "No HF RecHits." << endl; } if ((HFP_E > 0.) && (HFM_E > 0.)) { HF_PMM = (HFP_ETime / HFP_E) - (HFM_ETime / HFM_E); HFTimePMa->Fill(HF_PMM); } else { HF_PMM = INVALID; } if (fabs(HF_PMM) < 10.) { Pass_HFTime = true; } else { Pass_HFTime = false; } // ************************** // *** Pass DiJet Criteria // ************************** double highestPt; double nextPt; double dphi; int nDiJet, nJet; nJet = 0; nDiJet = 0; highestPt = 0.0; nextPt = 0.0; allJetInd = 0; Handle<CaloJetCollection> caloJets; evt.getByLabel( CaloJetAlgorithm, caloJets ); for( CaloJetCollection::const_iterator cal = caloJets->begin(); cal != caloJets->end(); ++ cal ) { // TODO: verify first two jets are the leading jets if (nJet == 0) p4tmp[0] = cal->p4(); if (nJet == 1) p4tmp[1] = cal->p4(); if ( (cal->pt() > 3.) && (fabs(cal->eta()) < 3.0) ) { nDiJet++; } nJet++; } if (nDiJet > 1) { dphi = deltaPhi(p4tmp[0].phi(), p4tmp[1].phi()); Pass_DiJet = true; } else { dphi = INVALID; Pass_DiJet = false; } // ************************** // *** Pass Vertex // ************************** double VTX = 0.; int nVTX = 0; edm::Handle<reco::VertexCollection> vertexCollection; evt.getByLabel("offlinePrimaryVertices", vertexCollection); const reco::VertexCollection vC = *(vertexCollection.product()); std::cout << "Reconstructed "<< vC.size() << " vertices" << std::endl ; nVTX = vC.size(); for (reco::VertexCollection::const_iterator vertex=vC.begin(); vertex!=vC.end(); vertex++){ VTX = vertex->z(); } if ( (fabs(VTX) < 20.) && (nVTX > 0) ){ Pass_Vertex = true; } else { Pass_Vertex = false; } // *********************** // *********************** nBNC[evt.bunchCrossing()]++; totBNC++; // Pass = true; // *** Check for tracks // edm::Handle<reco::TrackCollection> trackCollection; // evt.getByLabel("generalTracks", trackCollection); // const reco::TrackCollection tC = *(trackCollection.product()); // if ((Pass) && (tC.size()>1)) { // } else { // Pass = false; // } // ************************** // *** Event Passed Selection // ************************** if (evt.id().run() == 1) { if ( (Pass_DiJet) && (Pass_Vertex) ) { Pass = true; } else { Pass = false; } } else { if ( (Pass_BunchCrossing) && (Pass_HFTime) && (Pass_Vertex) ) { Pass = true; } else { Pass = false; } } std::cout << "+++ Result " << " Event = " << evt.id().run() << " LS = " << evt.luminosityBlock() << " dphi = " << dphi << " Pass = " << Pass << std::endl; if (Pass) { // ********************* // *** Classify Event // ********************* int evtType = 0; Handle<CaloTowerCollection> caloTowers; evt.getByLabel( "towerMaker", caloTowers ); for (int i=0;i<36;i++) { RBXColl[i].et = 0; RBXColl[i].hadEnergy = 0; RBXColl[i].emEnergy = 0; RBXColl[i].hcalTime = 0; RBXColl[i].ecalTime = 0; RBXColl[i].nTowers = 0; } for (int i=0;i<144;i++) { HPDColl[i].et = 0; HPDColl[i].hadEnergy = 0; HPDColl[i].emEnergy = 0; HPDColl[i].hcalTime = 0; HPDColl[i].ecalTime = 0; HPDColl[i].nTowers = 0; } double ETotal, emFrac; double HCALTotalCaloTowerE, ECALTotalCaloTowerE; double HCALTotalCaloTowerE_Eta1, ECALTotalCaloTowerE_Eta1; double HCALTotalCaloTowerE_Eta2, ECALTotalCaloTowerE_Eta2; double HCALTotalCaloTowerE_Eta3, ECALTotalCaloTowerE_Eta3; ETotal = 0.; emFrac = 0.; HCALTotalCaloTowerE = 0; ECALTotalCaloTowerE = 0; HCALTotalCaloTowerE_Eta1 = 0.; ECALTotalCaloTowerE_Eta1 = 0.; HCALTotalCaloTowerE_Eta2 = 0.; ECALTotalCaloTowerE_Eta2 = 0.; HCALTotalCaloTowerE_Eta3 = 0.; ECALTotalCaloTowerE_Eta3 = 0.; for (CaloTowerCollection::const_iterator tower = caloTowers->begin(); tower != caloTowers->end(); tower++) { ETotal += tower->hadEnergy(); ETotal += tower->emEnergy(); } for (CaloTowerCollection::const_iterator tower = caloTowers->begin(); tower != caloTowers->end(); tower++) { // Raw tower energy without grouping or thresholds towerHadEn->Fill(tower->hadEnergy()); towerEmEn->Fill(tower->emEnergy()); towerOuterEn->Fill(tower->outerEnergy()); // towerHadEt->Fill(tower->hadEt()); // towerEmEt->Fill(tower->emEt()); // towerOuterEt->Fill(tower->outerEt()); if ((tower->emEnergy()+tower->hadEnergy()) != 0) { emFrac = tower->emEnergy()/(tower->emEnergy()+tower->hadEnergy()); towerEmFrac->Fill(emFrac); } else { emFrac = 0.; } /*** std::cout << "ETotal = " << ETotal << " EMF = " << emFrac << " EM = " << tower->emEnergy() << " Tot = " << tower->emEnergy()+tower->hadEnergy() << " ieta/iphi = " << tower->ieta() << " / " << tower->iphi() << std::endl; ***/ if (abs(tower->iphi()) < 100) EMF_Phi->Fill(tower->iphi(), emFrac); if (abs(tower->ieta()) < 100) EMF_Eta->Fill(tower->ieta(), emFrac); if ( (evt.id().run() == 120020) && (evt.id().event() == 453) ) { std::cout << "Bunch Crossing = " << evt.bunchCrossing() << " Orbit Number = " << evt.orbitNumber() << std::endl; if (abs(tower->iphi()) < 100) EMF_PhiX->Fill(tower->iphi(), emFrac); if (abs(tower->ieta()) < 100) EMF_EtaX->Fill(tower->ieta(), emFrac); } HCALTotalCaloTowerE += tower->hadEnergy(); ECALTotalCaloTowerE += tower->emEnergy(); towerE = tower->hadEnergy() + tower->emEnergy(); if (tower->et() > towerEtCut) caloEtaEt->Fill(tower->eta()); if (towerE > towerECut) caloEta->Fill(tower->eta()); caloPhi->Fill(tower->phi()); if (fabs(tower->eta()) < 1.3) { HCALTotalCaloTowerE_Eta1 += tower->hadEnergy(); ECALTotalCaloTowerE_Eta1 += tower->emEnergy(); } if ((fabs(tower->eta()) >= 1.3) && (fabs(tower->eta()) < 2.5)) { HCALTotalCaloTowerE_Eta2 += tower->hadEnergy(); ECALTotalCaloTowerE_Eta2 += tower->emEnergy(); } if (fabs(tower->eta()) > 2.5) { HCALTotalCaloTowerE_Eta3 += tower->hadEnergy(); ECALTotalCaloTowerE_Eta3 += tower->emEnergy(); } /*** std::cout << "had = " << tower->hadEnergy() << " em = " << tower->emEnergy() << " fabs(eta) = " << fabs(tower->eta()) << " ieta/iphi = " << tower->ieta() << " / " << tower->iphi() << std::endl; ***/ if ((tower->hadEnergy() + tower->emEnergy()) > 2.0) { int iRBX = tower->iphi(); iRBX = iRBX-2; if (iRBX == 0) iRBX = 17; if (iRBX == -1) iRBX = 18; iRBX = (iRBX-1)/4; if (tower->ieta() < 0) iRBX += 18; if (iRBX < 36) { RBXColl[iRBX].et += tower->et(); RBXColl[iRBX].hadEnergy += tower->hadEnergy(); RBXColl[iRBX].emEnergy += tower->emEnergy(); RBXColl[iRBX].hcalTime += tower->hcalTime(); RBXColl[iRBX].ecalTime += tower->ecalTime(); RBXColl[iRBX].nTowers++; } /*** std::cout << "iRBX = " << iRBX << " " << "ieta/iphi = " << tower->ieta() << " / " << tower->iphi() << " et = " << tower->et() << std::endl; ***/ int iHPD = tower->iphi(); if (tower->ieta() < 0) iHPD = iHPD + 72; if (iHPD < 144) { HPDColl[iHPD].et += tower->et(); HPDColl[iHPD].hadEnergy += tower->hadEnergy(); HPDColl[iHPD].emEnergy += tower->emEnergy(); HPDColl[iHPD].hcalTime += tower->hcalTime(); HPDColl[iHPD].ecalTime += tower->ecalTime(); HPDColl[iHPD].nTowers++; } /*** std::cout << "iHPD = " << iHPD << " " << "ieta/iphi = " << tower->ieta() << " / " << tower->iphi() << " et = " << tower->et() << std::endl; ***/ } } ECALvHCAL->Fill(HCALTotalCaloTowerE, ECALTotalCaloTowerE); ECALvHCALEta1->Fill(HCALTotalCaloTowerE_Eta1, ECALTotalCaloTowerE_Eta1); ECALvHCALEta2->Fill(HCALTotalCaloTowerE_Eta2, ECALTotalCaloTowerE_Eta2); ECALvHCALEta3->Fill(HCALTotalCaloTowerE_Eta3, ECALTotalCaloTowerE_Eta3); std::cout << " Total CaloTower Energy : " << " ETotal= " << ETotal << " HCAL= " << HCALTotalCaloTowerE << " ECAL= " << ECALTotalCaloTowerE << std::endl; /*** << " HCAL Eta1 = " << HCALTotalCaloTowerE_Eta1 << " ECAL= " << ECALTotalCaloTowerE_Eta1 << " HCAL Eta2 = " << HCALTotalCaloTowerE_Eta2 << " ECAL= " << ECALTotalCaloTowerE_Eta2 << " HCAL Eta3 = " << HCALTotalCaloTowerE_Eta3 << " ECAL= " << ECALTotalCaloTowerE_Eta3 << std::endl; ***/ // Loop over the RBX Collection int nRBX = 0; int nTowers = 0; for (int i=0;i<36;i++) { RBX_et->Fill(RBXColl[i].et); RBX_hadEnergy->Fill(RBXColl[i].hadEnergy); RBX_hcalTime->Fill(RBXColl[i].hcalTime / RBXColl[i].nTowers); RBX_nTowers->Fill(RBXColl[i].nTowers); if (RBXColl[i].hadEnergy > 3.0) { nRBX++; nTowers = RBXColl[i].nTowers; } } RBX_N->Fill(nRBX); if ( (nRBX == 1) && (nTowers > 24) ) { evtType = 1; } // Loop over the HPD Collection int nHPD = 0; for (int i=0;i<144;i++) { HPD_et->Fill(HPDColl[i].et); HPD_hadEnergy->Fill(HPDColl[i].hadEnergy); HPD_hcalTime->Fill(HPDColl[i].hcalTime / HPDColl[i].nTowers); HPD_nTowers->Fill(HPDColl[i].nTowers); if (HPDColl[i].hadEnergy > 3.0) { nHPD++; nTowers = HPDColl[i].nTowers; } } HPD_N->Fill(nHPD); if ( (nHPD == 1) && (nTowers > 6) ) { evtType = 2; cout << " nHPD = " << nHPD << " Towers = " << nTowers << " Type = " << evtType << endl; } // ************************************************************** // ** Access Trigger Information // ************************************************************** // **** Get the TriggerResults container Handle<TriggerResults> triggerResults; evt.getByLabel(theTriggerResultsLabel, triggerResults); Int_t JetLoPass = 0; if (triggerResults.isValid()) { if (DEBUG) std::cout << "trigger valid " << std::endl; const edm::TriggerNames & triggerNames = evt.triggerNames(*triggerResults); unsigned int n = triggerResults->size(); for (unsigned int i=0; i!