CMS 3D CMS Logo

Public Member Functions | Private Member Functions | Private Attributes

myJetAna Class Reference

#include <myJetAna.h>

Inheritance diagram for myJetAna:
edm::EDAnalyzer

List of all members.

Public Member Functions

 myJetAna (const edm::ParameterSet &)

Private Member Functions

void analyze (const edm::Event &, const edm::EventSetup &)
void beginJob ()
void endJob ()

Private Attributes

TH1F * caloEta
TH1F * caloEtaEt
std::string CaloJetAlgorithm
TH1F * caloPhi
TH1F * dijetMass
TH1F * EBEne
TH1F * EBEneTh
TH1F * EBEneX
TH1F * EBEneY
TH1F * EBTime
TH1F * EBTimeTh
TH1F * EBTimeX
TH1F * EBTimeY
TH2F * EBvHB
TH2F * ECALvHCAL
TH2F * ECALvHCALEta1
TH2F * ECALvHCALEta2
TH2F * ECALvHCALEta3
TH1F * EEEne
TH1F * EEEneTh
TH1F * EEEneX
TH1F * EEEneY
TH1F * EEnegEne
TH1F * EEnegTime
TH1F * EEposEne
TH1F * EEposTime
TH1F * EETime
TH1F * EETimeTh
TH1F * EETimeX
TH1F * EETimeY
TH2F * EEvHE
TH1F * emEneLeadJetEta1
TH1F * emEneLeadJetEta2
TH1F * emEneLeadJetEta3
TProfile * EMF_Eta
TProfile * EMF_EtaX
TProfile * EMF_Phi
TProfile * EMF_PhiX
TH1F * ETime
TH2F * fedSize
std::string GenJetAlgorithm
TH1F * h_ClusteredE
TH2F * h_EmEnergy
TH1F * h_et
TH1F * h_eta
TH1F * h_etaCal
TH1F * h_etaGen
TH1F * h_etaGenL
TH2F * h_HadEnergy
TH1F * h_jet1Pt
TH1F * h_jet1PtHLT
TH1F * h_jet2Pt
TH1F * h_jetEt
TH1F * h_nCalJets
TH1F * h_nGenJets
TH1F * h_phi
TH1F * h_phiCal
TH1F * h_phiGen
TH1F * h_phiGenL
TH1F * h_pt
TH1F * h_ptCal
TH1F * h_ptGen
TH1F * h_ptGenL
TH1F * h_ptHPD
TH1F * h_ptRBX
TH1F * h_ptTower
TH1F * h_TotalClusteredE
TH1F * h_TotalUnclusteredE
TH1F * h_TotalUnclusteredEt
TH1F * h_Trk_NTrk
TH1F * h_Trk_pt
TH1F * h_UnclusteredE
TH1F * h_UnclusteredEt
TH1F * h_UnclusteredEts
TH1F * h_VNTrks
TH1F * h_Vx
TH1F * h_Vy
TH1F * h_Vz
TH1F * hadEneLeadJetEta1
TH1F * hadEneLeadJetEta2
TH1F * hadEneLeadJetEta3
TH1F * hadFracEta1
TH1F * hadFracEta2
TH1F * hadFracEta3
TH1F * HBEne
TH1F * HBEneOOT
TH1F * HBEneTh
TH1F * HBEneX
TH1F * HBEneY
TH2F * HBocc
TH1F * HBTime
TH1F * HBTimeTh
TH1F * HBTimeX
TH1F * HBTimeY
TH2F * HBTvsE
TH1F * HEEne
TH1F * HEEneOOT
TH1F * HEEneTh
TH1F * HEEneX
TH1F * HEEneY
TH1F * HEnegEne
TH1F * HEnegTime
TH2F * HEocc
TH1F * HEposEne
TH1F * HEposTime
TH1F * HETime
TH1F * HETimeTh
TH1F * HETimeX
TH1F * HETimeY
TH2F * HETvsE
TH1F * hf_sumTowerAllEx
TH1F * hf_sumTowerAllEy
TH1F * hf_TowerJetEt
TH1F * HFEne
TH1F * HFEneM
TH1F * HFEneOOT
TH1F * HFEneP
TH1F * HFEneTh
TH1F * HFLEne
TH1F * HFLTime
TH2F * HFLvsS
TH2F * HFocc
TH1F * HFSEne
TH1F * HFSTime
TH1F * HFTime
TH1F * HFTimeM
TH1F * HFTimeP
TH1F * HFTimePM
TH1F * HFTimePMa
TH1F * HFTimeTh
TH2F * HFTvsE
TH2F * HFvsZ
TH1F * hitEta
TH1F * hitEtaEt
TH1F * hitPhi
TH1F * HOEne
TH1F * HOEneOOT
TH1F * HOEneTh
TH1F * HOHEne
TH1F * HOHr0Ene
TH1F * HOHr0Time
TH1F * HOHrm1Ene
TH1F * HOHrm1Time
TH1F * HOHrm2Ene
TH1F * HOHrm2Time
TH1F * HOHrp1Ene
TH1F * HOHrp1Time
TH1F * HOHrp2Ene
TH1F * HOHrp2Time
TH1F * HOHTime
TH2F * HOocc
TH1F * HOSEne
TH1F * HOSTime
TH1F * HOTime
TH1F * HOTimeTh
TH2F * HOTvsE
TH1F * HPD_et
TH1F * HPD_hadEnergy
TH1F * HPD_hcalTime
TH1F * HPD_N
TH1F * HPD_nTowers
TH1F * HTime
std::string JetCorrectionService
TH1F * jetEMFraction
TH1F * jetHOEne
TH1F * MET
TH1F * MET_HPD
TH1F * MET_RBX
TH1F * MET_Tower
TH1F * METPhi
TH1F * METSig
TH1F * MEx
TH1F * MEy
TH1F * NTowers
TH1F * nTowers1
TH1F * nTowers2
TH1F * nTowers3
TH1F * nTowers4
TH1F * nTowersLeadJetPt1
TH1F * nTowersLeadJetPt2
TH1F * nTowersLeadJetPt3
TH1F * nTowersLeadJetPt4
TH1F * RBX_et
TH1F * RBX_hadEnergy
TH1F * RBX_hcalTime
TH1F * RBX_N
TH1F * RBX_nTowers
TH1F * st_Constituents
TH1F * st_EmEnergy
TH1F * st_Energy
TH1F * st_Eta
TH1F * st_Frac
TH1F * st_HadEnergy
TH1F * st_iEta
TH1F * st_iPhi
TH1F * st_OuterEnergy
TH1F * st_Phi
TH1F * st_Pt
TH1F * SumEt
edm::InputTag theTriggerResultsLabel
TH1F * tMassGen
TH1F * totEneLeadJetEta1
TH1F * totEneLeadJetEta2
TH1F * totEneLeadJetEta3
TH1F * totFedSize
TH1F * towerEmEn
TH1F * towerEmFrac
TH1F * towerHadEn
TH1F * towerOuterEn

Detailed Description

Definition at line 46 of file myJetAna.h.


Constructor & Destructor Documentation

myJetAna::myJetAna ( const edm::ParameterSet cfg)

Definition at line 115 of file myJetAna.cc.

References edm::ParameterSet::getParameter(), and theTriggerResultsLabel.

                                             :
  CaloJetAlgorithm( cfg.getParameter<string>( "CaloJetAlgorithm" ) ), 
  GenJetAlgorithm( cfg.getParameter<string>( "GenJetAlgorithm" ) )  
{
  theTriggerResultsLabel = cfg.getParameter<edm::InputTag>("TriggerResultsLabel");
}

Member Function Documentation

void myJetAna::analyze ( const edm::Event evt,
const edm::EventSetup es 
) [private, virtual]

Implements edm::EDAnalyzer.

Definition at line 395 of file myJetAna.cc.

References abs, edm::EventBase::bunchCrossing(), caloEta, caloEtaEt, CaloJetAlgorithm, caloPhi, HiRecoJets_cff::caloTowers, funct::cos(), gather_cfg::cout, DEBUG, Geom::deltaPhi(), dijetMass, EBEne, EBEneTh, EBEneX, EBEneY, EBTime, EBTimeTh, EBTimeX, EBTimeY, EBvHB, EcalBarrel, EcalEndcap, RBX_struct::ecalTime, HPD_struct::ecalTime, ECALvHCAL, ECALvHCALEta1, ECALvHCALEta2, ECALvHCALEta3, EEEne, EEEneTh, EEEneX, EEEneY, EETime, EETimeTh, EETimeX, EETimeY, EEvHE, emEneLeadJetEta1, emEneLeadJetEta2, emEneLeadJetEta3, HPD_struct::emEnergy, RBX_struct::emEnergy, EMF_Eta, EMF_EtaX, EMF_Phi, EMF_PhiX, relval_parameters_module::energy, RBX_struct::et, HPD_struct::et, ETime, edm::EventID::event(), edm::Event::getByLabel(), edm::Event::getManyByType(), h_ClusteredE, h_EmEnergy, h_et, h_eta, h_etaCal, h_HadEnergy, h_jet1Pt, h_jet1PtHLT, h_jet2Pt, h_jetEt, h_nCalJets, h_phi, h_phiCal, h_pt, h_ptCal, h_ptHPD, h_ptRBX, h_ptTower, h_TotalClusteredE, h_TotalUnclusteredE, h_TotalUnclusteredEt, h_Trk_NTrk, h_Trk_pt, h_UnclusteredE, h_UnclusteredEt, h_UnclusteredEts, h_Vx, h_Vy, h_Vz, hadEneLeadJetEta1, hadEneLeadJetEta2, hadEneLeadJetEta3, HPD_struct::hadEnergy, RBX_struct::hadEnergy, hadFracEta1, hadFracEta2, hadFracEta3, HBEne, HBEneOOT, HBEneTh, HBEneX, HBEneY, HBocc, HBTime, HBTimeTh, HBTimeX, HBTimeY, HBTvsE, HcalBarrel, HcalEndcap, HcalForward, HcalOuter, HPD_struct::hcalTime, RBX_struct::hcalTime, HEEne, HEEneOOT, HEEneTh, HEEneX, HEEneY, HEnegEne, HEnegTime, HEocc, HEposEne, HEposTime, HETime, HETimeTh, HETimeX, HETimeY, HETvsE, hf_sumTowerAllEx, hf_sumTowerAllEy, hf_TowerJetEt, HFEne, HFEneM, HFEneP, HFEneTh, HFLEne, HFLTime, HFLvsS, HFocc, HFSEne, HFSTime, HFTime, HFTimeM, HFTimeP, HFTimePM, HFTimePMa, HFTimeTh, HFTvsE, HFvsZ, hitEta, hitPhi, HOEne, HOEneTh, HOHEne, HOHr0Ene, HOHr0Time, HOHrm1Ene, HOHrm1Time, HOHrm2Ene, HOHrm2Time, HOHrp1Ene, HOHrp1Time, HOHrp2Ene, HOHrp2Time, HOHTime, HOocc, HOSEne, HOSTime, HOTime, HOTimeTh, HOTvsE, HPD_et, HPD_hadEnergy, HPD_hcalTime, HPD_N, HPD_nTowers, HPDColl, HTime, i, edm::EventBase::id(), HcalDetId::ieta(), INVALID, edm::HandleBase::isValid(), j, jetEMFraction, reco::btau::jetEta, jetHOEne, reco::btau::jetPhi, reco::btau::jetPt, edm::EventBase::luminosityBlock(), MET_HPD, MET_RBX, MET_Tower, METPhi, reco::MET::mEtSig(), METSig, MEx, MEy, n, nBNC, RBX_struct::nTowers, HPD_struct::nTowers, NTowers, nTowers1, nTowers2, nTowers3, nTowers4, nTowersLeadJetPt1, nTowersLeadJetPt2, nTowersLeadJetPt3, nTowersLeadJetPt4, edm::EventBase::orbitNumber(), Pass, reco::LeafCandidate::phi(), phi, edm::Handle< T >::product(), reco::LeafCandidate::pt(), reco::LeafCandidate::px(), reco::LeafCandidate::py(), RBX_et, RBX_hadEnergy, RBX_hcalTime, RBX_N, RBX_nTowers, RBXColl, edm::EventID::run(), funct::sin(), st_Constituents, st_EmEnergy, st_Energy, st_Eta, st_Frac, st_HadEnergy, st_iEta, st_iPhi, st_OuterEnergy, st_Phi, st_Pt, reco::MET::sumEt(), SumEt, matplotRender::t, theTriggerResultsLabel, totBNC, totEneLeadJetEta1, totEneLeadJetEta2, totEneLeadJetEta3, towerEmEn, towerEmFrac, towerHadEn, towerOuterEn, edm::TriggerNames::triggerName(), edm::Event::triggerNames(), and GoodVertex_cfg::vertexCollection.

                                                                     {
 
  using namespace edm;

  bool Pass, Pass_HFTime, Pass_DiJet, Pass_BunchCrossing, Pass_Trigger, Pass_Vertex;

  int EtaOk10, EtaOk13, EtaOk40;

  double LeadMass;

  double HFRecHit[100][100][2];

  double towerEtCut, towerECut, towerE;

  towerEtCut = 1.0;
  towerECut  = 1.0;

  double HBHEThreshold = 2.0;
  double HFThreshold   = 2.0;
  double HOThreshold   = 2.0;
  double EBEEThreshold = 2.0;

  float pt1;

  float minJetPt = 5.;
  float minJetPt10 = 10.;
  int jetInd, allJetInd;
  LeadMass = -1;

  //  Handle<DcsStatusCollection> dcsStatus;
  //  evt.getByLabel("scalersRawToDigi", dcsStatus);
  //  std::cout << dcsStatus << std::endl;
  //  if (dcsStatus.isValid()) {
  //  }

  //  DcsStatus dcsStatus;
  //  Handle<DcsStatus> dcsStatus;
  //  evt.getByLabel("dcsStatus", dcsStatus);


  math::XYZTLorentzVector p4tmp[2], p4cortmp[2];

  // --------------------------------------------------------------
  // --------------------------------------------------------------

  std::cout << ">>>> ANA: Run = "    << evt.id().run() 
            << " Event = " << evt.id().event()
            << " Bunch Crossing = " << evt.bunchCrossing() 
            << " Orbit Number = "   << evt.orbitNumber()
            << " Luminosity Block = "  << evt.luminosityBlock()
            <<  std::endl;
  
  // *********************
  // *** Filter Event
  // *********************
  Pass = false;

  /***
  if (evt.bunchCrossing()== 100) {
    Pass = true;
  } else {
    Pass = false;
  }
  ***/

  // ***********************
  // ***  Pass Trigger
  // ***********************


  // **** Get the TriggerResults container
  Handle<TriggerResults> triggerResults;
  evt.getByLabel(theTriggerResultsLabel, triggerResults);
  //  evt.getByLabel("TriggerResults::HLT", triggerResults);

  if (triggerResults.isValid()) {
    if (DEBUG) std::cout << "trigger valid " << std::endl;
    const edm::TriggerNames & triggerNames = evt.triggerNames(*triggerResults);
    unsigned int n = triggerResults->size();
    for (unsigned int i=0; i!=n; i++) {

      /***
      std::cout << ">>> Trigger Name (" <<  i << ") = " << triggerNames.triggerName(i)
                << " Accept = " << triggerResults->accept(i)
                << std::endl;
      ***/
      /****
      if (triggerResults->accept(i) == 1) {
        std::cout << "+++ Trigger Name (" <<  i << ") = " << triggerNames.triggerName(i)
                  << " Accept = " << triggerResults->accept(i)
                  << std::endl;
      }
      ****/

      if (DEBUG) std::cout <<  triggerNames.triggerName(i) << std::endl;

      //      if ( (triggerNames.triggerName(i) == "HLT_ZeroBias")  || 
      //           (triggerNames.triggerName(i) == "HLT_MinBias")   || 
      //           (triggerNames.triggerName(i) == "HLT_MinBiasHcal") )  {

      if (triggerNames.triggerName(i) == "HLT_MinBiasBSC") {
        Pass_Trigger = true;
      } else {
        Pass_Trigger = false;
      }

    }
      
  } else {

    edm::Handle<TriggerResults> *tr = new edm::Handle<TriggerResults>;
    triggerResults = (*tr);

    //     std::cout << "triggerResults is not valid" << std::endl;
    //     std::cout << triggerResults << std::endl;
    //     std::cout << triggerResults.isValid() << std::endl;
    
    if (DEBUG) std::cout << "trigger not valid " << std::endl;
    edm::LogInfo("myJetAna") << "TriggerResults::HLT not found, "
      "automatically select events";

    Pass_Trigger = true;

    //return;
  }

  
  /***
  Handle<L1GlobalTriggerReadoutRecord> gtRecord;
  evt.getByLabel("gtDigis",gtRecord);
  const TechnicalTriggerWord tWord = gtRecord->technicalTriggerWord();

  if (gtRecord.isValid()) {
    if (tWord.at(40)) {
      Pass_Trigger = true;
    } else {
      Pass_Trigger = false;
    }
  } else {
    Pass_Trigger = false;
  }
  ****/


  // *************************
  // ***  Pass Bunch Crossing
  // *************************

  // *** Check Luminosity Section
  if (evt.id().run() == 122294)
    if ( (evt.luminosityBlock() >= 37) && (evt.luminosityBlock() <= 43) ) 
      Pass = true;
  if (evt.id().run() == 122314)
    if ( (evt.luminosityBlock() >= 24) && (evt.luminosityBlock() <= 37) ) 
      Pass = true;
  if (evt.id().run() == 123575)
      Pass = true;
  if (evt.id().run() == 123596)
      Pass = true;

  // ***********
  if (evt.id().run() == 124009) {
    if ( (evt.bunchCrossing() == 51) ||
         (evt.bunchCrossing() == 151) ||
         (evt.bunchCrossing() == 2824) ) {
      Pass = true;
    }
  }

  if (evt.id().run() == 124020) {
    if ( (evt.bunchCrossing() == 51) ||
         (evt.bunchCrossing() == 151) ||
         (evt.bunchCrossing() == 2824) ) {
      Pass = true;
    }
  }

  if (evt.id().run() == 124024) {
    if ( (evt.bunchCrossing() == 51) ||
         (evt.bunchCrossing() == 151) ||
         (evt.bunchCrossing() == 2824) ) {
      Pass = true;
    }
  }

  if ( (evt.bunchCrossing() == 51)   ||
       (evt.bunchCrossing() == 151)  ||
       (evt.bunchCrossing() == 2596) || 
       (evt.bunchCrossing() == 2724) || 
       (evt.bunchCrossing() == 2824) ||
       (evt.bunchCrossing() == 3487) ) {
    Pass_BunchCrossing = true;
  } else {
    Pass_BunchCrossing = false;
  }
  

  // ***********************
  // ***  Pass HF Timing 
  // ***********************

  double HFM_ETime, HFP_ETime;
  double HFM_E, HFP_E;
  double HF_PMM;

  HFM_ETime = 0.;
  HFM_E = 0.;
  HFP_ETime = 0.;
  HFP_E = 0.;

  for (int i=0; i<100; i++) {
    for (int j=0; j<100; j++) {
      HFRecHit[i][j][0] = -10.;
      HFRecHit[i][j][1] = -10.;
    }
  }


  try {
    std::vector<edm::Handle<HFRecHitCollection> > colls;
    evt.getManyByType(colls);
    std::vector<edm::Handle<HFRecHitCollection> >::iterator i;
    for (i=colls.begin(); i!=colls.end(); i++) {
      for (HFRecHitCollection::const_iterator j=(*i)->begin(); j!=(*i)->end(); j++) {
        if (j->id().subdet() == HcalForward) {

          float en = j->energy();
          HcalDetId id(j->detid().rawId());
          int ieta = id.ieta();
          int iphi = id.iphi();
          int depth = id.depth();
          
          HFRecHit[ieta+41][iphi][depth-1] = en;

          if (j->id().ieta()<0) {
            if (j->energy() > HFThreshold) {
              HFM_ETime += j->energy()*j->time(); 
              HFM_E     += j->energy();
            }
          } else {
            if (j->energy() > HFThreshold) {
              HFP_ETime += j->energy()*j->time(); 
              HFP_E     += j->energy();
            }
          }

        }
      }
    }
  } catch (...) {
    cout << "No HF RecHits." << endl;
  }

  if ((HFP_E > 0.) && (HFM_E > 0.)) {
    HF_PMM = (HFP_ETime / HFP_E) - (HFM_ETime / HFM_E);
    HFTimePMa->Fill(HF_PMM); 
  } else {
    HF_PMM = INVALID;
  }

  
  if (fabs(HF_PMM) < 10.)  {
    Pass_HFTime = true;
  } else {
    Pass_HFTime = false;
  }


  // **************************
  // ***  Pass DiJet Criteria
  // **************************
  double highestPt;
  double nextPt;
  double dphi;
  int    nDiJet, nJet;

  nJet      = 0;
  nDiJet    = 0;
  highestPt = 0.0;
  nextPt    = 0.0;

  allJetInd = 0;
  Handle<CaloJetCollection> caloJets;
  evt.getByLabel( CaloJetAlgorithm, caloJets );
  for( CaloJetCollection::const_iterator cal = caloJets->begin(); cal != caloJets->end(); ++ cal ) {