=n; i++) { /*** std::cout << " Trigger Name = " << triggerNames.triggerName(i) << " Accept = " << triggerResults->accept(i) << std::endl; ***/ if (DEBUG) std::cout << triggerNames.triggerName(i) << std::endl; if ( triggerNames.triggerName(i) == "HLT_Jet30" ) { JetLoPass = triggerResults->accept(i); if (DEBUG) std::cout << "Found HLT_Jet30 " << JetLoPass << std::endl; } } } else { edm::Handle<TriggerResults> *tr = new edm::Handle<TriggerResults>; triggerResults = (*tr); // std::cout << "triggerResults is not valid" << std::endl; // std::cout << triggerResults << std::endl; // std::cout << triggerResults.isValid() << std::endl; if (DEBUG) std::cout << "trigger not valid " << std::endl; edm::LogInfo("myJetAna") << "TriggerResults::HLT not found, " "automatically select events"; //return; } /**** Handle <L1GlobalTriggerReadoutRecord> gtRecord_h; evt.getByType (gtRecord_h); // assume only one L1 trigger record here const L1GlobalTriggerReadoutRecord* gtRecord = gtRecord_h.failedToGet () ? 0 : &*gtRecord_h; if (gtRecord) { // object is available for (int l1bit = 0; l1bit < 128; ++l1bit) { if (gtRecord->decisionWord() [l1bit]) h_L1TrigBit->Fill (l1bit); } } ****/ // ************************************************************** // ** Loop over the two leading CaloJets and fill some histograms // ************************************************************** Handle<CaloJetCollection> caloJets; evt.getByLabel( CaloJetAlgorithm, caloJets ); jetInd = 0; allJetInd = 0; EtaOk10 = 0; EtaOk13 = 0; EtaOk40 = 0; // const JetCorrector* corrector = // JetCorrector::getJetCorrector (JetCorrectionService, es); highestPt = 0.0; nextPt = 0.0; for( CaloJetCollection::const_iterator cal = caloJets->begin(); cal != caloJets->end(); ++ cal ) { // double scale = corrector->correction (*cal); double scale = 1.0; double corPt = scale*cal->pt(); // double corPt = cal->pt(); // cout << "Pt = " << cal->pt() << endl; if (corPt>highestPt) { nextPt = highestPt; p4cortmp[1] = p4cortmp[0]; highestPt = corPt; p4cortmp[0] = scale*cal->p4(); } else if (corPt>nextPt) { nextPt = corPt; p4cortmp[1] = scale*cal->p4(); } allJetInd++; if (allJetInd == 1) { h_jet1Pt->Fill( cal->pt() ); if (JetLoPass != 0) h_jet1PtHLT->Fill( cal->pt() ); pt1 = cal->pt(); p4tmp[0] = cal->p4(); if ( fabs(cal->eta()) < 1.0) EtaOk10++; if ( fabs(cal->eta()) < 1.3) EtaOk13++; if ( fabs(cal->eta()) < 4.0) EtaOk40++; } if (allJetInd == 2) { h_jet2Pt->Fill( cal->pt() ); p4tmp[1] = cal->p4(); if ( fabs(cal->eta()) < 1.0) EtaOk10++; if ( fabs(cal->eta()) < 1.3) EtaOk13++; if ( fabs(cal->eta()) < 4.0) EtaOk40++; } if ( cal->pt() > minJetPt) { h_ptCal->Fill( cal->pt() ); h_etaCal->Fill( cal->eta() ); h_phiCal->Fill( cal->phi() ); jetInd++; } } h_nCalJets->Fill( jetInd ); if (jetInd > 1) { LeadMass = (p4tmp[0]+p4tmp[1]).mass(); dijetMass->Fill( LeadMass ); } // ****************** // *** Jet Properties // ****************** int nTow1, nTow2, nTow3, nTow4; // Handle<CaloJetCollection> jets; // evt.getByLabel( CaloJetAlgorithm, jets ); // ********************************************************* // --- Loop over jets and make a list of all the used towers int jjet = 0; for ( CaloJetCollection::const_iterator ijet=caloJets->begin(); ijet!=caloJets->end(); ijet++) { jjet++; float hadEne = ijet->hadEnergyInHB() + ijet->hadEnergyInHO() + ijet->hadEnergyInHE() + ijet->hadEnergyInHF(); float emEne = ijet->emEnergyInEB() + ijet->emEnergyInEE() + ijet->emEnergyInHF(); float had = ijet->energyFractionHadronic(); float j_et = ijet->et(); // *** Barrel if (fabs(ijet->eta()) < 1.3) { totEneLeadJetEta1->Fill(hadEne+emEne); hadEneLeadJetEta1->Fill(hadEne); emEneLeadJetEta1->Fill(emEne); if (ijet->pt() > minJetPt10) hadFracEta1->Fill(had); } // *** EndCap if ((fabs(ijet->eta()) > 1.3) && (fabs(ijet->eta()) < 3.) ) { totEneLeadJetEta2->Fill(hadEne+emEne); hadEneLeadJetEta2->Fill(hadEne); emEneLeadJetEta2->Fill(emEne); if (ijet->pt() > minJetPt10) hadFracEta2->Fill(had); } // *** Forward if (fabs(ijet->eta()) > 3.) { totEneLeadJetEta3->Fill(hadEne+emEne); hadEneLeadJetEta3->Fill(hadEne); emEneLeadJetEta3->Fill(emEne); if (ijet->pt() > minJetPt10) hadFracEta3->Fill(had); } // *** CaloTowers in Jet const std::vector<CaloTowerPtr> jetCaloRefs = ijet->getCaloConstituents(); int nConstituents = jetCaloRefs.size(); NTowers->Fill(nConstituents); if (jjet == 1) { nTow1 = nTow2 = nTow3 = nTow4 = 0; for (int i = 0; i <nConstituents ; i++){ float et = jetCaloRefs[i]->et(); if (et > 0.5) nTow1++; if (et > 1.0) nTow2++; if (et > 1.5) nTow3++; if (et > 2.0) nTow4++; hf_TowerJetEt->Fill(et/j_et); } nTowersLeadJetPt1->Fill(nTow1); nTowersLeadJetPt2->Fill(nTow2); nTowersLeadJetPt3->Fill(nTow3); nTowersLeadJetPt4->Fill(nTow4); } } // ********************** // *** Unclustered Energy // ********************** double SumPtJet(0); double SumEtNotJets(0); double SumEtJets(0); double SumEtTowers(0); double TotalClusteredE(0); double TotalUnclusteredE(0); double sumJetPx(0); double sumJetPy(0); double sumTowerAllPx(0); double sumTowerAllPy(0); double sumTowerAllEx(0); double sumTowerAllEy(0); double HCALTotalE, HBTotalE, HETotalE, HOTotalE, HFTotalE; double ECALTotalE, EBTotalE, EETotalE; std::vector<CaloTowerPtr> UsedTowerList; std::vector<CaloTower> TowerUsedInJets; std::vector<CaloTower> TowerNotUsedInJets; // ********************* // *** Hcal recHits // ********************* edm::Handle<HcalSourcePositionData> spd; HCALTotalE = HBTotalE = HETotalE = HOTotalE = HFTotalE = 0.; try { std::vector<edm::Handle<HBHERecHitCollection> > colls; evt.getManyByType(colls); std::vector<edm::Handle<HBHERecHitCollection> >::iterator i; for (i=colls.begin(); i!=colls.end(); i++) { for (HBHERecHitCollection::const_iterator j=(*i)->begin(); j!=(*i)->end(); j++) { // std::cout << *j << std::endl; if (j->id().subdet() == HcalBarrel) { HBEne->Fill(j->energy()); HBTime->Fill(j->time()); HBTvsE->Fill(j->energy(), j->time()); if ((j->time()<25.) || (j->time()>75.)) { HBEneOOT->Fill(j->energy()); } if (j->energy() > HBHEThreshold) { HBEneTh->Fill(j->energy()); HBTimeTh->Fill(j->time()); HBTotalE += j->energy(); HBocc->Fill(j->id().ieta(),j->id().iphi()); hitEta->Fill(j->id().ieta()); hitPhi->Fill(j->id().iphi()); } if ( (evt.id().run() == 120020) && (evt.id().event() == 453) ) { HBEneX->Fill(j->energy()); if (j->energy() > HBHEThreshold) HBTimeX->Fill(j->time()); } if ( (evt.id().run() == 120020) && (evt.id().event() == 457) ) { HBEneY->Fill(j->energy()); if (j->energy() > HBHEThreshold) HBTimeY->Fill(j->time()); } } if (j->id().subdet() == HcalEndcap) { HEEne->Fill(j->energy()); HETime->Fill(j->time()); HETvsE->Fill(j->energy(), j->time()); if ((j->time()<25.) || (j->time()>75.)) { HEEneOOT->Fill(j->energy()); } if (j->energy() > HBHEThreshold) { HEEneTh->Fill(j->energy()); HETimeTh->Fill(j->time()); HETotalE += j->energy(); HEocc->Fill(j->id().ieta(),j->id().iphi()); hitEta->Fill(j->id().ieta()); hitPhi->Fill(j->id().iphi()); } if ( (evt.id().run() == 120020) && (evt.id().event() == 453) ) { HEEneX->Fill(j->energy()); if (j->energy() > HBHEThreshold) HETimeX->Fill(j->time()); } if ( (evt.id().run() == 120020) && (evt.id().event() == 457) ) { HEEneY->Fill(j->energy()); if (j->energy() > HBHEThreshold) HETimeY->Fill(j->time()); } // Fill +-HE separately if (j->id().ieta()<0) { HEnegEne->Fill(j->energy()); if (j->energy() > HBHEThreshold) { HEnegTime->Fill(j->time()); } } else { HEposEne->Fill(j->energy()); if (j->energy() > HBHEThreshold) { HEposTime->Fill(j->time()); } } } /*** std::cout << j->id() << " " << j->id().subdet() << " " << j->id().ieta() << " " << j->id().iphi() << " " << j->id().depth() << " " << j->energy() << " " << j->time() << std::endl; ****/ } } } catch (...) { cout << "No HB/HE RecHits." << endl; } HFM_ETime = 0.; HFM_E = 0.; HFP_ETime = 0.; HFP_E = 0.; try { std::vector<edm::Handle<HFRecHitCollection> > colls; evt.getManyByType(colls); std::vector<edm::Handle<HFRecHitCollection> >::iterator i; for (i=colls.begin(); i!=colls.end(); i++) { for (HFRecHitCollection::const_iterator j=(*i)->begin(); j!=(*i)->end(); j++) { /**** float en = j->energy(); HcalDetId id(j->detid().rawId()); int ieta = id.ieta(); int iphi = id.iphi(); int depth = id.depth(); *****/ // std::cout << *j << std::endl; if (j->id().subdet() == HcalForward) { HFEne->Fill(j->energy()); HFTime->Fill(j->time()); HFTvsE->Fill(j->energy(), j->time()); if (j->energy() > HFThreshold) { HFEneTh->Fill(j->energy()); HFTimeTh->Fill(j->time()); HFTotalE += j->energy(); HFocc->Fill(j->id().ieta(),j->id().iphi()); hitEta->Fill(j->id().ieta()); hitPhi->Fill(j->id().iphi()); } if (j->id().ieta()<0) { if (j->energy() > HFThreshold) { // HFTimeM->Fill(j->time()); HFEneM->Fill(j->energy()); HFM_ETime += j->energy()*j->time(); HFM_E += j->energy(); } } else { if (j->energy() > HFThreshold) { // HFTimeP->Fill(j->time()); HFEneP->Fill(j->energy()); HFP_ETime += j->energy()*j->time(); HFP_E += j->energy(); } } // Long and short fibers if (j->id().depth() == 1){ HFLEne->Fill(j->energy()); if (j->energy() > HFThreshold) HFLTime->Fill(j->time()); } else { HFSEne->Fill(j->energy()); if (j->energy() > HFThreshold) HFSTime->Fill(j->time()); } } } } } catch (...) { cout << "No HF RecHits." << endl; } for (int i=0; i<100; i++) { for (int j=0; j<100; j++) { HFLvsS->Fill(HFRecHit[i][j][1], HFRecHit[i][j][0]); } } if (HFP_E > 0.) HFTimeP->Fill(HFP_ETime / HFP_E); if (HFM_E > 0.) HFTimeM->Fill(HFM_ETime / HFM_E); if ((HFP_E > 0.) && (HFM_E > 0.)) { HF_PMM = (HFP_ETime / HFP_E) - (HFM_ETime / HFM_E); HFTimePM->Fill(HF_PMM); } else { HF_PMM = INVALID; } try { std::vector<edm::Handle<HORecHitCollection> > colls; evt.getManyByType(colls); std::vector<edm::Handle<HORecHitCollection> >::iterator i; for (i=colls.begin(); i!=colls.end(); i++) { for (HORecHitCollection::const_iterator j=(*i)->begin(); j!=(*i)->end(); j++) { if (j->id().subdet() == HcalOuter) { HOEne->Fill(j->energy()); HOTime->Fill(j->time()); HOTvsE->Fill(j->energy(), j->time()); if (j->energy() > HOThreshold) { HOEneTh->Fill(j->energy()); HOTimeTh->Fill(j->time()); HOTotalE += j->energy(); HOocc->Fill(j->id().ieta(),j->id().iphi()); } // Separate SiPMs and HPDs: if (((j->id().iphi()>=59 && j->id().iphi()<=70 && j->id().ieta()>=11 && j->id().ieta()<=15) || (j->id().iphi()>=47 && j->id().iphi()<=58 && j->id().ieta()>=5 && j->id().ieta()<=10))) { HOSEne->Fill(j->energy()); if (j->energy() > HOThreshold) HOSTime->Fill(j->time()); } else if ((j->id().iphi()<59 || j->id().iphi()>70 || j->id().ieta()<11 || j->id().ieta()>15) && (j->id().iphi()<47 || j->id().iphi()>58 || j->id().ieta()<5 || j->id().ieta()>10)) { HOHEne->Fill(j->energy()); if (j->energy() > HOThreshold) HOHTime->Fill(j->time()); // Separate rings -1,-2,0,1,2 in HPDs: if (j->id().ieta()<= -11){ HOHrm2Ene->Fill(j->energy()); if (j->energy() > HOThreshold) HOHrm2Time->Fill(j->time()); } else if (j->id().ieta()>= -10 && j->id().ieta() <= -5) { HOHrm1Ene->Fill(j->energy()); if (j->energy() > HOThreshold) HOHrm1Time->Fill(j->time()); } else if (j->id().ieta()>= -4 && j->id().ieta() <= 4) { HOHr0Ene->Fill(j->energy()); if (j->energy() > HOThreshold) HOHr0Time->Fill(j->time()); } else if (j->id().ieta()>= 5 && j->id().ieta() <= 10) { HOHrp1Ene->Fill(j->energy()); if (j->energy() > HOThreshold) HOHrp1Time->Fill(j->time()); } else if (j->id().ieta()>= 11) { HOHrp2Ene->Fill(j->energy()); if (j->energy() > HOThreshold) HOHrp2Time->Fill(j->time()); } else { std::cout << "Finding events that are in no ring !?!" << std::endl; std::cout << "eta = " << j->id().ieta() << std::endl; } } else { std::cout << "Finding events that are neither SiPM nor HPD!?" << std::endl; } } // std::cout << *j << std::endl; } } } catch (...) { cout << "No HO RecHits." << endl; } HCALTotalE = HBTotalE + HETotalE + HFTotalE + HOTotalE; ECALTotalE = EBTotalE = EETotalE = 0.; try { std::vector<edm::Handle<EcalRecHitCollection> > colls; evt.getManyByType(colls); std::vector<edm::Handle<EcalRecHitCollection> >::iterator i; for (i=colls.begin(); i!=colls.end(); i++) { for (EcalRecHitCollection::const_iterator j=(*i)->begin(); j!=(*i)->end(); j++) { if (j->id().subdetId() == EcalBarrel) { EBEne->Fill(j->energy()); EBTime->Fill(j->time()); if (j->energy() > EBEEThreshold) { EBEneTh->Fill(j->energy()); EBTimeTh->Fill(j->time()); } if ( (evt.id().run() == 120020) && (evt.id().event() == 453) ) { EBEneX->Fill(j->energy()); EBTimeX->Fill(j->time()); } if ( (evt.id().run() == 120020) && (evt.id().event() == 457) ) { EBEneY->Fill(j->energy()); EBTimeY->Fill(j->time()); } EBTotalE += j->energy(); } if (j->id().subdetId() == EcalEndcap) { EEEne->Fill(j->energy()); EETime->Fill(j->time()); if (j->energy() > EBEEThreshold) { EEEneTh->Fill(j->energy()); EETimeTh->Fill(j->time()); } if ( (evt.id().run() == 120020) && (evt.id().event() == 453) ) { EEEneX->Fill(j->energy()); EETimeX->Fill(j->time()); } if ( (evt.id().run() == 120020) && (evt.id().event() == 457 ) ) { EEEneY->Fill(j->energy()); EETimeY->Fill(j->time()); } EETotalE += j->energy(); } // std::cout << *j << std::endl; // std::cout << "EB ID = " << j->id().subdetId() << "/" << EcalBarrel << std::endl; } } } catch (...) { cout << "No ECAL RecHits." << endl; } EBvHB->Fill(HBTotalE, EBTotalE); EEvHE->Fill(HETotalE, EETotalE); /***** try { std::vector<edm::Handle<EBRecHitCollection> > colls; evt.getManyByType(colls); std::vector<edm::Handle<EBRecHitCollection> >::iterator i; for (i=colls.begin(); i!=colls.end(); i++) { for (EBRecHitCollection::const_iterator j=(*i)->begin(); j!=(*i)->end(); j++) { // if (j->id().subdetId() == EcalBarrel) { EBEne->Fill(j->energy()); EBTime->Fill(j->time()); // EBTotalE = j->energy(); // } // std::cout << *j << std::endl; // std::cout << "EB ID = " << j->id().subdetId() << "/" << EcalBarrel << std::endl; } } } catch (...) { cout << "No EB RecHits." << endl; } try { std::vector<edm::Handle<EERecHitCollection> > colls; evt.getManyByType(colls); std::vector<edm::Handle<EERecHitCollection> >::iterator i; for (i=colls.begin(); i!=colls.end(); i++) { for (EERecHitCollection::const_iterator j=(*i)->begin(); j!=(*i)->end(); j++) { // if (j->id().subdetId() == EcalEndcap) { EEEne->Fill(j->energy()); EETime->Fill(j->time()); // EETotalE = j->energy(); // Separate +-EE; EEDetId EEid = EEDetId(j->id()); if (!EEid.positiveZ()) { EEnegEne->Fill(j->energy()); EEnegTime->Fill(j->time()); }else{ EEposEne->Fill(j->energy()); EEposTime->Fill(j->time()); } // } // std::cout << *j << std::endl; } } } catch (...) { cout << "No EE RecHits." << endl; } ******/ ECALTotalE = EBTotalE + EETotalE; if ( (EBTotalE > 320000) && (EBTotalE < 330000) && (HBTotalE > 2700000) && (HBTotalE < 2800000) ) { std::cout << ">>> Off Axis! " << std::endl; } std::cout << " Rechits: Total Energy : " << " HCAL= " << HCALTotalE << " ECAL= " << ECALTotalE << " HB = " << HBTotalE << " EB = " << EBTotalE << std::endl; // ********************* // *** CaloTowers // ********************* // Handle<CaloTowerCollection> caloTowers; // evt.getByLabel( "towerMaker", caloTowers ); nTow1 = nTow2 = nTow3 = nTow4 = 0; double sum_et = 0.0; double sum_ex = 0.0; double sum_ey = 0.0; // double sum_ez = 0.0; // std::cout<<">>>> Run " << evt.id().run() << " Event " << evt.id().event() << std::endl; // --- Loop over towers and make a lists of used and unused towers for (CaloTowerCollection::const_iterator tower = caloTowers->begin(); tower != caloTowers->end(); tower++) { Double_t et = tower->et(); if (et > 0.5) nTow1++; if (et > 1.0) nTow2++; if (et > 1.5) nTow3++; if (et > 2.0) nTow4++; // if ( (fabs(tower->ieta() > 42)) || (fabs(tower->iphi()) > 72) ) { // std::cout << "ieta/iphi = " << tower->ieta() << " / " << tower->iphi() << std::endl; // } if (tower->emEnergy() > 2.0) { h_EmEnergy->Fill (tower->ieta(), tower->iphi(), tower->emEnergy()); } if (tower->hadEnergy() > 2.0) { h_HadEnergy->Fill (tower->ieta(), tower->iphi(), tower->hadEnergy()); } if (et>0.5) { ETime->Fill(tower->ecalTime()); HTime->Fill(tower->hcalTime()); // ******** double phix = tower->phi(); // double theta = tower->theta(); // double e = tower->energy(); // double et = e*sin(theta); // double et = tower->emEt() + tower->hadEt(); double et = tower->et(); // sum_ez += e*cos(theta); sum_et += et; sum_ex += et*cos(phix); sum_ey += et*sin(phix); // ******** Double_t phi = tower->phi(); SumEtTowers += tower->et(); sumTowerAllEx += et*cos(phi); sumTowerAllEy += et*sin(phi); } } // SumEt->Fill(sum_et); // MET->Fill(sqrt( sum_ex*sum_ex + sum_ey*sum_ey)); hf_sumTowerAllEx->Fill(sumTowerAllEx); hf_sumTowerAllEy->Fill(sumTowerAllEy); nTowers1->Fill(nTow1); nTowers2->Fill(nTow2); nTowers3->Fill(nTow3); nTowers4->Fill(nTow4); // ********************* // ********************* UsedTowerList.clear(); TowerUsedInJets.clear(); TowerNotUsedInJets.clear(); // --- Loop over jets and make a list of all the used towers // evt.getByLabel( CaloJetAlgorithm, jets ); for ( CaloJetCollection::const_iterator ijet=caloJets->begin(); ijet!