    // TODO: verify first two jets are the leading jets
    if (nJet == 0) p4tmp[0] = cal->p4();
    if (nJet == 1) p4tmp[1] = cal->p4();

    if ( (cal->pt() > 3.) && 
         (fabs(cal->eta()) < 3.0) ) { 
      nDiJet++;
    }
    nJet++;

  }  
  

  if (nDiJet > 1) {
    dphi = deltaPhi(p4tmp[0].phi(), p4tmp[1].phi());
    Pass_DiJet = true;
  } else {
    dphi = INVALID;
    Pass_DiJet = false;
  }
      

  // **************************
  // ***  Pass Vertex
  // **************************
  double VTX = 0.;
  int nVTX = 0;

  edm::Handle<reco::VertexCollection> vertexCollection;
  evt.getByLabel("offlinePrimaryVertices", vertexCollection);
  const reco::VertexCollection vC = *(vertexCollection.product());

  std::cout << "Reconstructed "<< vC.size() << " vertices" << std::endl ;

  nVTX = vC.size();
  for (reco::VertexCollection::const_iterator vertex=vC.begin(); vertex!=vC.end(); vertex++){
    VTX  = vertex->z();
  }

  if ( (fabs(VTX) < 20.) && (nVTX > 0) ){
    Pass_Vertex = true;
  } else {
    Pass_Vertex = false;
  }

  // ***********************
  // ***********************


  nBNC[evt.bunchCrossing()]++;
  totBNC++;
    
  //  Pass = true;

  // *** Check for tracks
  //  edm::Handle<reco::TrackCollection> trackCollection;
  //  evt.getByLabel("generalTracks", trackCollection);
  //  const reco::TrackCollection tC = *(trackCollection.product());
  //  if ((Pass) && (tC.size()>1)) {
  //  } else {
  //    Pass = false;
  //  } 


  // **************************
  // *** Event Passed Selection
  // **************************


  if (evt.id().run() == 1) {
    if ( (Pass_DiJet)         &&
         (Pass_Vertex) ) {
      Pass = true;
    } else {
      Pass = false;
    }
  } else {
    if ( (Pass_BunchCrossing) && 
         (Pass_HFTime)        &&
         (Pass_Vertex) ) {
      Pass = true;
    } else {
      Pass = false;
    }
  }

  std::cout << "+++ Result " 
            << " Event = " 
            << evt.id().run()
            << " LS = "
            << evt.luminosityBlock()
            << " dphi = "
            << dphi
            << " Pass = " 
            << Pass
            << std::endl;
        
  if (Pass) {
 

  // *********************
  // *** Classify Event
  // *********************
  int evtType = 0;

  Handle<CaloTowerCollection> caloTowers;
  evt.getByLabel( "towerMaker", caloTowers );

  for (int i=0;i<36;i++) {
    RBXColl[i].et        = 0;
    RBXColl[i].hadEnergy = 0;
    RBXColl[i].emEnergy  = 0;
    RBXColl[i].hcalTime  = 0;
    RBXColl[i].ecalTime  = 0;
    RBXColl[i].nTowers   = 0;
  }  
  for (int i=0;i<144;i++) {
    HPDColl[i].et        = 0;
    HPDColl[i].hadEnergy = 0;
    HPDColl[i].emEnergy  = 0;
    HPDColl[i].hcalTime  = 0;
    HPDColl[i].ecalTime  = 0;
    HPDColl[i].nTowers   = 0;
  }  

  double ETotal, emFrac;
  double HCALTotalCaloTowerE, ECALTotalCaloTowerE;
  double HCALTotalCaloTowerE_Eta1, ECALTotalCaloTowerE_Eta1;
  double HCALTotalCaloTowerE_Eta2, ECALTotalCaloTowerE_Eta2;
  double HCALTotalCaloTowerE_Eta3, ECALTotalCaloTowerE_Eta3;

  ETotal = 0.;
  emFrac = 0.;
    
  HCALTotalCaloTowerE = 0;
  ECALTotalCaloTowerE = 0;
  HCALTotalCaloTowerE_Eta1 = 0.;
  ECALTotalCaloTowerE_Eta1 = 0.;
  HCALTotalCaloTowerE_Eta2 = 0.; 
  ECALTotalCaloTowerE_Eta2 = 0.;
  HCALTotalCaloTowerE_Eta3 = 0.;
  ECALTotalCaloTowerE_Eta3 = 0.;

  for (CaloTowerCollection::const_iterator tower = caloTowers->begin();
       tower != caloTowers->end(); tower++) {
    ETotal += tower->hadEnergy();
    ETotal += tower->emEnergy();
  }

  for (CaloTowerCollection::const_iterator tower = caloTowers->begin();
       tower != caloTowers->end(); tower++) {

    // Raw tower energy without grouping or thresholds

    towerHadEn->Fill(tower->hadEnergy());
    towerEmEn->Fill(tower->emEnergy());
    towerOuterEn->Fill(tower->outerEnergy());

    //    towerHadEt->Fill(tower->hadEt());
    //    towerEmEt->Fill(tower->emEt());
    //    towerOuterEt->Fill(tower->outerEt());

    if ((tower->emEnergy()+tower->hadEnergy()) != 0) {
      emFrac = tower->emEnergy()/(tower->emEnergy()+tower->hadEnergy());
      towerEmFrac->Fill(emFrac);
    } else {
      emFrac = 0.;
    }

    /***
      std::cout << "ETotal = " << ETotal 
                << " EMF = " << emFrac
                << " EM = " << tower->emEnergy()
                << " Tot = " << tower->emEnergy()+tower->hadEnergy()
                << " ieta/iphi = " <<  tower->ieta() << " / "  << tower->iphi() 
                << std::endl;
    ***/

    if (abs(tower->iphi()) < 100) EMF_Phi->Fill(tower->iphi(), emFrac);
    if (abs(tower->ieta()) < 100) EMF_Eta->Fill(tower->ieta(), emFrac);
    if ( (evt.id().run() == 120020) && (evt.id().event() == 453) ) {
      std::cout << "Bunch Crossing = " << evt.bunchCrossing() 
                << " Orbit Number = "  << evt.orbitNumber()
                <<  std::endl;

      if (abs(tower->iphi()) < 100) EMF_PhiX->Fill(tower->iphi(), emFrac);
      if (abs(tower->ieta()) < 100) EMF_EtaX->Fill(tower->ieta(), emFrac);
    }
    
    HCALTotalCaloTowerE += tower->hadEnergy();
    ECALTotalCaloTowerE += tower->emEnergy();

    towerE = tower->hadEnergy() + tower->emEnergy();
    if (tower->et() > towerEtCut) caloEtaEt->Fill(tower->eta());
    if (towerE      > towerECut)  caloEta->Fill(tower->eta());
    caloPhi->Fill(tower->phi());

    if (fabs(tower->eta()) < 1.3) {
      HCALTotalCaloTowerE_Eta1 += tower->hadEnergy();
      ECALTotalCaloTowerE_Eta1 += tower->emEnergy();
    }
    if ((fabs(tower->eta()) >= 1.3) && (fabs(tower->eta()) < 2.5)) {
      HCALTotalCaloTowerE_Eta2 += tower->hadEnergy();
      ECALTotalCaloTowerE_Eta2 += tower->emEnergy();
    }
    if (fabs(tower->eta()) > 2.5) {
      HCALTotalCaloTowerE_Eta3 += tower->hadEnergy();
      ECALTotalCaloTowerE_Eta3 += tower->emEnergy();
    }

    /***
    std::cout << "had = "  << tower->hadEnergy()
              << " em = "  << tower->emEnergy()
              << " fabs(eta) = " << fabs(tower->eta())
              << " ieta/iphi = " <<  tower->ieta() << " / "  << tower->iphi() 
              << std::endl;
    ***/

    if ((tower->hadEnergy() + tower->emEnergy()) > 2.0) {

      int iRBX = tower->iphi();
      iRBX = iRBX-2;
      if (iRBX == 0)  iRBX = 17;
      if (iRBX == -1) iRBX = 18;
      iRBX = (iRBX-1)/4;

      if (tower->ieta() < 0) iRBX += 18;
      if (iRBX < 36) {
        RBXColl[iRBX].et        += tower->et(); 
        RBXColl[iRBX].hadEnergy += tower->hadEnergy(); 
        RBXColl[iRBX].emEnergy  += tower->emEnergy(); 
        RBXColl[iRBX].hcalTime  += tower->hcalTime(); 
        RBXColl[iRBX].ecalTime  += tower->ecalTime(); 
        RBXColl[iRBX].nTowers++;
      }
      /***
      std::cout << "iRBX = " << iRBX << " "     
                << "ieta/iphi = " <<  tower->ieta() << " / "  << tower->iphi() 
                << " et = " << tower->et()
                << std::endl;
      ***/
      int iHPD = tower->iphi();
      if (tower->ieta() < 0) iHPD = iHPD + 72;
      if (iHPD < 144) {
        HPDColl[iHPD].et        += tower->et(); 
        HPDColl[iHPD].hadEnergy += tower->hadEnergy(); 
        HPDColl[iHPD].emEnergy  += tower->emEnergy(); 
        HPDColl[iHPD].hcalTime  += tower->hcalTime(); 
        HPDColl[iHPD].ecalTime  += tower->ecalTime(); 
        HPDColl[iHPD].nTowers++;
      }
      /***
      std::cout << "iHPD = " << iHPD << " "     
                << "ieta/iphi = " <<  tower->ieta() << " / "  << tower->iphi() 
                << " et = " << tower->et()
                << std::endl;
      ***/

    }

  }

  ECALvHCAL->Fill(HCALTotalCaloTowerE, ECALTotalCaloTowerE);
  ECALvHCALEta1->Fill(HCALTotalCaloTowerE_Eta1, ECALTotalCaloTowerE_Eta1);
  ECALvHCALEta2->Fill(HCALTotalCaloTowerE_Eta2, ECALTotalCaloTowerE_Eta2);
  ECALvHCALEta3->Fill(HCALTotalCaloTowerE_Eta3, ECALTotalCaloTowerE_Eta3);

  std::cout << " Total CaloTower Energy :  "
            << " ETotal= " << ETotal 
            << " HCAL= " << HCALTotalCaloTowerE 
            << " ECAL= " << ECALTotalCaloTowerE
            << std::endl;

  /***
            << " HCAL Eta1 = "  << HCALTotalCaloTowerE_Eta1
            << " ECAL= " << ECALTotalCaloTowerE_Eta1
            << " HCAL Eta2 = " << HCALTotalCaloTowerE_Eta2
            << " ECAL= " << ECALTotalCaloTowerE_Eta2
            << " HCAL Eta3 = " << HCALTotalCaloTowerE_Eta3
            << " ECAL= " << ECALTotalCaloTowerE_Eta3
            << std::endl;
  ***/


  // Loop over the RBX Collection
  int nRBX = 0;
  int nTowers = 0;
  for (int i=0;i<36;i++) {
    RBX_et->Fill(RBXColl[i].et);
    RBX_hadEnergy->Fill(RBXColl[i].hadEnergy);
    RBX_hcalTime->Fill(RBXColl[i].hcalTime / RBXColl[i].nTowers);
    RBX_nTowers->Fill(RBXColl[i].nTowers);
    if (RBXColl[i].hadEnergy > 3.0) {
      nRBX++;
      nTowers = RBXColl[i].nTowers;
    }
  }
  RBX_N->Fill(nRBX);
  if ( (nRBX == 1) && (nTowers > 24) ) {
    evtType = 1;
  }

  // Loop over the HPD Collection
  int nHPD = 0;
  for (int i=0;i<144;i++) {
    HPD_et->Fill(HPDColl[i].et);
    HPD_hadEnergy->Fill(HPDColl[i].hadEnergy);
    HPD_hcalTime->Fill(HPDColl[i].hcalTime / HPDColl[i].nTowers);
    HPD_nTowers->Fill(HPDColl[i].nTowers);
    if (HPDColl[i].hadEnergy > 3.0) {
      nHPD++;
      nTowers = HPDColl[i].nTowers;
    }
  }
  HPD_N->Fill(nHPD);
  if ( (nHPD == 1) && (nTowers > 6) ) {
    evtType = 2;
    cout << " nHPD = "   << nHPD 
         << " Towers = " << nTowers
         << " Type = "   << evtType 
         << endl; 
  }
 
  // **************************************************************
  // ** Access Trigger Information
  // **************************************************************

  // **** Get the TriggerResults container
  Handle<TriggerResults> triggerResults;
  evt.getByLabel(theTriggerResultsLabel, triggerResults);

  Int_t JetLoPass = 0;
  
  if (triggerResults.isValid()) {
    if (DEBUG) std::cout << "trigger valid " << std::endl;
    const edm::TriggerNames & triggerNames = evt.triggerNames(*triggerResults);
    unsigned int n = triggerResults->size();
    for (unsigned int i=0; i!=n; i++) {

      /***
      std::cout << "   Trigger Name = " << triggerNames.triggerName(i)
                << " Accept = " << triggerResults->accept(i)
                << std::endl;
      ***/

      if (DEBUG) std::cout <<  triggerNames.triggerName(i) << std::endl;

      if ( triggerNames.triggerName(i) == "HLT_Jet30" ) {
        JetLoPass =  triggerResults->accept(i);
        if (DEBUG) std::cout << "Found  HLT_Jet30 " 
                             << JetLoPass
                             << std::endl;
      }

    }
      
  } else {

    edm::Handle<TriggerResults> *tr = new edm::Handle<TriggerResults>;
    triggerResults = (*tr);

    //     std::cout << "triggerResults is not valid" << std::endl;
    //     std::cout << triggerResults << std::endl;
    //     std::cout << triggerResults.isValid() << std::endl;
    
    if (DEBUG) std::cout << "trigger not valid " << std::endl;
    edm::LogInfo("myJetAna") << "TriggerResults::HLT not found, "
      "automatically select events";
    //return;
  }

  /****
  Handle <L1GlobalTriggerReadoutRecord> gtRecord_h;
  evt.getByType (gtRecord_h); // assume only one L1 trigger record here
  const L1GlobalTriggerReadoutRecord* gtRecord = gtRecord_h.failedToGet () ? 0 : &*gtRecord_h;
  
  if (gtRecord) { // object is available
    for (int l1bit = 0; l1bit < 128; ++l1bit) {
      if (gtRecord->decisionWord() [l1bit]) h_L1TrigBit->Fill (l1bit);
    }
  }
  ****/




  // **************************************************************
  // ** Loop over the two leading CaloJets and fill some histograms
  // **************************************************************
  Handle<CaloJetCollection> caloJets;
  evt.getByLabel( CaloJetAlgorithm, caloJets );


  jetInd    = 0;
  allJetInd = 0;

  EtaOk10 = 0;
  EtaOk13 = 0;
  EtaOk40 = 0;

  //  const JetCorrector* corrector = 
  //    JetCorrector::getJetCorrector (JetCorrectionService, es);


  highestPt = 0.0;
  nextPt    = 0.0;
  
  for( CaloJetCollection::const_iterator cal = caloJets->begin(); cal != caloJets->end(); ++ cal ) {
    
    //    double scale = corrector->correction (*cal);
    double scale = 1.0;
    double corPt = scale*cal->pt();
    //    double corPt = cal->pt();
    //    cout << "Pt = " << cal->pt() << endl;
    
    if (corPt>highestPt) {
      nextPt      = highestPt;
      p4cortmp[1] = p4cortmp[0]; 
      highestPt   = corPt;
      p4cortmp[0] = scale*cal->p4();
    } else if (corPt>nextPt) {
      nextPt      = corPt;
      p4cortmp[1] = scale*cal->p4();
    }

    allJetInd++;
    if (allJetInd == 1) {
      h_jet1Pt->Fill( cal->pt() );
      if (JetLoPass != 0) h_jet1PtHLT->Fill( cal->pt() );
      pt1 = cal->pt();
      p4tmp[0] = cal->p4();
      if ( fabs(cal->eta()) < 1.0) EtaOk10++;
      if ( fabs(cal->eta()) < 1.3) EtaOk13++;
      if ( fabs(cal->eta()) < 4.0) EtaOk40++;            
    }
    if (allJetInd == 2) {
      h_jet2Pt->Fill( cal->pt() );
      p4tmp[1] = cal->p4();
      if ( fabs(cal->eta()) < 1.0) EtaOk10++;
      if ( fabs(cal->eta()) < 1.3) EtaOk13++;
      if ( fabs(cal->eta()) < 4.0) EtaOk40++;
    }

    if ( cal->pt() > minJetPt) {
      h_ptCal->Fill( cal->pt() );   
      h_etaCal->Fill( cal->eta() );
      h_phiCal->Fill( cal->phi() );
      jetInd++;
    }
  }

  h_nCalJets->Fill( jetInd ); 

  if (jetInd > 1) {
    LeadMass = (p4tmp[0]+p4tmp[1]).mass();
    dijetMass->Fill( LeadMass );    
  }


  // ******************
  // *** Jet Properties
  // ******************

  int nTow1, nTow2, nTow3, nTow4;
  //  Handle<CaloJetCollection> jets;
  //  evt.getByLabel( CaloJetAlgorithm, jets );

  // *********************************************************
  // --- Loop over jets and make a list of all the used towers
  int jjet = 0;
  for ( CaloJetCollection::const_iterator ijet=caloJets->begin(); ijet!=caloJets->end(); ijet++) {
    jjet++;

    float hadEne  = ijet->hadEnergyInHB() + ijet->hadEnergyInHO() + 
                    ijet->hadEnergyInHE() + ijet->hadEnergyInHF();                   
    float emEne   = ijet->emEnergyInEB() + ijet->emEnergyInEE() + ijet->emEnergyInHF();
    float had     = ijet->energyFractionHadronic();    

    float j_et = ijet->et();

    // *** Barrel
    if (fabs(ijet->eta()) < 1.3) {
      totEneLeadJetEta1->Fill(hadEne+emEne); 
      hadEneLeadJetEta1->Fill(hadEne); 
      emEneLeadJetEta1->Fill(emEne);       

      if (ijet->pt() > minJetPt10) 
        hadFracEta1->Fill(had);
    }

    // *** EndCap
    if ((fabs(ijet->eta()) > 1.3) && (fabs(ijet->eta()) < 3.) ) {

      totEneLeadJetEta2->Fill(hadEne+emEne); 
      hadEneLeadJetEta2->Fill(hadEne); 
      emEneLeadJetEta2->Fill(emEne);   
    
      if (ijet->pt() > minJetPt10) 
        hadFracEta2->Fill(had);
    }

    // *** Forward
    if (fabs(ijet->eta()) > 3.) {

      totEneLeadJetEta3->Fill(hadEne+emEne); 
      hadEneLeadJetEta3->Fill(hadEne); 
      emEneLeadJetEta3->Fill(emEne); 

      if (ijet->pt() > minJetPt10) 
        hadFracEta3->Fill(had);
    }

    // *** CaloTowers in Jet
    const std::vector<CaloTowerPtr> jetCaloRefs = ijet->getCaloConstituents();
    int nConstituents = jetCaloRefs.size();
    NTowers->Fill(nConstituents);

    if (jjet == 1) {

      nTow1 = nTow2 = nTow3 = nTow4 = 0;
      for (int i = 0; i <nConstituents ; i++){

        float et  = jetCaloRefs[i]->et();

        if (et > 0.5) nTow1++;
        if (et > 1.0) nTow2++;
        if (et > 1.5) nTow3++;
        if (et > 2.0) nTow4++;
        
        hf_TowerJetEt->Fill(et/j_et);

      }

      nTowersLeadJetPt1->Fill(nTow1);
      nTowersLeadJetPt2->Fill(nTow2);
      nTowersLeadJetPt3->Fill(nTow3);
      nTowersLeadJetPt4->Fill(nTow4);

    }

  }


  // **********************
  // *** Unclustered Energy
  // **********************

  double SumPtJet(0);

  double SumEtNotJets(0);
  double SumEtJets(0);
  double SumEtTowers(0);
  double TotalClusteredE(0);
  double TotalUnclusteredE(0);

  double sumJetPx(0);
  double sumJetPy(0);

  double sumTowerAllPx(0);
  double sumTowerAllPy(0);

  double sumTowerAllEx(0);
  double sumTowerAllEy(0);

  double HCALTotalE, HBTotalE, HETotalE, HOTotalE, HFTotalE;
  double ECALTotalE, EBTotalE, EETotalE;

  std::vector<CaloTowerPtr>   UsedTowerList;
  std::vector<CaloTower>      TowerUsedInJets;
  std::vector<CaloTower>      TowerNotUsedInJets;

  // *********************
  // *** Hcal recHits
  // *********************

  edm::Handle<HcalSourcePositionData> spd;