=caloJets->end(); ijet++) { Double_t jetPt = ijet->pt(); Double_t jetEta = ijet->eta(); Double_t jetPhi = ijet->phi(); // if (jetPt>5.0) { Double_t jetPx = jetPt*cos(jetPhi); Double_t jetPy = jetPt*sin(jetPhi); sumJetPx +=jetPx; sumJetPy +=jetPy; const std::vector<CaloTowerPtr> jetCaloRefs = ijet->getCaloConstituents(); int nConstituents = jetCaloRefs.size(); for (int i = 0; i <nConstituents ; i++){ UsedTowerList.push_back(jetCaloRefs[i]); } SumPtJet +=jetPt; // } if ( (jetPt>80.0) && (fabs(jetEta) < 1.3) ){ st_Pt->Fill( jetPt ); int nConstituents = ijet->getCaloConstituents().size(); st_Constituents->Fill( nConstituents ); float maxEne = 0.; float totEne = 0.; for(unsigned twr=0; twr<ijet->getCaloConstituents().size(); ++twr){ CaloTowerPtr tower = (ijet->getCaloConstituents())[twr]; // CaloTowerDetId id = tower->id(); if( tower->et()>0. ){ if (tower->energy() > maxEne) maxEne = tower->energy(); totEne += tower->energy(); st_Energy->Fill( tower->energy() ); st_EmEnergy->Fill( tower->emEnergy() ); st_HadEnergy->Fill( tower->hadEnergy() ); st_OuterEnergy->Fill( tower->outerEnergy() ); st_Eta->Fill( tower->eta() ); st_Phi->Fill( tower->phi() ); st_iEta->Fill( tower->ieta() ); st_iPhi->Fill( tower->iphi() ); /**** std::cout << ">>> Towers : " << " " << tower->energy() << " " << tower->emEnergy() << " " << tower->hadEnergy() << " " << tower->outerEnergy() << " " << tower->et() << " " << tower->emEt() << " " << tower->hadEt() << " " << tower->outerEt() << " " << tower->eta() << " " << tower->phi() << std::endl; ****/ } } st_Frac->Fill( maxEne / totEne ); } } int NTowersUsed = UsedTowerList.size(); // --- Loop over towers and make a lists of used and unused towers for (CaloTowerCollection::const_iterator tower = caloTowers->begin(); tower != caloTowers->end(); tower++) { CaloTower t = *tower; Double_t et = tower->et(); if(et>0) { Double_t phi = tower->phi(); SumEtTowers += tower->et(); sumTowerAllPx += et*cos(phi); sumTowerAllPy += et*sin(phi); bool used = false; for(int i=0; i<NTowersUsed; i++){ if(tower->id() == UsedTowerList[i]->id()){ used=true; break; } } if (used) { TowerUsedInJets.push_back(t); } else { TowerNotUsedInJets.push_back(t); } } } int nUsed = TowerUsedInJets.size(); int nNotUsed = TowerNotUsedInJets.size(); SumEtJets = 0; SumEtNotJets = 0; TotalClusteredE = 0; TotalUnclusteredE = 0; for(int i=0;i<nUsed;i++){ SumEtJets += TowerUsedInJets[i].et(); h_ClusteredE->Fill(TowerUsedInJets[i].energy()); if (TowerUsedInJets[i].energy() > 1.0) TotalClusteredE += TowerUsedInJets[i].energy(); } h_jetEt->Fill(SumEtJets); for(int i=0;i<nNotUsed;i++){ if (TowerNotUsedInJets[i].et() > 0.5) SumEtNotJets += TowerNotUsedInJets[i].et(); h_UnclusteredEt->Fill(TowerNotUsedInJets[i].et()); h_UnclusteredEts->Fill(TowerNotUsedInJets[i].et()); h_UnclusteredE->Fill(TowerNotUsedInJets[i].energy()); if (TowerNotUsedInJets[i].energy() > 1.0) TotalUnclusteredE += TowerNotUsedInJets[i].energy(); } h_TotalClusteredE->Fill(TotalClusteredE); h_TotalUnclusteredE->Fill(TotalUnclusteredE); h_TotalUnclusteredEt->Fill(SumEtNotJets); // ******************************** // *** CaloMET // ******************************** edm::Handle<reco::CaloMETCollection> calometcoll; evt.getByLabel("met", calometcoll); if (calometcoll.isValid()) { const CaloMETCollection *calometcol = calometcoll.product(); const CaloMET *calomet; calomet = &(calometcol->front()); double caloSumET = calomet->sumEt(); double caloMET = calomet->pt(); double caloMETSig = calomet->mEtSig(); double caloMEx = calomet->px(); double caloMEy = calomet->py(); double caloMETPhi = calomet->phi(); SumEt->Fill(caloSumET); MET->Fill(caloMET); if (evtType == 0) MET_Tower->Fill(caloMET); if (evtType == 1) MET_RBX->Fill(caloMET); if (evtType == 2) MET_HPD->Fill(caloMET); METSig->Fill(caloMETSig); MEx->Fill(caloMEx); MEy->Fill(caloMEy); METPhi->Fill(caloMETPhi); /*** double caloEz = calomet->e_longitudinal(); double caloMaxEtInEMTowers = calomet->maxEtInEmTowers(); double caloMaxEtInHadTowers = calomet->maxEtInHadTowers(); double caloEtFractionHadronic = calomet->etFractionHadronic(); double caloEmEtFraction = calomet->emEtFraction(); double caloHadEtInHB = calomet->hadEtInHB(); double caloHadEtInHO = calomet->hadEtInHO(); double caloHadEtInHE = calomet->hadEtInHE(); double caloHadEtInHF = calomet->hadEtInHF(); double caloEmEtInEB = calomet->emEtInEB(); double caloEmEtInEE = calomet->emEtInEE(); double caloEmEtInHF = calomet->emEtInHF(); ****/ } // ******************************** // *** Vertex // ******************************** VTX = INVALID; nVTX = 0; edm::Handle<reco::VertexCollection> vertexCollection; evt.getByLabel("offlinePrimaryVertices", vertexCollection); const reco::VertexCollection vC = *(vertexCollection.product()); std::cout << "Reconstructed "<< vC.size() << " vertices" << std::endl ; nVTX = vC.size(); for (reco::VertexCollection::const_iterator vertex=vC.begin(); vertex!=vC.end(); vertex++){ h_Vx->Fill(vertex->x()); h_Vy->Fill(vertex->y()); h_Vz->Fill(vertex->z()); VTX = vertex->z(); // h_VNTrks->Fill(vertex->tracksSize()); } if ((HF_PMM != INVALID) || (nVTX > 0)) { HFvsZ->Fill(HF_PMM,VTX); } // ******************************** // *** Tracks // ******************************** edm::Handle<reco::TrackCollection> trackCollection; // evt.getByLabel("ctfWithMaterialTracks", trackCollection); evt.getByLabel("generalTracks", trackCollection); const reco::TrackCollection tC = *(trackCollection.product()); std::cout << "ANA: Reconstructed "<< tC.size() << " tracks" << std::endl ; h_Trk_NTrk->Fill(tC.size()); for (reco::TrackCollection::const_iterator track=tC.begin(); track!=tC.end(); track++){ h_Trk_pt->Fill(track->pt()); } /**** std::cout << "Track number "<< i << std::endl ; std::cout << "\tmomentum: " << track->momentum()<< std::endl; std::cout << "\tPT: " << track->pt()<< std::endl; std::cout << "\tvertex: " << track->vertex()<< std::endl; std::cout << "\timpact parameter: " << track->d0()<< std::endl; std::cout << "\tcharge: " << track->charge()<< std::endl; std::cout << "\tnormalizedChi2: " << track->normalizedChi2()<< std::endl; cout<<"\tFrom EXTRA : "<<endl; cout<<"\t\touter PT "<< track->outerPt()<<endl; std::cout << "\t direction: " << track->seedDirection() << std::endl; ****/ // ******************************** // *** Photons // ******************************** /*** edm::Handle<reco::PhotonCollection> photonCollection; evt.getByLabel("photons", photonCollection); const reco::PhotonCollection pC = *(photonCollection.product()); std::cout << "Reconstructed "<< pC.size() << " photons" << std::endl ; for (reco::PhotonCollection::const_iterator photon=pC.begin(); photon!=pC.end(); photon++){ } ***/ // ******************************** // *** Muons // ******************************** /*** edm::Handle<reco::MuonCollection> muonCollection; evt.getByLabel("muons", muonCollection); const reco::MuonCollection mC = *(muonCollection.product()); std::cout << "Reconstructed "<< mC.size() << " muons" << std::endl ; for (reco::MuonCollection::const_iterator muon=mC.begin(); muon!=mC.end(); muon++){ } ***/ // ******************************** // *** Events passing seletion cuts // ******************************** // --- Cosmic Cleanup // --- Vertex // --- Eta int iJet; iJet = 0; for( CaloJetCollection::const_iterator ijet = caloJets->begin(); ijet != caloJets->end(); ++ ijet ) { // if ( (fabs(ijet->eta()) < 1.3) && // (fabs(ijet->pt()) > 20.) ) { // (ijet->emEnergyFraction() > 0.01) && // (ijet->emEnergyFraction() > 0.99) ) { iJet++; if (iJet == 1) { cout << " CaloJet: Event Type = " << evtType << " pt = " << ijet->pt() << endl; } h_pt->Fill(ijet->pt()); if (evtType == 0) h_ptTower->Fill(ijet->pt()); if (evtType == 1) h_ptRBX->Fill(ijet->pt()); if (evtType == 2) h_ptHPD->Fill(ijet->pt()); h_et->Fill(ijet->et()); h_eta->Fill(ijet->eta()); h_phi->Fill(ijet->phi()); jetHOEne->Fill(ijet->hadEnergyInHO()); jetEMFraction->Fill(ijet->emEnergyFraction()); // } } //***************************** //*** Get the GenJet collection //***************************** /************** Handle<GenJetCollection> genJets; evt.getByLabel( GenJetAlgorithm, genJets ); //Loop over the two leading GenJets and fill some histograms jetInd = 0; allJetInd = 0; for( GenJetCollection::const_iterator gen = genJets->begin(); gen != genJets->end(); ++ gen ) { allJetInd++; if (allJetInd == 1) { p4tmp[0] = gen->p4(); } if (allJetInd == 2) { p4tmp[1] = gen->p4(); } if ( (allJetInd == 1) || (allJetInd == 2) ) { h_ptGenL->Fill( gen->pt() ); h_etaGenL->Fill( gen->eta() ); h_phiGenL->Fill( gen->phi() ); } if ( gen->pt() > minJetPt) { // std::cout << "GEN JET1 #" << jetInd << std::endl << gen->print() << std::endl; h_ptGen->Fill( gen->pt() ); h_etaGen->Fill( gen->eta() ); h_phiGen->Fill( gen->phi() ); jetInd++; } } h_nGenJets->Fill( jetInd ); *******/ } }
void myJetAna::beginJob | ( | void | ) | [private, virtual] |
Reimplemented from edm::EDAnalyzer.