  HCALTotalE = HBTotalE = HETotalE = HOTotalE = HFTotalE = 0.;
  try {
    std::vector<edm::Handle<HBHERecHitCollection> > colls;
    evt.getManyByType(colls);
    std::vector<edm::Handle<HBHERecHitCollection> >::iterator i;
    for (i=colls.begin(); i!=colls.end(); i++) {
      for (HBHERecHitCollection::const_iterator j=(*i)->begin(); j!=(*i)->end(); j++) {
        //      std::cout << *j << std::endl;
        if (j->id().subdet() == HcalBarrel) {
          HBEne->Fill(j->energy()); 
          HBTime->Fill(j->time()); 
          HBTvsE->Fill(j->energy(), j->time());

          if ((j->time()<25.) || (j->time()>75.)) {
            HBEneOOT->Fill(j->energy()); 
          }

          if (j->energy() > HBHEThreshold) {
            HBEneTh->Fill(j->energy()); 
            HBTimeTh->Fill(j->time()); 
            HBTotalE += j->energy();
            HBocc->Fill(j->id().ieta(),j->id().iphi());
            hitEta->Fill(j->id().ieta());
            hitPhi->Fill(j->id().iphi());
          }
          if ( (evt.id().run() == 120020) && (evt.id().event() == 453) ) {
            HBEneX->Fill(j->energy()); 
            if (j->energy() > HBHEThreshold) HBTimeX->Fill(j->time()); 
          }
          if ( (evt.id().run() == 120020) && (evt.id().event() == 457) ) {
            HBEneY->Fill(j->energy()); 
            if (j->energy() > HBHEThreshold) HBTimeY->Fill(j->time()); 
          }
        }
        if (j->id().subdet() == HcalEndcap) {
          HEEne->Fill(j->energy()); 
          HETime->Fill(j->time()); 
          HETvsE->Fill(j->energy(), j->time());

          if ((j->time()<25.) || (j->time()>75.)) {
            HEEneOOT->Fill(j->energy()); 
          }

          if (j->energy() > HBHEThreshold) {
            HEEneTh->Fill(j->energy()); 
            HETimeTh->Fill(j->time()); 
            HETotalE += j->energy();
            HEocc->Fill(j->id().ieta(),j->id().iphi());
            hitEta->Fill(j->id().ieta());
            hitPhi->Fill(j->id().iphi());
          }

          if ( (evt.id().run() == 120020) && (evt.id().event() == 453) ) {
            HEEneX->Fill(j->energy()); 
            if (j->energy() > HBHEThreshold) HETimeX->Fill(j->time()); 
          }
          if ( (evt.id().run() == 120020) && (evt.id().event() == 457) ) {
            HEEneY->Fill(j->energy()); 
            if (j->energy() > HBHEThreshold) HETimeY->Fill(j->time()); 
          }

          // Fill +-HE separately
          if (j->id().ieta()<0) {
            HEnegEne->Fill(j->energy()); 
            if (j->energy() > HBHEThreshold) {
              HEnegTime->Fill(j->time()); 
            }
          } else {
            HEposEne->Fill(j->energy()); 
            if (j->energy() > HBHEThreshold) {
              HEposTime->Fill(j->time()); 
            }
          }
          
        }

        /***
        std::cout << j->id()     << " "
                  << j->id().subdet() << " "
                  << j->id().ieta()   << " "
                  << j->id().iphi()   << " "
                  << j->id().depth()  << " "
                  << j->energy() << " "
                  << j->time()   << std::endl;
        ****/
      }
    }
  } catch (...) {
    cout << "No HB/HE RecHits." << endl;
  }


  HFM_ETime = 0.;
  HFM_E = 0.;
  HFP_ETime = 0.;
  HFP_E = 0.;
  
  try {
    std::vector<edm::Handle<HFRecHitCollection> > colls;
    evt.getManyByType(colls);
    std::vector<edm::Handle<HFRecHitCollection> >::iterator i;
    for (i=colls.begin(); i!=colls.end(); i++) {
      for (HFRecHitCollection::const_iterator j=(*i)->begin(); j!=(*i)->end(); j++) {

        /****
        float en = j->energy();
        HcalDetId id(j->detid().rawId());
        int ieta = id.ieta();
        int iphi = id.iphi();
        int depth = id.depth();
        *****/

        //  std::cout << *j << std::endl;

        if (j->id().subdet() == HcalForward) {
          HFEne->Fill(j->energy()); 
          HFTime->Fill(j->time()); 
          HFTvsE->Fill(j->energy(), j->time());
          if (j->energy() > HFThreshold) {
            HFEneTh->Fill(j->energy()); 
            HFTimeTh->Fill(j->time()); 
            HFTotalE += j->energy();
            HFocc->Fill(j->id().ieta(),j->id().iphi());
            hitEta->Fill(j->id().ieta());
            hitPhi->Fill(j->id().iphi());
          }

          if (j->id().ieta()<0) {
            if (j->energy() > HFThreshold) {
              //              HFTimeM->Fill(j->time()); 
              HFEneM->Fill(j->energy()); 
              HFM_ETime += j->energy()*j->time(); 
              HFM_E     += j->energy();
            }
          } else {
            if (j->energy() > HFThreshold) {
              //              HFTimeP->Fill(j->time()); 
              HFEneP->Fill(j->energy()); 
              HFP_ETime += j->energy()*j->time(); 
              HFP_E     += j->energy();
            }
          }

          // Long and short fibers
          if (j->id().depth() == 1){
            HFLEne->Fill(j->energy()); 
            if (j->energy() > HFThreshold) HFLTime->Fill(j->time());
          } else {
            HFSEne->Fill(j->energy()); 
            if (j->energy() > HFThreshold) HFSTime->Fill(j->time());
          }
        }
      }
    }
  } catch (...) {
    cout << "No HF RecHits." << endl;
  }

  for (int i=0; i<100; i++) {
     for (int j=0; j<100; j++) {
       HFLvsS->Fill(HFRecHit[i][j][1], HFRecHit[i][j][0]);  
     }
  }

  if (HFP_E > 0.) HFTimeP->Fill(HFP_ETime / HFP_E);
  if (HFM_E > 0.) HFTimeM->Fill(HFM_ETime / HFM_E);

  if ((HFP_E > 0.) && (HFM_E > 0.)) {
    HF_PMM = (HFP_ETime / HFP_E) - (HFM_ETime / HFM_E);
    HFTimePM->Fill(HF_PMM); 
  } else {
    HF_PMM = INVALID;
  }



  try {
    std::vector<edm::Handle<HORecHitCollection> > colls;
    evt.getManyByType(colls);
    std::vector<edm::Handle<HORecHitCollection> >::iterator i;
    for (i=colls.begin(); i!=colls.end(); i++) {
      for (HORecHitCollection::const_iterator j=(*i)->begin(); j!=(*i)->end(); j++) {
        if (j->id().subdet() == HcalOuter) {
          HOEne->Fill(j->energy()); 
          HOTime->Fill(j->time());
          HOTvsE->Fill(j->energy(), j->time());
          if (j->energy() > HOThreshold) {
            HOEneTh->Fill(j->energy()); 
            HOTimeTh->Fill(j->time());
            HOTotalE += j->energy();
            HOocc->Fill(j->id().ieta(),j->id().iphi());
          }

          // Separate SiPMs and HPDs:
          if (((j->id().iphi()>=59 && j->id().iphi()<=70 && 
                j->id().ieta()>=11 && j->id().ieta()<=15) || 
               (j->id().iphi()>=47 && j->id().iphi()<=58 && 
                j->id().ieta()>=5 && j->id().ieta()<=10)))
          {  
            HOSEne->Fill(j->energy());
            if (j->energy() > HOThreshold) HOSTime->Fill(j->time());
          } else if ((j->id().iphi()<59 || j->id().iphi()>70 || 
                      j->id().ieta()<11 || j->id().ieta()>15) && 
                     (j->id().iphi()<47 || j->id().iphi()>58 ||
                      j->id().ieta()<5  || j->id().ieta()>10))
          {
            HOHEne->Fill(j->energy());
            if (j->energy() > HOThreshold) HOHTime->Fill(j->time());
            // Separate rings -1,-2,0,1,2 in HPDs:
            if (j->id().ieta()<= -11){
              HOHrm2Ene->Fill(j->energy());
              if (j->energy() > HOThreshold) HOHrm2Time->Fill(j->time());
            } else if (j->id().ieta()>= -10 && j->id().ieta() <= -5) {
              HOHrm1Ene->Fill(j->energy());
              if (j->energy() > HOThreshold) HOHrm1Time->Fill(j->time());
            } else if (j->id().ieta()>= -4 && j->id().ieta() <= 4) {
              HOHr0Ene->Fill(j->energy());
              if (j->energy() > HOThreshold) HOHr0Time->Fill(j->time());
            } else if (j->id().ieta()>= 5 && j->id().ieta() <= 10) {
              HOHrp1Ene->Fill(j->energy());
              if (j->energy() > HOThreshold) HOHrp1Time->Fill(j->time());
            } else if (j->id().ieta()>= 11) {
              HOHrp2Ene->Fill(j->energy());
              if (j->energy() > HOThreshold) HOHrp2Time->Fill(j->time());
            } else {
              std::cout << "Finding events that are in no ring !?!" << std::endl;
              std::cout << "eta = " << j->id().ieta() << std::endl;
              
            }
          } else {
            std::cout << "Finding events that are neither SiPM nor HPD!?" << std::endl;     
          }

          

        }
        //      std::cout << *j << std::endl;
      }
    }
  } catch (...) {
    cout << "No HO RecHits." << endl;
  }

  HCALTotalE = HBTotalE + HETotalE + HFTotalE + HOTotalE;
  ECALTotalE = EBTotalE = EETotalE = 0.;


  try {
    std::vector<edm::Handle<EcalRecHitCollection> > colls;
    evt.getManyByType(colls);
    std::vector<edm::Handle<EcalRecHitCollection> >::iterator i;
    for (i=colls.begin(); i!=colls.end(); i++) {
      for (EcalRecHitCollection::const_iterator j=(*i)->begin(); j!=(*i)->end(); j++) {
        if (j->id().subdetId() == EcalBarrel) {
          EBEne->Fill(j->energy()); 
          EBTime->Fill(j->time()); 
          if (j->energy() > EBEEThreshold) {
            EBEneTh->Fill(j->energy()); 
            EBTimeTh->Fill(j->time()); 
          }
          if ( (evt.id().run() == 120020) && (evt.id().event() == 453) ) {
            EBEneX->Fill(j->energy()); 
            EBTimeX->Fill(j->time()); 
          }
          if ( (evt.id().run() == 120020) && (evt.id().event() == 457) ) {
            EBEneY->Fill(j->energy()); 
            EBTimeY->Fill(j->time()); 
          }
          EBTotalE += j->energy();
        }
        if (j->id().subdetId() == EcalEndcap) {
          EEEne->Fill(j->energy()); 
          EETime->Fill(j->time());
          if (j->energy() > EBEEThreshold) {
            EEEneTh->Fill(j->energy()); 
            EETimeTh->Fill(j->time()); 
          }
          if ( (evt.id().run() == 120020) && (evt.id().event() == 453) ) {
            EEEneX->Fill(j->energy()); 
            EETimeX->Fill(j->time()); 
          }
          if ( (evt.id().run() == 120020) && (evt.id().event() == 457 ) ) {
            EEEneY->Fill(j->energy()); 
            EETimeY->Fill(j->time()); 
          }
          EETotalE += j->energy();
        }
        //      std::cout << *j << std::endl;
        //      std::cout << "EB ID = " << j->id().subdetId() << "/" << EcalBarrel << std::endl;
      }
    }
  } catch (...) {
    cout << "No ECAL RecHits." << endl;
  }

  EBvHB->Fill(HBTotalE, EBTotalE);
  EEvHE->Fill(HETotalE, EETotalE);

  /*****
  try {
    std::vector<edm::Handle<EBRecHitCollection> > colls;
    evt.getManyByType(colls);
    std::vector<edm::Handle<EBRecHitCollection> >::iterator i;

    for (i=colls.begin(); i!=colls.end(); i++) {
      for (EBRecHitCollection::const_iterator j=(*i)->begin(); j!=(*i)->end(); j++) {
        //      if (j->id().subdetId() == EcalBarrel) {
          EBEne->Fill(j->energy()); 
          EBTime->Fill(j->time()); 
          //      EBTotalE = j->energy();
          //    }
          //    std::cout << *j << std::endl;
          //    std::cout << "EB ID = " << j->id().subdetId() << "/" << EcalBarrel << std::endl;
      }
    }
  } catch (...) {
    cout << "No EB RecHits." << endl;
  }

  try {
    std::vector<edm::Handle<EERecHitCollection> > colls;
    evt.getManyByType(colls);
    std::vector<edm::Handle<EERecHitCollection> >::iterator i;
    for (i=colls.begin(); i!=colls.end(); i++) {
      for (EERecHitCollection::const_iterator j=(*i)->begin(); j!=(*i)->end(); j++) {
        //      if (j->id().subdetId() == EcalEndcap) {
          EEEne->Fill(j->energy()); 
          EETime->Fill(j->time());
          //      EETotalE = j->energy();
          // Separate +-EE;
          EEDetId EEid = EEDetId(j->id());
          if (!EEid.positiveZ()) 
          {
            EEnegEne->Fill(j->energy()); 
            EEnegTime->Fill(j->time()); 
          }else{
            EEposEne->Fill(j->energy()); 
            EEposTime->Fill(j->time()); 
          }
          //    }
        //      std::cout << *j << std::endl;
      }
    }
  } catch (...) {
    cout << "No EE RecHits." << endl;
  }
  ******/

  ECALTotalE = EBTotalE + EETotalE;

  if ( (EBTotalE > 320000)  && (EBTotalE < 330000) && 
       (HBTotalE > 2700000) && (HBTotalE < 2800000) ) {

    std::cout << ">>> Off Axis! " 
              << std::endl;
    
  }

  std::cout << " Rechits: Total Energy :  " 
            << " HCAL= " << HCALTotalE 
            << " ECAL= " << ECALTotalE
            << " HB = " << HBTotalE
            << " EB = " << EBTotalE
            << std::endl;


  // *********************
  // *** CaloTowers
  // *********************
  //  Handle<CaloTowerCollection> caloTowers;
  //  evt.getByLabel( "towerMaker", caloTowers );

  nTow1 = nTow2 = nTow3 = nTow4 = 0;

  double sum_et = 0.0;
  double sum_ex = 0.0;
  double sum_ey = 0.0;
  //  double sum_ez = 0.0;


  //  std::cout<<">>>> Run " << evt.id().run() << " Event " << evt.id().event() << std::endl;
  // --- Loop over towers and make a lists of used and unused towers
  for (CaloTowerCollection::const_iterator tower = caloTowers->begin();
       tower != caloTowers->end(); tower++) {

    Double_t  et = tower->et();
    
    if (et > 0.5) nTow1++;
    if (et > 1.0) nTow2++;
    if (et > 1.5) nTow3++;
    if (et > 2.0) nTow4++;

    //    if ( (fabs(tower->ieta() > 42)) ||  (fabs(tower->iphi()) > 72) ) {
    //      std::cout << "ieta/iphi = " <<  tower->ieta() << " / "  << tower->iphi() << std::endl;
    //    }

    if (tower->emEnergy() > 2.0) {
      h_EmEnergy->Fill (tower->ieta(), tower->iphi(), tower->emEnergy());
    }
    if (tower->hadEnergy() > 2.0) {
      h_HadEnergy->Fill (tower->ieta(), tower->iphi(), tower->hadEnergy());
    }

    if (et>0.5) {

      ETime->Fill(tower->ecalTime());
      HTime->Fill(tower->hcalTime());

      // ********
      double phix   = tower->phi();
      //      double theta = tower->theta();
      //      double e     = tower->energy();
      //      double et    = e*sin(theta);
      //      double et    = tower->emEt() + tower->hadEt();
      double et    = tower->et();

      //      sum_ez += e*cos(theta);
      sum_et += et;
      sum_ex += et*cos(phix);
      sum_ey += et*sin(phix);
      // ********

      Double_t phi = tower->phi();
      SumEtTowers += tower->et();

      sumTowerAllEx += et*cos(phi);
      sumTowerAllEy += et*sin(phi);

    }

  }

  //  SumEt->Fill(sum_et);
  //  MET->Fill(sqrt( sum_ex*sum_ex + sum_ey*sum_ey));

  hf_sumTowerAllEx->Fill(sumTowerAllEx);
  hf_sumTowerAllEy->Fill(sumTowerAllEy);

  nTowers1->Fill(nTow1);
  nTowers2->Fill(nTow2);
  nTowers3->Fill(nTow3);
  nTowers4->Fill(nTow4);


  // *********************
  // *********************

  UsedTowerList.clear();
  TowerUsedInJets.clear();
  TowerNotUsedInJets.clear();

  // --- Loop over jets and make a list of all the used towers
  //  evt.getByLabel( CaloJetAlgorithm, jets );
  for ( CaloJetCollection::const_iterator ijet=caloJets->begin(); ijet!=caloJets->end(); ijet++) {

    Double_t jetPt  = ijet->pt();
    Double_t jetEta = ijet->eta();
    Double_t jetPhi = ijet->phi();

    //    if (jetPt>5.0) {

      Double_t jetPx = jetPt*cos(jetPhi);
      Double_t jetPy = jetPt*sin(jetPhi);

      sumJetPx +=jetPx;
      sumJetPy +=jetPy;

      const std::vector<CaloTowerPtr> jetCaloRefs = ijet->getCaloConstituents();
      int nConstituents = jetCaloRefs.size();
      for (int i = 0; i <nConstituents ; i++){
        
        UsedTowerList.push_back(jetCaloRefs[i]);
      }
      
      SumPtJet +=jetPt;

    //    }

      if ( (jetPt>80.0) && (fabs(jetEta) < 1.3) ){
        st_Pt->Fill( jetPt );
        int nConstituents = ijet->getCaloConstituents().size();
        st_Constituents->Fill( nConstituents );
        
        float maxEne = 0.;
        float totEne = 0.;
          
        for(unsigned twr=0; twr<ijet->getCaloConstituents().size(); ++twr){
          CaloTowerPtr tower = (ijet->getCaloConstituents())[twr];
          //      CaloTowerDetId id = tower->id();     
          if( tower->et()>0. ){

            if (tower->energy() > maxEne) maxEne = tower->energy();
            totEne += tower->energy();

            st_Energy->Fill( tower->energy() );
            st_EmEnergy->Fill( tower->emEnergy() );
            st_HadEnergy->Fill( tower->hadEnergy() );
            st_OuterEnergy->Fill( tower->outerEnergy() );

            st_Eta->Fill( tower->eta() );
            st_Phi->Fill( tower->phi() );

            st_iEta->Fill( tower->ieta() );
            st_iPhi->Fill( tower->iphi() );

            /****
            std::cout << ">>> Towers :  " 
                      << " " << tower->energy() 
                      << " " << tower->emEnergy()
                      << " " << tower->hadEnergy()
                      << " " << tower->outerEnergy()
                      << " " << tower->et()
                      << " " << tower->emEt() 
                      << " " << tower->hadEt() 
                      << " " << tower->outerEt() 
                      << " " << tower->eta() 
                      << " " << tower->phi()        
                      << std::endl;
            ****/
          }
        }
        st_Frac->Fill( maxEne / totEne );

      }

  }

  int NTowersUsed = UsedTowerList.size();

  // --- Loop over towers and make a lists of used and unused towers
  for (CaloTowerCollection::const_iterator tower = caloTowers->begin();
       tower != caloTowers->end(); tower++) {

    CaloTower  t = *tower;
    Double_t  et = tower->et();

    if(et>0) {

      Double_t phi = tower->phi();
      SumEtTowers += tower->et();

      sumTowerAllPx += et*cos(phi);
      sumTowerAllPy += et*sin(phi);

      bool used = false;

      for(int i=0; i<NTowersUsed; i++){
        if(tower->id() == UsedTowerList[i]->id()){
          used=true;
          break;
        }
      }

      if (used) {
        TowerUsedInJets.push_back(t);
      } else {
        TowerNotUsedInJets.push_back(t);
      }
    }
  }

  int nUsed    = TowerUsedInJets.size();
  int nNotUsed = TowerNotUsedInJets.size();

  SumEtJets    = 0;
  SumEtNotJets = 0;
  TotalClusteredE   = 0;
  TotalUnclusteredE = 0;

  for(int i=0;i<nUsed;i++){
    SumEtJets += TowerUsedInJets[i].et();
    h_ClusteredE->Fill(TowerUsedInJets[i].energy());
    if (TowerUsedInJets[i].energy() > 1.0) 
      TotalClusteredE += TowerUsedInJets[i].energy();
  }
  h_jetEt->Fill(SumEtJets);

  for(int i=0;i<nNotUsed;i++){
    if (TowerNotUsedInJets[i].et() > 0.5)
      SumEtNotJets += TowerNotUsedInJets[i].et();
    h_UnclusteredEt->Fill(TowerNotUsedInJets[i].et());
    h_UnclusteredEts->Fill(TowerNotUsedInJets[i].et());
    h_UnclusteredE->Fill(TowerNotUsedInJets[i].energy());
    if (TowerNotUsedInJets[i].energy() > 1.0)  
      TotalUnclusteredE += TowerNotUsedInJets[i].energy();
  }

  h_TotalClusteredE->Fill(TotalClusteredE);
  h_TotalUnclusteredE->Fill(TotalUnclusteredE);
  h_TotalUnclusteredEt->Fill(SumEtNotJets);