Definition at line 126 of file myJetAna.cc.
References caloEta, caloEtaEt, caloPhi, dijetMass, EBEne, EBEneTh, EBEneX, EBEneY, EBTime, EBTimeTh, EBTimeX, EBTimeY, EBvHB, ECALvHCAL, ECALvHCALEta1, ECALvHCALEta2, ECALvHCALEta3, EEEne, EEEneTh, EEEneX, EEEneY, EEnegEne, EEnegTime, EEposEne, EEposTime, EETime, EETimeTh, EETimeX, EETimeY, EEvHE, emEneLeadJetEta1, emEneLeadJetEta2, emEneLeadJetEta3, EMF_Eta, EMF_EtaX, EMF_Phi, EMF_PhiX, ETime, h_ClusteredE, h_EmEnergy, h_et, h_eta, h_etaCal, h_etaGen, h_etaGenL, h_HadEnergy, h_jet1Pt, h_jet1PtHLT, h_jet2Pt, h_jetEt, h_nCalJets, h_nGenJets, h_phi, h_phiCal, h_phiGen, h_phiGenL, h_pt, h_ptCal, h_ptGen, h_ptGenL, h_ptHPD, h_ptRBX, h_ptTower, h_TotalClusteredE, h_TotalUnclusteredE, h_TotalUnclusteredEt, h_Trk_NTrk, h_Trk_pt, h_UnclusteredE, h_UnclusteredEt, h_UnclusteredEts, h_VNTrks, h_Vx, h_Vy, h_Vz, hadEneLeadJetEta1, hadEneLeadJetEta2, hadEneLeadJetEta3, hadFracEta1, hadFracEta2, hadFracEta3, HBEne, HBEneOOT, HBEneTh, HBEneX, HBEneY, HBocc, HBTime, HBTimeTh, HBTimeX, HBTimeY, HBTvsE, HEEne, HEEneOOT, HEEneTh, HEEneX, HEEneY, HEnegEne, HEnegTime, HEocc, HEposEne, HEposTime, HETime, HETimeTh, HETimeX, HETimeY, HETvsE, hf_sumTowerAllEx, hf_sumTowerAllEy, hf_TowerJetEt, HFEne, HFEneM, HFEneOOT, HFEneP, HFEneTh, HFLEne, HFLTime, HFLvsS, HFocc, HFSEne, HFSTime, HFTime, HFTimeM, HFTimeP, HFTimePM, HFTimePMa, HFTimeTh, HFTvsE, HFvsZ, hitEta, hitEtaEt, hitPhi, HOEne, HOEneOOT, HOEneTh, HOHEne, HOHr0Ene, HOHr0Time, HOHrm1Ene, HOHrm1Time, HOHrm2Ene, HOHrm2Time, HOHrp1Ene, HOHrp1Time, HOHrp2Ene, HOHrp2Time, HOHTime, HOocc, HOSEne, HOSTime, HOTime, HOTimeTh, HOTvsE, HPD_et, HPD_hadEnergy, HPD_hcalTime, HPD_N, HPD_nTowers, HTime, i, jetEMFraction, jetHOEne, M_PI, MET_HPD, MET_RBX, MET_Tower, METPhi, METSig, MEx, MEy, nBNC, NTowers, nTowers1, nTowers2, nTowers3, nTowers4, nTowersLeadJetPt1, nTowersLeadJetPt2, nTowersLeadJetPt3, nTowersLeadJetPt4, RBX_et, RBX_hadEnergy, RBX_hcalTime, RBX_N, RBX_nTowers, st_Constituents, st_EmEnergy, st_Energy, st_Eta, st_Frac, st_HadEnergy, st_iEta, st_iPhi, st_OuterEnergy, st_Phi, st_Pt, SumEt, totBNC, totEneLeadJetEta1, totEneLeadJetEta2, totEneLeadJetEta3, towerEmEn, towerEmFrac, towerHadEn, and towerOuterEn.
{ edm::Service<TFileService> fs; // --- passed selection cuts h_pt = fs->make<TH1F>( "pt", "Jet p_{T}", 100, 0, 50 ); h_ptRBX = fs->make<TH1F>( "ptRBX", "RBX: Jet p_{T}", 100, 0, 50 ); h_ptHPD = fs->make<TH1F>( "ptHPD", "HPD: Jet p_{T}", 100, 0, 50 ); h_ptTower = fs->make<TH1F>( "ptTower", "Jet p_{T}", 100, 0, 50 ); h_et = fs->make<TH1F>( "et", "Jet E_{T}", 100, 0, 50 ); h_eta = fs->make<TH1F>( "eta", "Jet #eta", 100, -4, 4 ); h_phi = fs->make<TH1F>( "phi", "Jet #phi", 50, -M_PI, M_PI ); // --- hitEtaEt = fs->make<TH1F>( "hitEtaEt", "RecHit #eta", 90, -45, 45 ); hitEta = fs->make<TH1F>( "hitEta", "RecHit #eta", 90, -45, 45 ); hitPhi = fs->make<TH1F>( "hitPhi", "RecHit #phi", 73, 0, 73 ); caloEtaEt = fs->make<TH1F>( "caloEtaEt", "CaloTower #eta", 100, -4, 4 ); caloEta = fs->make<TH1F>( "caloEta", "CaloTower #eta", 100, -4, 4 ); caloPhi = fs->make<TH1F>( "caloPhi", "CaloTower #phi", 50, -M_PI, M_PI ); dijetMass = fs->make<TH1F>("dijetMass","DiJet Mass",100,0,100); totEneLeadJetEta1 = fs->make<TH1F>("totEneLeadJetEta1","Total Energy Lead Jet Eta1 1",100,0,1500); totEneLeadJetEta2 = fs->make<TH1F>("totEneLeadJetEta2","Total Energy Lead Jet Eta2 1",100,0,1500); totEneLeadJetEta3 = fs->make<TH1F>("totEneLeadJetEta3","Total Energy Lead Jet Eta3 1",100,0,1500); hadEneLeadJetEta1 = fs->make<TH1F>("hadEneLeadJetEta1","Hadronic Energy Lead Jet Eta1 1",100,0,1500); hadEneLeadJetEta2 = fs->make<TH1F>("hadEneLeadJetEta2","Hadronic Energy Lead Jet Eta2 1",100,0,1500); hadEneLeadJetEta3 = fs->make<TH1F>("hadEneLeadJetEta3","Hadronic Energy Lead Jet Eta3 1",100,0,1500); emEneLeadJetEta1 = fs->make<TH1F>("emEneLeadJetEta1","EM Energy Lead Jet Eta1 1",100,0,1500); emEneLeadJetEta2 = fs->make<TH1F>("emEneLeadJetEta2","EM Energy Lead Jet Eta2 1",100,0,1500); emEneLeadJetEta3 = fs->make<TH1F>("emEneLeadJetEta3","EM Energy Lead Jet Eta3 1",100,0,1500); hadFracEta1 = fs->make<TH1F>("hadFracEta11","Hadronic Fraction Eta1 Jet 1",100,0,1); hadFracEta2 = fs->make<TH1F>("hadFracEta21","Hadronic Fraction Eta2 Jet 1",100,0,1); hadFracEta3 = fs->make<TH1F>("hadFracEta31","Hadronic Fraction Eta3 Jet 1",100,0,1); SumEt = fs->make<TH1F>("SumEt","SumEt",100,0,100); MET = fs->make<TH1F>("MET", "MET",100,0,50); METSig = fs->make<TH1F>("METSig", "METSig",100,0,50); MEx = fs->make<TH1F>("MEx", "MEx",100,-20,20); MEy = fs->make<TH1F>("MEy", "MEy",100,-20,20); METPhi = fs->make<TH1F>("METPhi", "METPhi",315,0,3.15); MET_RBX = fs->make<TH1F>("MET_RBX", "MET",100,0,1000); MET_HPD = fs->make<TH1F>("MET_HPD", "MET",100,0,1000); MET_Tower = fs->make<TH1F>("MET_Tower", "MET",100,0,1000); h_Vx = fs->make<TH1F>("Vx", "Vx",100,-0.5,0.5); h_Vy = fs->make<TH1F>("Vy", "Vy",100,-0.5,0.5); h_Vz = fs->make<TH1F>("Vz", "Vz",100,-20,20); h_VNTrks = fs->make<TH1F>("VNTrks", "VNTrks",10,1,100); h_Trk_pt = fs->make<TH1F>("Trk_pt", "Trk_pt",100,0,20); h_Trk_NTrk = fs->make<TH1F>("Trk_NTrk", "Trk_NTrk",20,0,20); hf_sumTowerAllEx = fs->make<TH1F>("sumTowerAllEx","Tower Ex",100,-1000,1000); hf_sumTowerAllEy = fs->make<TH1F>("sumTowerAllEy","Tower Ey",100,-1000,1000); hf_TowerJetEt = fs->make<TH1F>("TowerJetEt","Tower/Jet Et 1",50,0,1); ETime = fs->make<TH1F>("ETime","Ecal Time",200,-200,200); HTime = fs->make<TH1F>("HTime","Hcal Time",200,-200,200); towerHadEn = fs->make<TH1F>("towerHadEn" ,"Hadronic Energy in Calo Tower",2000,-100,100); towerEmEn = fs->make<TH1F>("towerEmEn" ,"EM Energy in Calo Tower",2000,-100,100); towerOuterEn = fs->make<TH1F>("towerOuterEn" ,"HO Energy in Calo Tower",2000,-100,100); towerEmFrac = fs->make<TH1F>("towerEmFrac","EM Fraction of Energy in Calo Tower",100,-1.,1.); RBX_et = fs->make<TH1F>("RBX_et","ET in RBX",1000,-20,100); RBX_hadEnergy = fs->make<TH1F>("RBX_hadEnergy","Hcal Energy in RBX",1000,-20,100); RBX_hcalTime = fs->make<TH1F>("RBX_hcalTime","Hcal Time in RBX",200,-200,200); RBX_nTowers = fs->make<TH1F>("RBX_nTowers","Number of Towers in RBX",75,0,75); RBX_N = fs->make<TH1F>("RBX_N","Number of RBX",10,0,10); HPD_et = fs->make<TH1F>("HPD_et","ET in HPD",1000,-20,100); HPD_hadEnergy = fs->make<TH1F>("HPD_hadEnergy","Hcal Energy in HPD",1000,-20,100); HPD_hcalTime = fs->make<TH1F>("HPD_hcalTime","Hcal Time in HPD",200,-200,200); HPD_nTowers = fs->make<TH1F>("HPD_nTowers","Number of Towers in HPD",20,0,20); HPD_N = fs->make<TH1F>("HPD_N","Number of HPD",10,0,10); nTowers1 = fs->make<TH1F>("nTowers1","Number of Towers pt 0.5",100,0,200); nTowers2 = fs->make<TH1F>("nTowers2","Number of Towers pt 1.0",100,0,200); nTowers3 = fs->make<TH1F>("nTowers3","Number of Towers pt 1.5",100,0,200); nTowers4 = fs->make<TH1F>("nTowers4","Number of Towers pt 2.0",100,0,200); nTowersLeadJetPt1 = fs->make<TH1F>("nTowersLeadJetPt1","Number of Towers in Lead Jet pt 0.5",100,0,100); nTowersLeadJetPt2 = fs->make<TH1F>("nTowersLeadJetPt2","Number of Towers in Lead Jet pt 1.0",100,0,100); nTowersLeadJetPt3 = fs->make<TH1F>("nTowersLeadJetPt3","Number of Towers in Lead Jet pt 1.5",100,0,100); nTowersLeadJetPt4 = fs->make<TH1F>("nTowersLeadJetPt4","Number of Towers in Lead Jet pt 2.0",100,0,100); h_nCalJets = fs->make<TH1F>( "nCalJets", "Number of CalJets", 20, 0, 20 ); HBEneOOT = fs->make<TH1F>( "HBEneOOT", "HBEneOOT", 200, -5, 10 ); HEEneOOT = fs->make<TH1F>( "HEEneOOT", "HEEneOOT", 200, -5, 10 ); HFEneOOT = fs->make<TH1F>( "HFEneOOT", "HFEneOOT", 200, -5, 10 ); HOEneOOT = fs->make<TH1F>( "HOEneOOT", "HOEneOOT", 200, -5, 10 ); HBEne = fs->make<TH1F>( "HBEne", "HBEne", 200, -5, 10 ); HBEneTh = fs->make<TH1F>( "HBEneTh", "HBEneTh", 200, -5, 10 ); HBEneX = fs->make<TH1F>( "HBEneX", "HBEneX", 200, -5, 10 ); HBEneY = fs->make<TH1F>( "HBEneY", "HBEnedY", 200, -5, 10 ); HBTime = fs->make<TH1F>( "HBTime", "HBTime", 200, -100, 100 ); HBTimeTh = fs->make<TH1F>( "HBTimeTh", "HBTimeTh", 200, -100, 100 ); HBTimeX = fs->make<TH1F>( "HBTimeX", "HBTimeX", 200, -100, 100 ); HBTimeY = fs->make<TH1F>( "HBTimeY", "HBTimeY", 200, -100, 100 ); HEEne = fs->make<TH1F>( "HEEne", "HEEne", 200, -5, 10 ); HEEneTh = fs->make<TH1F>( "HEEneTh", "HEEneTh", 200, -5, 10 ); HEEneX = fs->make<TH1F>( "HEEneX", "HEEneX", 200, -5, 10 ); HEEneY = fs->make<TH1F>( "HEEneY", "HEEneY", 200, -5, 10 ); HEposEne = fs->make<TH1F>( "HEposEne", "HEposEne", 200, -5, 10 ); HEnegEne = fs->make<TH1F>( "HEnegEne", "HEnegEne", 200, -5, 10 ); HETime = fs->make<TH1F>( "HETime", "HETime", 200, -100, 100 ); HETimeTh = fs->make<TH1F>( "HETimeTh", "HETimeTh", 200, -100, 100 ); HETimeX = fs->make<TH1F>( "HETimeX", "HETimeX", 200, -100, 100 ); HETimeY = fs->make<TH1F>( "HETimeY", "HETimeY", 200, -100, 100 ); HEposTime = fs->make<TH1F>( "HEposTime", "HEposTime", 200, -100, 100 ); HEnegTime = fs->make<TH1F>( "HEnegTime", "HEnegTime", 200, -100, 100 ); HOEne = fs->make<TH1F>( "HOEne", "HOEne", 200, -5, 10 ); HOEneTh = fs->make<TH1F>( "HOEneTh", "HOEneTh", 200, -5, 10 ); HOTime = fs->make<TH1F>( "HOTime", "HOTime", 200, -100, 100 ); HOTimeTh = fs->make<TH1F>( "HOTimeTh", "HOTimeTh", 200, -100, 100 ); // Histos for separating SiPMs and HPDs in HO: HOSEne = fs->make<TH1F>( "HOSEne", "HOSEne", 12000, -20, 100 ); HOSTime = fs->make<TH1F>( "HOSTime", "HOSTime", 200, -100, 100 ); HOHEne = fs->make<TH1F>( "HOHEne", "HOHEne", 12000, -20, 100 ); HOHTime = fs->make<TH1F>( "HOHTime", "HOHTime", 200, -100, 100 ); HOHr0Ene = fs->make<TH1F>( "HOHr0Ene" , "HOHr0Ene", 12000, -20 , 100 ); HOHr0Time = fs->make<TH1F>( "HOHr0Time" , "HOHr0Time", 200, -200, 200 ); HOHrm1Ene = fs->make<TH1F>( "HOHrm1Ene" , "HOHrm1Ene", 12000, -20 , 100 ); HOHrm1Time = fs->make<TH1F>( "HOHrm1Time", "HOHrm1Time", 200, -200, 200 ); HOHrm2Ene = fs->make<TH1F>( "HOHrm2Ene" , "HOHrm2Ene", 12000, -20 , 100 ); HOHrm2Time = fs->make<TH1F>( "HOHrm2Time", "HOHrm2Time", 200, -200, 200 ); HOHrp1Ene = fs->make<TH1F>( "HOHrp1Ene" , "HOHrp1Ene", 12000, -20 , 100 ); HOHrp1Time = fs->make<TH1F>( "HOHrp1Time", "HOHrp1Time", 200, -200, 200 ); HOHrp2Ene = fs->make<TH1F>( "HOHrp2Ene" , "HOHrp2Ene", 12000, -20 , 100 ); HOHrp2Time = fs->make<TH1F>( "HOHrp2Time", "HOHrp2Time", 200, -200, 200 ); HBTvsE = fs->make<TH2F>( "HBTvsE", "HBTvsE",100, -5, 50, 100, -100, 100); HETvsE = fs->make<TH2F>( "HETvsE", "HETvsE",100, -5, 50, 100, -100, 100); HFTvsE = fs->make<TH2F>( "HFTvsE", "HFTvsE",100, -5, 50, 100, -100, 100); HOTvsE = fs->make<TH2F>( "HOTvsE", "HOTvsE",100, -5, 50, 100, -100, 100); HFvsZ = fs->make<TH2F>( "HFvsZ", "HFvsZ",100,-50,50,100,-50,50); HOocc = fs->make<TH2F>( "HOocc", "HOocc",81,-40.5,40.5,70,0.5,70.5); HBocc = fs->make<TH2F>( "HBocc", "HBocc",81,-40.5,40.5,70,0.5,70.5); HEocc = fs->make<TH2F>( "HEocc", "HEocc",81,-40.5,40.5,70,0.5,70.5); HFocc = fs->make<TH2F>( "HFocc", "HFocc",81,-40.5,40.5,70,0.5,70.5); HFEne = fs->make<TH1F>( "HFEne", "HFEne", 210, -10, 200 ); HFEneTh = fs->make<TH1F>( "HFEneTh", "HFEneTh", 210, -10, 200 ); HFEneP = fs->make<TH1F>( "HFEneP", "HFEneP", 200, -5, 10 ); HFEneM = fs->make<TH1F>( "HFEneM", "HFEneM", 200, -5, 10 ); HFTime = fs->make<TH1F>( "HFTime", "HFTime", 200, -100, 100 ); HFTimeTh = fs->make<TH1F>( "HFTimeTh", "HFTimeTh", 200, -100, 100 ); HFTimeP = fs->make<TH1F>( "HFTimeP", "HFTimeP", 100, -100, 50 ); HFTimeM = fs->make<TH1F>( "HFTimeM", "HFTimeM", 100, -100, 50 ); HFTimePMa = fs->make<TH1F>( "HFTimePMa", "HFTimePMa", 100, -100, 100 ); HFTimePM = fs->make<TH1F>( "HFTimePM", "HFTimePM", 100, -100, 100 ); // Histos for separating HF long/short fibers: HFLEne = fs->make<TH1F>( "HFLEne", "HFLEne", 200, -5, 10 ); HFLTime = fs->make<TH1F>( "HFLTime", "HFLTime", 200, -100, 100 ); HFSEne = fs->make<TH1F>( "HFSEne", "HFSEne", 200, -5, 10 ); HFSTime = fs->make<TH1F>( "HFSTime", "HFSTime", 200, -100, 100 ); HFLvsS = fs->make<TH2F>( "HFLvsS", "HFLvsS",220,-20,200,220,-20,200); EBEne = fs->make<TH1F>( "EBEne", "EBEne", 200, -5, 10 ); EBEneTh = fs->make<TH1F>( "EBEneTh", "EBEneTh", 200, -5, 10 ); EBEneX = fs->make<TH1F>( "EBEneX", "EBEneX", 200, -5, 10 ); EBEneY = fs->make<TH1F>( "EBEneY", "EBEneY", 200, -5, 10 ); EBTime = fs->make<TH1F>( "EBTime", "EBTime", 200, -100, 100 ); EBTimeTh = fs->make<TH1F>( "EBTimeTh", "EBTimeTh", 200, -100, 100 ); EBTimeX = fs->make<TH1F>( "EBTimeX", "EBTimeX", 200, -100, 100 ); EBTimeY = fs->make<TH1F>( "EBTimeY", "EBTimeY", 200, -100, 100 ); EEEne = fs->make<TH1F>( "EEEne", "EEEne", 200, -5, 10 ); EEEneTh = fs->make<TH1F>( "EEEneTh", "EEEneTh", 200, -5, 10 ); EEEneX = fs->make<TH1F>( "EEEneX", "EEEneX", 200, -5, 10 ); EEEneY = fs->make<TH1F>( "EEEneY", "EEEneY", 200, -5, 10 ); EEnegEne = fs->make<TH1F>( "EEnegEne", "EEnegEne", 200, -5, 10 ); EEposEne = fs->make<TH1F>( "EEposEne", "EEposEne", 200, -5, 10 ); EETime = fs->make<TH1F>( "EETime", "EETime", 200, -100, 100 ); EETimeTh = fs->make<TH1F>( "EETimeTh", "EETimeTh", 200, -100, 100 ); EETimeX = fs->make<TH1F>( "EETimeX", "EETimeX", 200, -100, 100 ); EETimeY = fs->make<TH1F>( "EETimeY", "EETimeY", 200, -100, 100 ); EEnegTime = fs->make<TH1F>( "EEnegTime", "EEnegTime", 200, -100, 100 ); EEposTime = fs->make<TH1F>( "EEposTime", "EEposTime", 200, -100, 100 ); h_ptCal = fs->make<TH1F>( "ptCal", "p_{T} of CalJet", 100, 0, 50 ); h_etaCal = fs->make<TH1F>( "etaCal", "#eta of CalJet", 100, -4, 4 ); h_phiCal = fs->make<TH1F>( "phiCal", "#phi of CalJet", 50, -M_PI, M_PI ); h_nGenJets = fs->make<TH1F>( "nGenJets", "Number of GenJets", 20, 0, 20 ); h_ptGen = fs->make<TH1F>( "ptGen", "p_{T} of GenJet", 100, 0, 50 ); h_etaGen = fs->make<TH1F>( "etaGen", "#eta of GenJet", 100, -4, 4 ); h_phiGen = fs->make<TH1F>( "phiGen", "#phi of GenJet", 50, -M_PI, M_PI ); h_ptGenL = fs->make<TH1F>( "ptGenL", "p_{T} of GenJetL", 100, 0, 50 ); h_etaGenL = fs->make<TH1F>( "etaGenL", "#eta of GenJetL", 100, -4, 4 ); h_phiGenL = fs->make<TH1F>( "phiGenL", "#phi of GenJetL", 50, -M_PI, M_PI ); h_jetEt = fs->make<TH1F>( "jetEt", "Total Jet Et", 100, 0, 3000 ); h_jet1Pt = fs->make<TH1F>( "jet1Pt", "Jet1 Pt", 100, 0, 1000 ); h_jet2Pt = fs->make<TH1F>( "jet2Pt", "Jet2 Pt", 100, 0, 1000 ); h_jet1PtHLT = fs->make<TH1F>( "jet1PtHLT", "Jet1 Pt HLT", 100, 0, 1000 ); h_TotalUnclusteredEt = fs->make<TH1F>( "TotalUnclusteredEt", "Total Unclustered Et", 100, 0, 500 ); h_UnclusteredEt = fs->make<TH1F>( "UnclusteredEt", "Unclustered Et", 100, 0, 50 ); h_UnclusteredEts = fs->make<TH1F>( "UnclusteredEts", "Unclustered Et", 100, 0, 2 ); h_ClusteredE = fs->make<TH1F>( "ClusteredE", "Clustered E", 200, 0, 20 ); h_TotalClusteredE = fs->make<TH1F>( "TotalClusteredE", "Total Clustered E", 200, 0, 100 ); h_UnclusteredE = fs->make<TH1F>( "UnclusteredE", "Unclustered E", 200, 0, 20 ); h_TotalUnclusteredE = fs->make<TH1F>( "TotalUnclusteredE", "Total Unclustered E", 200, 0, 100 ); jetHOEne = fs->make<TH1F>("jetHOEne" ,"HO Energy in Jet",100, 0,100); jetEMFraction = fs->make<TH1F>( "jetEMFraction", "Jet EM Fraction", 100, -1.1, 1.1 ); NTowers = fs->make<TH1F>( "NTowers", "Number of Towers", 100, 0, 100 ); h_EmEnergy = fs->make<TH2F>( "EmEnergy", "Em Energy", 90, -45, 45, 73, 0, 73 ); h_HadEnergy = fs->make<TH2F>( "HadEnergy", "Had Energy", 90, -45, 45, 73, 0, 73 ); st_Pt = fs->make<TH1F>( "st_Pt", "Pt", 200, 0, 200 ); st_Constituents = fs->make<TH1F>( "st_Constituents", "Constituents", 200, 0, 200 ); st_Energy = fs->make<TH1F>( "st_Energy", "Tower Energy", 200, 0, 200 ); st_EmEnergy = fs->make<TH1F>( "st_EmEnergy", "Tower EmEnergy", 200, 0, 200 ); st_HadEnergy = fs->make<TH1F>( "st_HadEnergy", "Tower HadEnergy", 200, 0, 200 ); st_OuterEnergy = fs->make<TH1F>( "st_OuterEnergy", "Tower OuterEnergy", 200, 0, 200 ); st_Eta = fs->make<TH1F>( "st_Eta", "Eta", 100, -4, 4 ); st_Phi = fs->make<TH1F>( "st_Phi", "Phi", 50, -M_PI, M_PI ); st_iEta = fs->make<TH1F>( "st_iEta", "iEta", 60, -30, 30 ); st_iPhi = fs->make<TH1F>( "st_iPhi", "iPhi", 80, 0, 80 ); st_Frac = fs->make<TH1F>( "st_Frac", "Frac", 100, 0, 1 ); EBvHB = fs->make<TH2F>( "EBvHB", "EB vs HB",1000,0,4500000.,1000,0,1000000.); EEvHE = fs->make<TH2F>( "EEvHE", "EE vs HE",1000,0,4500000.,1000,0,200000.); ECALvHCAL = fs->make<TH2F>( "ECALvHCAL", "ECAL vs HCAL",100,0,20000000.,100,-500000,500000.); ECALvHCALEta1 = fs->make<TH2F>( "ECALvHCALEta1", "ECAL vs HCALEta1",100,0,20000000.,100,-500000,500000.); ECALvHCALEta2 = fs->make<TH2F>( "ECALvHCALEta2", "ECAL vs HCALEta2",100,0,20000000.,100,-500000,500000.); ECALvHCALEta3 = fs->make<TH2F>( "ECALvHCALEta3", "ECAL vs HCALEta3",100,0,20000000.,100,-500000,500000.); EMF_Eta = fs->make<TProfile>("EMF_Eta","EMF Eta", 100, -50, 50, 0, 10); EMF_Phi = fs->make<TProfile>("EMF_Phi","EMF Phi", 100, 0, 100, 0, 10); EMF_EtaX = fs->make<TProfile>("EMF_EtaX","EMF EtaX", 100, -50, 50, 0, 10); EMF_PhiX = fs->make<TProfile>("EMF_PhiX","EMF PhiX", 100, 0, 100, 0, 10); totBNC = 0; for (int i=0; i<4000; i++) nBNC[i] = 0; }
void myJetAna::endJob | ( | void | ) | [private, virtual] |
Reimplemented from edm::EDAnalyzer.
Definition at line 2067 of file myJetAna.cc.
References gather_cfg::cout, i, nBNC, and totBNC.
TH1F* myJetAna::caloEta [private] |
Definition at line 245 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::caloEtaEt [private] |
Definition at line 244 of file myJetAna.h.
Referenced by analyze(), and beginJob().
std::string myJetAna::CaloJetAlgorithm [private] |
Definition at line 56 of file myJetAna.h.
Referenced by analyze().
TH1F* myJetAna::caloPhi [private] |
Definition at line 246 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::dijetMass [private] |
Definition at line 239 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::EBEne [private] |
Definition at line 141 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::EBEneTh [private] |
Definition at line 142 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::EBEneX [private] |
Definition at line 143 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::EBEneY [private] |
Definition at line 144 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::EBTime [private] |
Definition at line 145 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::EBTimeTh [private] |
Definition at line 146 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::EBTimeX [private] |
Definition at line 147 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::EBTimeY [private] |
Definition at line 148 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::EBvHB [private] |
Definition at line 300 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::ECALvHCAL [private] |
Definition at line 302 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::ECALvHCALEta1 [private] |
Definition at line 303 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::ECALvHCALEta2 [private] |
Definition at line 304 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::ECALvHCALEta3 [private] |
Definition at line 305 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::EEEne [private] |
Definition at line 149 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::EEEneTh [private] |
Definition at line 150 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::EEEneX [private] |
Definition at line 151 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::EEEneY [private] |
Definition at line 152 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::EEnegEne [private] |
Definition at line 153 of file myJetAna.h.
Referenced by beginJob().
TH1F* myJetAna::EEnegTime [private] |
Definition at line 159 of file myJetAna.h.
Referenced by beginJob().
TH1F* myJetAna::EEposEne [private] |
Definition at line 154 of file myJetAna.h.
Referenced by beginJob().
TH1F* myJetAna::EEposTime [private] |
Definition at line 160 of file myJetAna.h.
Referenced by beginJob().