  // ********************************
  // *** CaloMET
  // ********************************

  edm::Handle<reco::CaloMETCollection> calometcoll;
  evt.getByLabel("met", calometcoll);
  if (calometcoll.isValid()) {
    const CaloMETCollection *calometcol = calometcoll.product();
    const CaloMET *calomet;
    calomet = &(calometcol->front());

    double caloSumET  = calomet->sumEt();
    double caloMET    = calomet->pt();
    double caloMETSig = calomet->mEtSig();
    double caloMEx    = calomet->px();
    double caloMEy    = calomet->py();
    double caloMETPhi = calomet->phi();

    SumEt->Fill(caloSumET);
    MET->Fill(caloMET);
    if (evtType == 0) MET_Tower->Fill(caloMET);
    if (evtType == 1) MET_RBX->Fill(caloMET);
    if (evtType == 2) MET_HPD->Fill(caloMET);
    METSig->Fill(caloMETSig);
    MEx->Fill(caloMEx);
    MEy->Fill(caloMEy);
    METPhi->Fill(caloMETPhi);

    /***
    double caloEz     = calomet->e_longitudinal();

    double caloMaxEtInEMTowers    = calomet->maxEtInEmTowers();
    double caloMaxEtInHadTowers   = calomet->maxEtInHadTowers();
    double caloEtFractionHadronic = calomet->etFractionHadronic();
    double caloEmEtFraction       = calomet->emEtFraction();

    double caloHadEtInHB = calomet->hadEtInHB();
    double caloHadEtInHO = calomet->hadEtInHO();
    double caloHadEtInHE = calomet->hadEtInHE();
    double caloHadEtInHF = calomet->hadEtInHF();
    double caloEmEtInEB  = calomet->emEtInEB();
    double caloEmEtInEE  = calomet->emEtInEE();
    double caloEmEtInHF  = calomet->emEtInHF();
    ****/
  }

  // ********************************
  // *** Vertex
  // ********************************
  VTX  = INVALID;
  nVTX = 0;

  edm::Handle<reco::VertexCollection> vertexCollection;
  evt.getByLabel("offlinePrimaryVertices", vertexCollection);
  const reco::VertexCollection vC = *(vertexCollection.product());

  std::cout << "Reconstructed "<< vC.size() << " vertices" << std::endl ;
  nVTX = vC.size();
  for (reco::VertexCollection::const_iterator vertex=vC.begin(); vertex!=vC.end(); vertex++){

    h_Vx->Fill(vertex->x());
    h_Vy->Fill(vertex->y());
    h_Vz->Fill(vertex->z());
    VTX  = vertex->z();
    //    h_VNTrks->Fill(vertex->tracksSize());

  }

  if ((HF_PMM != INVALID) || (nVTX > 0)) {
    HFvsZ->Fill(HF_PMM,VTX);
  }

  // ********************************
  // *** Tracks
  // ********************************
  edm::Handle<reco::TrackCollection> trackCollection;
  //  evt.getByLabel("ctfWithMaterialTracks", trackCollection);
  evt.getByLabel("generalTracks", trackCollection);

  const reco::TrackCollection tC = *(trackCollection.product());

  std::cout << "ANA: Reconstructed "<< tC.size() << " tracks" << std::endl ;

  h_Trk_NTrk->Fill(tC.size());
  for (reco::TrackCollection::const_iterator track=tC.begin(); track!=tC.end(); track++){

    h_Trk_pt->Fill(track->pt());

  }


    /****
    std::cout << "Track number "<< i << std::endl ;
    std::cout << "\tmomentum: " << track->momentum()<< std::endl;
    std::cout << "\tPT: " << track->pt()<< std::endl;
    std::cout << "\tvertex: " << track->vertex()<< std::endl;
    std::cout << "\timpact parameter: " << track->d0()<< std::endl;
    std::cout << "\tcharge: " << track->charge()<< std::endl;
    std::cout << "\tnormalizedChi2: " << track->normalizedChi2()<< std::endl;

    cout<<"\tFrom EXTRA : "<<endl;
    cout<<"\t\touter PT "<< track->outerPt()<<endl;
    std::cout << "\t direction: " << track->seedDirection() << std::endl;
    ****/

  // ********************************
  // *** Photons
  // ********************************
  /***
  edm::Handle<reco::PhotonCollection> photonCollection;
  evt.getByLabel("photons", photonCollection);
  const reco::PhotonCollection pC = *(photonCollection.product());

  std::cout << "Reconstructed "<< pC.size() << " photons" << std::endl ;
  for (reco::PhotonCollection::const_iterator photon=pC.begin(); photon!=pC.end(); photon++){
  }
  ***/

  // ********************************
  // *** Muons
  // ********************************
  /***
  edm::Handle<reco::MuonCollection> muonCollection;
  evt.getByLabel("muons", muonCollection);

  const reco::MuonCollection mC = *(muonCollection.product());

  std::cout << "Reconstructed "<< mC.size() << " muons" << std::endl ;
  for (reco::MuonCollection::const_iterator muon=mC.begin(); muon!=mC.end(); muon++){
  }
  ***/




  // ********************************
  // *** Events passing seletion cuts
  // ********************************

  // --- Cosmic Cleanup
  // --- Vertex
  // --- Eta 

  int iJet; 
  iJet = 0;
  for( CaloJetCollection::const_iterator ijet = caloJets->begin(); ijet != caloJets->end(); ++ ijet ) {
    
    //    if ( (fabs(ijet->eta()) < 1.3) && 
    //   (fabs(ijet->pt())  > 20.) ) {

         //      (ijet->emEnergyFraction() > 0.01) &&
         //      (ijet->emEnergyFraction() > 0.99) ) {

    iJet++; 
    if (iJet == 1) {
      cout << " CaloJet: Event Type = "   << evtType 
           << " pt = " << ijet->pt()
           << endl; 
    }
    h_pt->Fill(ijet->pt());
    if (evtType == 0) h_ptTower->Fill(ijet->pt());
    if (evtType == 1) h_ptRBX->Fill(ijet->pt());
    if (evtType == 2) h_ptHPD->Fill(ijet->pt());
    h_et->Fill(ijet->et());
    h_eta->Fill(ijet->eta());
    h_phi->Fill(ijet->phi());

    jetHOEne->Fill(ijet->hadEnergyInHO());    
    jetEMFraction->Fill(ijet->emEnergyFraction());    
      
    //    }    
  }



  //*****************************
  //*** Get the GenJet collection
  //*****************************

      /**************
  Handle<GenJetCollection> genJets;
  evt.getByLabel( GenJetAlgorithm, genJets );

  //Loop over the two leading GenJets and fill some histograms
  jetInd    = 0;
  allJetInd = 0;
  for( GenJetCollection::const_iterator gen = genJets->begin(); gen != genJets->end(); ++ gen ) {
    allJetInd++;
    if (allJetInd == 1) {
      p4tmp[0] = gen->p4();
    }
    if (allJetInd == 2) {
      p4tmp[1] = gen->p4();
    }

    if ( (allJetInd == 1) || (allJetInd == 2) ) {
      h_ptGenL->Fill( gen->pt() );
      h_etaGenL->Fill( gen->eta() );
      h_phiGenL->Fill( gen->phi() );
    }

    if ( gen->pt() > minJetPt) {
      // std::cout << "GEN JET1 #" << jetInd << std::endl << gen->print() << std::endl;
      h_ptGen->Fill( gen->pt() );
      h_etaGen->Fill( gen->eta() );
      h_phiGen->Fill( gen->phi() );
      jetInd++;
    }
  }

  h_nGenJets->Fill( jetInd );
      *******/
  }

}
void myJetAna::beginJob ( void  ) [private, virtual]

Reimplemented from edm::EDAnalyzer.

Definition at line 126 of file myJetAna.cc.

References caloEta, caloEtaEt, caloPhi, dijetMass, EBEne, EBEneTh, EBEneX, EBEneY, EBTime, EBTimeTh, EBTimeX, EBTimeY, EBvHB, ECALvHCAL, ECALvHCALEta1, ECALvHCALEta2, ECALvHCALEta3, EEEne, EEEneTh, EEEneX, EEEneY, EEnegEne, EEnegTime, EEposEne, EEposTime, EETime, EETimeTh, EETimeX, EETimeY, EEvHE, emEneLeadJetEta1, emEneLeadJetEta2, emEneLeadJetEta3, EMF_Eta, EMF_EtaX, EMF_Phi, EMF_PhiX, ETime, h_ClusteredE, h_EmEnergy, h_et, h_eta, h_etaCal, h_etaGen, h_etaGenL, h_HadEnergy, h_jet1Pt, h_jet1PtHLT, h_jet2Pt, h_jetEt, h_nCalJets, h_nGenJets, h_phi, h_phiCal, h_phiGen, h_phiGenL, h_pt, h_ptCal, h_ptGen, h_ptGenL, h_ptHPD, h_ptRBX, h_ptTower, h_TotalClusteredE, h_TotalUnclusteredE, h_TotalUnclusteredEt, h_Trk_NTrk, h_Trk_pt, h_UnclusteredE, h_UnclusteredEt, h_UnclusteredEts, h_VNTrks, h_Vx, h_Vy, h_Vz, hadEneLeadJetEta1, hadEneLeadJetEta2, hadEneLeadJetEta3, hadFracEta1, hadFracEta2, hadFracEta3, HBEne, HBEneOOT, HBEneTh, HBEneX, HBEneY, HBocc, HBTime, HBTimeTh, HBTimeX, HBTimeY, HBTvsE, HEEne, HEEneOOT, HEEneTh, HEEneX, HEEneY, HEnegEne, HEnegTime, HEocc, HEposEne, HEposTime, HETime, HETimeTh, HETimeX, HETimeY, HETvsE, hf_sumTowerAllEx, hf_sumTowerAllEy, hf_TowerJetEt, HFEne, HFEneM, HFEneOOT, HFEneP, HFEneTh, HFLEne, HFLTime, HFLvsS, HFocc, HFSEne, HFSTime, HFTime, HFTimeM, HFTimeP, HFTimePM, HFTimePMa, HFTimeTh, HFTvsE, HFvsZ, hitEta, hitEtaEt, hitPhi, HOEne, HOEneOOT, HOEneTh, HOHEne, HOHr0Ene, HOHr0Time, HOHrm1Ene, HOHrm1Time, HOHrm2Ene, HOHrm2Time, HOHrp1Ene, HOHrp1Time, HOHrp2Ene, HOHrp2Time, HOHTime, HOocc, HOSEne, HOSTime, HOTime, HOTimeTh, HOTvsE, HPD_et, HPD_hadEnergy, HPD_hcalTime, HPD_N, HPD_nTowers, HTime, i, jetEMFraction, jetHOEne, M_PI, MET_HPD, MET_RBX, MET_Tower, METPhi, METSig, MEx, MEy, nBNC, NTowers, nTowers1, nTowers2, nTowers3, nTowers4, nTowersLeadJetPt1, nTowersLeadJetPt2, nTowersLeadJetPt3, nTowersLeadJetPt4, RBX_et, RBX_hadEnergy, RBX_hcalTime, RBX_N, RBX_nTowers, st_Constituents, st_EmEnergy, st_Energy, st_Eta, st_Frac, st_HadEnergy, st_iEta, st_iPhi, st_OuterEnergy, st_Phi, st_Pt, SumEt, totBNC, totEneLeadJetEta1, totEneLeadJetEta2, totEneLeadJetEta3, towerEmEn, towerEmFrac, towerHadEn, and towerOuterEn.