TH1F* myJetAna::EETime [private] |
Definition at line 155 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::EETimeTh [private] |
Definition at line 156 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::EETimeX [private] |
Definition at line 157 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::EETimeY [private] |
Definition at line 158 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::EEvHE [private] |
Definition at line 301 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::emEneLeadJetEta1 [private] |
Definition at line 229 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::emEneLeadJetEta2 [private] |
Definition at line 230 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::emEneLeadJetEta3 [private] |
Definition at line 231 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TProfile* myJetAna::EMF_Eta [private] |
Definition at line 307 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TProfile* myJetAna::EMF_EtaX [private] |
Definition at line 309 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TProfile* myJetAna::EMF_Phi [private] |
Definition at line 306 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TProfile* myJetAna::EMF_PhiX [private] |
Definition at line 308 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::ETime [private] |
Definition at line 211 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::fedSize [private] |
Definition at line 162 of file myJetAna.h.
std::string myJetAna::GenJetAlgorithm [private] |
Definition at line 57 of file myJetAna.h.
TH1F* myJetAna::h_ClusteredE [private] |
Definition at line 273 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::h_EmEnergy [private] |
Definition at line 284 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_et [private] |
Definition at line 67 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_eta [private] |
Definition at line 68 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_etaCal [private] |
Definition at line 253 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_etaGen [private] |
Definition at line 257 of file myJetAna.h.
Referenced by beginJob().
TH1F* myJetAna::h_etaGenL [private] |
Definition at line 261 of file myJetAna.h.
Referenced by beginJob().
TH2F* myJetAna::h_HadEnergy [private] |
Definition at line 285 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_jet1Pt [private] |
Definition at line 276 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_jet1PtHLT [private] |
Definition at line 278 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_jet2Pt [private] |
Definition at line 277 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_jetEt [private] |
Definition at line 264 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_nCalJets [private] |
Definition at line 241 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_nGenJets [private] |
Definition at line 242 of file myJetAna.h.
Referenced by beginJob().
TH1F* myJetAna::h_phi [private] |
Definition at line 69 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_phiCal [private] |
Definition at line 254 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_phiGen [private] |
Definition at line 258 of file myJetAna.h.
Referenced by beginJob().
TH1F* myJetAna::h_phiGenL [private] |
Definition at line 262 of file myJetAna.h.
Referenced by beginJob().
TH1F* myJetAna::h_pt [private] |
Definition at line 63 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_ptCal [private] |
Definition at line 252 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_ptGen [private] |
Definition at line 256 of file myJetAna.h.
Referenced by beginJob().
TH1F* myJetAna::h_ptGenL [private] |
Definition at line 260 of file myJetAna.h.
Referenced by beginJob().
TH1F* myJetAna::h_ptHPD [private] |
Definition at line 66 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_ptRBX [private] |
Definition at line 65 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_ptTower [private] |
Definition at line 64 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_TotalClusteredE [private] |
Definition at line 274 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_TotalUnclusteredE [private] |
Definition at line 271 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_TotalUnclusteredEt [private] |
Definition at line 268 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_Trk_NTrk [private] |
Definition at line 204 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_Trk_pt [private] |
Definition at line 203 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_UnclusteredE [private] |
Definition at line 270 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_UnclusteredEt [private] |
Definition at line 266 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_UnclusteredEts [private] |
Definition at line 267 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_VNTrks [private] |
Definition at line 199 of file myJetAna.h.
Referenced by beginJob().
TH1F* myJetAna::h_Vx [private] |
Definition at line 196 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_Vy [private] |
Definition at line 197 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::h_Vz [private] |
Definition at line 198 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::hadEneLeadJetEta1 [private] |
Definition at line 226 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::hadEneLeadJetEta2 [private] |
Definition at line 227 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::hadEneLeadJetEta3 [private] |
Definition at line 228 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::hadFracEta1 [private] |
Definition at line 233 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::hadFracEta2 [private] |
Definition at line 234 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::hadFracEta3 [private] |
Definition at line 235 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HBEne [private] |
Definition at line 78 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HBEneOOT [private] |
Definition at line 73 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HBEneTh [private] |
Definition at line 79 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HBEneX [private] |
Definition at line 80 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HBEneY [private] |
Definition at line 81 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::HBocc [private] |
Definition at line 124 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HBTime [private] |
Definition at line 82 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HBTimeTh [private] |
Definition at line 83 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HBTimeX [private] |
Definition at line 84 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HBTimeY [private] |
Definition at line 85 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::HBTvsE [private] |
Definition at line 113 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HEEne [private] |
Definition at line 86 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HEEneOOT [private] |
Definition at line 74 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HEEneTh [private] |
Definition at line 87 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HEEneX [private] |
Definition at line 88 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HEEneY [private] |
Definition at line 89 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HEnegEne [private] |
Definition at line 91 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HEnegTime [private] |
Definition at line 97 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::HEocc [private] |
Definition at line 125 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HEposEne [private] |
Definition at line 90 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HEposTime [private] |
Definition at line 96 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HETime [private] |
Definition at line 92 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HETimeTh [private] |
Definition at line 93 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HETimeX [private] |
Definition at line 94 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HETimeY [private] |
Definition at line 95 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::HETvsE [private] |
Definition at line 114 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::hf_sumTowerAllEx [private] |
Definition at line 207 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::hf_sumTowerAllEy [private] |
Definition at line 208 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::hf_TowerJetEt [private] |
Definition at line 209 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HFEne [private] |
Definition at line 98 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HFEneM [private] |
Definition at line 106 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HFEneOOT [private] |
Definition at line 75 of file myJetAna.h.
Referenced by beginJob().
TH1F* myJetAna::HFEneP [private] |
Definition at line 102 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HFEneTh [private] |
Definition at line 99 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HFLEne [private] |
Definition at line 108 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HFLTime [private] |
Definition at line 109 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::HFLvsS [private] |
Definition at line 111 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::HFocc [private] |
Definition at line 126 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HFSEne [private] |
Definition at line 110 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HFSTime [private] |
Definition at line 118 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HFTime [private] |
Definition at line 100 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HFTimeM [private] |
Definition at line 107 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HFTimeP [private] |
Definition at line 103 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HFTimePM [private] |
Definition at line 105 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HFTimePMa [private] |
Definition at line 104 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HFTimeTh [private] |
Definition at line 101 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::HFTvsE [private] |
Definition at line 115 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::HFvsZ [private] |
Definition at line 299 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::hitEta [private] |
Definition at line 249 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::hitEtaEt [private] |
Definition at line 248 of file myJetAna.h.
Referenced by beginJob().
TH1F* myJetAna::hitPhi [private] |
Definition at line 250 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOEne [private] |
Definition at line 119 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOEneOOT [private] |
Definition at line 76 of file myJetAna.h.
Referenced by beginJob().
TH1F* myJetAna::HOEneTh [private] |
Definition at line 120 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOHEne [private] |
Definition at line 129 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOHr0Ene [private] |
Definition at line 131 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOHr0Time [private] |
Definition at line 132 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOHrm1Ene [private] |
Definition at line 133 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOHrm1Time [private] |
Definition at line 134 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOHrm2Ene [private] |
Definition at line 135 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOHrm2Time [private] |
Definition at line 136 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOHrp1Ene [private] |
Definition at line 137 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOHrp1Time [private] |
Definition at line 138 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOHrp2Ene [private] |
Definition at line 139 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOHrp2Time [private] |
Definition at line 140 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOHTime [private] |
Definition at line 130 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::HOocc [private] |
Definition at line 123 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOSEne [private] |
Definition at line 127 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOSTime [private] |
Definition at line 128 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOTime [private] |
Definition at line 121 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HOTimeTh [private] |
Definition at line 122 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH2F* myJetAna::HOTvsE [private] |
Definition at line 116 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HPD_et [private] |
Definition at line 177 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HPD_hadEnergy [private] |
Definition at line 178 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HPD_hcalTime [private] |
Definition at line 179 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HPD_N [private] |
Definition at line 181 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HPD_nTowers [private] |
Definition at line 180 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::HTime [private] |
Definition at line 212 of file myJetAna.h.
Referenced by analyze(), and beginJob().
std::string myJetAna::JetCorrectionService [private] |
Definition at line 59 of file myJetAna.h.
TH1F* myJetAna::jetEMFraction [private] |
Definition at line 281 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::jetHOEne [private] |
Definition at line 280 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::MET [private] |
Definition at line 185 of file myJetAna.h.
TH1F* myJetAna::MET_HPD [private] |
Definition at line 188 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::MET_RBX [private] |
Definition at line 187 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::MET_Tower [private] |
Definition at line 186 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::METPhi [private] |
Definition at line 192 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::METSig [private] |
Definition at line 189 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::MEx [private] |
Definition at line 190 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::MEy [private] |
Definition at line 191 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::NTowers [private] |
Definition at line 282 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::nTowers1 [private] |
Definition at line 214 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::nTowers2 [private] |
Definition at line 215 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::nTowers3 [private] |
Definition at line 216 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::nTowers4 [private] |
Definition at line 217 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::nTowersLeadJetPt1 [private] |
Definition at line 218 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::nTowersLeadJetPt2 [private] |
Definition at line 219 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::nTowersLeadJetPt3 [private] |
Definition at line 220 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::nTowersLeadJetPt4 [private] |
Definition at line 221 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::RBX_et [private] |
Definition at line 171 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::RBX_hadEnergy [private] |
Definition at line 172 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::RBX_hcalTime [private] |
Definition at line 173 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::RBX_N [private] |
Definition at line 175 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::RBX_nTowers [private] |
Definition at line 174 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::st_Constituents [private] |
Definition at line 288 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::st_EmEnergy [private] |
Definition at line 290 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::st_Energy [private] |
Definition at line 289 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::st_Eta [private] |
Definition at line 293 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::st_Frac [private] |
Definition at line 297 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::st_HadEnergy [private] |
Definition at line 291 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::st_iEta [private] |
Definition at line 295 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::st_iPhi [private] |
Definition at line 296 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::st_OuterEnergy [private] |
Definition at line 292 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::st_Phi [private] |
Definition at line 294 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::st_Pt [private] |
Definition at line 287 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::SumEt [private] |
Definition at line 184 of file myJetAna.h.
Referenced by analyze(), and beginJob().
Definition at line 58 of file myJetAna.h.
Referenced by analyze(), and myJetAna().
TH1F* myJetAna::tMassGen [private] |
Definition at line 237 of file myJetAna.h.
TH1F* myJetAna::totEneLeadJetEta1 [private] |
Definition at line 223 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::totEneLeadJetEta2 [private] |
Definition at line 224 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::totEneLeadJetEta3 [private] |
Definition at line 225 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::totFedSize [private] |
Definition at line 163 of file myJetAna.h.
TH1F* myJetAna::towerEmEn [private] |
Definition at line 166 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::towerEmFrac [private] |
Definition at line 169 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::towerHadEn [private] |
Definition at line 165 of file myJetAna.h.
Referenced by analyze(), and beginJob().
TH1F* myJetAna::towerOuterEn [private] |
Definition at line 167 of file myJetAna.h.
Referenced by analyze(), and beginJob().