                         {



  edm::Service<TFileService> fs;

  // --- passed selection cuts 
  h_pt     = fs->make<TH1F>( "pt",  "Jet p_{T}", 100, 0, 50 );
  h_ptRBX  = fs->make<TH1F>( "ptRBX",  "RBX: Jet p_{T}", 100, 0, 50 );
  h_ptHPD  = fs->make<TH1F>( "ptHPD",  "HPD: Jet p_{T}", 100, 0, 50 );
  h_ptTower  = fs->make<TH1F>( "ptTower",  "Jet p_{T}", 100, 0, 50 );
  h_et     = fs->make<TH1F>( "et",  "Jet E_{T}", 100, 0, 50 );
  h_eta    = fs->make<TH1F>( "eta", "Jet #eta", 100, -4, 4 );
  h_phi    = fs->make<TH1F>( "phi", "Jet #phi", 50, -M_PI, M_PI );
  // ---

  hitEtaEt  = fs->make<TH1F>( "hitEtaEt", "RecHit #eta", 90, -45, 45 );
  hitEta    = fs->make<TH1F>( "hitEta", "RecHit #eta", 90, -45, 45 );
  hitPhi    = fs->make<TH1F>( "hitPhi", "RecHit #phi", 73, 0, 73 );

  caloEtaEt  = fs->make<TH1F>( "caloEtaEt", "CaloTower #eta", 100, -4, 4 );
  caloEta    = fs->make<TH1F>( "caloEta", "CaloTower #eta", 100, -4, 4 );
  caloPhi    = fs->make<TH1F>( "caloPhi", "CaloTower #phi", 50, -M_PI, M_PI );

  dijetMass  =  fs->make<TH1F>("dijetMass","DiJet Mass",100,0,100);

  totEneLeadJetEta1 = fs->make<TH1F>("totEneLeadJetEta1","Total Energy Lead Jet Eta1 1",100,0,1500);
  totEneLeadJetEta2 = fs->make<TH1F>("totEneLeadJetEta2","Total Energy Lead Jet Eta2 1",100,0,1500);
  totEneLeadJetEta3 = fs->make<TH1F>("totEneLeadJetEta3","Total Energy Lead Jet Eta3 1",100,0,1500);
  hadEneLeadJetEta1 = fs->make<TH1F>("hadEneLeadJetEta1","Hadronic Energy Lead Jet Eta1 1",100,0,1500);
  hadEneLeadJetEta2 = fs->make<TH1F>("hadEneLeadJetEta2","Hadronic Energy Lead Jet Eta2 1",100,0,1500);
  hadEneLeadJetEta3 = fs->make<TH1F>("hadEneLeadJetEta3","Hadronic Energy Lead Jet Eta3 1",100,0,1500);
  emEneLeadJetEta1  = fs->make<TH1F>("emEneLeadJetEta1","EM Energy Lead Jet Eta1 1",100,0,1500);
  emEneLeadJetEta2  = fs->make<TH1F>("emEneLeadJetEta2","EM Energy Lead Jet Eta2 1",100,0,1500);
  emEneLeadJetEta3  = fs->make<TH1F>("emEneLeadJetEta3","EM Energy Lead Jet Eta3 1",100,0,1500);


  hadFracEta1 = fs->make<TH1F>("hadFracEta11","Hadronic Fraction Eta1 Jet 1",100,0,1);
  hadFracEta2 = fs->make<TH1F>("hadFracEta21","Hadronic Fraction Eta2 Jet 1",100,0,1);
  hadFracEta3 = fs->make<TH1F>("hadFracEta31","Hadronic Fraction Eta3 Jet 1",100,0,1);

  SumEt  = fs->make<TH1F>("SumEt","SumEt",100,0,100);
  MET    = fs->make<TH1F>("MET",  "MET",100,0,50);
  METSig = fs->make<TH1F>("METSig",  "METSig",100,0,50);
  MEx    = fs->make<TH1F>("MEx",  "MEx",100,-20,20);
  MEy    = fs->make<TH1F>("MEy",  "MEy",100,-20,20);
  METPhi = fs->make<TH1F>("METPhi",  "METPhi",315,0,3.15);
  MET_RBX    = fs->make<TH1F>("MET_RBX",  "MET",100,0,1000);
  MET_HPD    = fs->make<TH1F>("MET_HPD",  "MET",100,0,1000);
  MET_Tower  = fs->make<TH1F>("MET_Tower",  "MET",100,0,1000);


  h_Vx     = fs->make<TH1F>("Vx",  "Vx",100,-0.5,0.5);
  h_Vy     = fs->make<TH1F>("Vy",  "Vy",100,-0.5,0.5);
  h_Vz     = fs->make<TH1F>("Vz",  "Vz",100,-20,20);
  h_VNTrks = fs->make<TH1F>("VNTrks",  "VNTrks",10,1,100);

  h_Trk_pt   = fs->make<TH1F>("Trk_pt",  "Trk_pt",100,0,20);
  h_Trk_NTrk = fs->make<TH1F>("Trk_NTrk",  "Trk_NTrk",20,0,20);

  hf_sumTowerAllEx = fs->make<TH1F>("sumTowerAllEx","Tower Ex",100,-1000,1000);
  hf_sumTowerAllEy = fs->make<TH1F>("sumTowerAllEy","Tower Ey",100,-1000,1000);

  hf_TowerJetEt   = fs->make<TH1F>("TowerJetEt","Tower/Jet Et 1",50,0,1);

  ETime = fs->make<TH1F>("ETime","Ecal Time",200,-200,200);
  HTime = fs->make<TH1F>("HTime","Hcal Time",200,-200,200);

  towerHadEn    = fs->make<TH1F>("towerHadEn" ,"Hadronic Energy in Calo Tower",2000,-100,100);
  towerEmEn     = fs->make<TH1F>("towerEmEn"  ,"EM Energy in Calo Tower",2000,-100,100);
  towerOuterEn  = fs->make<TH1F>("towerOuterEn"  ,"HO Energy in Calo Tower",2000,-100,100);

  towerEmFrac   = fs->make<TH1F>("towerEmFrac","EM Fraction of Energy in Calo Tower",100,-1.,1.);

  RBX_et        = fs->make<TH1F>("RBX_et","ET in RBX",1000,-20,100);
  RBX_hadEnergy = fs->make<TH1F>("RBX_hadEnergy","Hcal Energy in RBX",1000,-20,100);
  RBX_hcalTime  = fs->make<TH1F>("RBX_hcalTime","Hcal Time in RBX",200,-200,200);
  RBX_nTowers   = fs->make<TH1F>("RBX_nTowers","Number of Towers in RBX",75,0,75);
  RBX_N         = fs->make<TH1F>("RBX_N","Number of RBX",10,0,10);

  HPD_et        = fs->make<TH1F>("HPD_et","ET in HPD",1000,-20,100);
  HPD_hadEnergy = fs->make<TH1F>("HPD_hadEnergy","Hcal Energy in HPD",1000,-20,100);
  HPD_hcalTime  = fs->make<TH1F>("HPD_hcalTime","Hcal Time in HPD",200,-200,200);
  HPD_nTowers   = fs->make<TH1F>("HPD_nTowers","Number of Towers in HPD",20,0,20);
  HPD_N         = fs->make<TH1F>("HPD_N","Number of HPD",10,0,10);
  
  nTowers1  = fs->make<TH1F>("nTowers1","Number of Towers pt 0.5",100,0,200);
  nTowers2  = fs->make<TH1F>("nTowers2","Number of Towers pt 1.0",100,0,200);
  nTowers3  = fs->make<TH1F>("nTowers3","Number of Towers pt 1.5",100,0,200);
  nTowers4  = fs->make<TH1F>("nTowers4","Number of Towers pt 2.0",100,0,200);

  nTowersLeadJetPt1  = fs->make<TH1F>("nTowersLeadJetPt1","Number of Towers in Lead Jet pt 0.5",100,0,100);
  nTowersLeadJetPt2  = fs->make<TH1F>("nTowersLeadJetPt2","Number of Towers in Lead Jet pt 1.0",100,0,100);
  nTowersLeadJetPt3  = fs->make<TH1F>("nTowersLeadJetPt3","Number of Towers in Lead Jet pt 1.5",100,0,100);
  nTowersLeadJetPt4  = fs->make<TH1F>("nTowersLeadJetPt4","Number of Towers in Lead Jet pt 2.0",100,0,100);

  h_nCalJets  =  fs->make<TH1F>( "nCalJets",  "Number of CalJets", 20, 0, 20 );

  HBEneOOT  = fs->make<TH1F>( "HBEneOOT",  "HBEneOOT", 200, -5, 10 );
  HEEneOOT  = fs->make<TH1F>( "HEEneOOT",  "HEEneOOT", 200, -5, 10 );
  HFEneOOT  = fs->make<TH1F>( "HFEneOOT",  "HFEneOOT", 200, -5, 10 );
  HOEneOOT  = fs->make<TH1F>( "HOEneOOT",  "HOEneOOT", 200, -5, 10 );

  HBEne     = fs->make<TH1F>( "HBEne",  "HBEne", 200, -5, 10 );
  HBEneTh   = fs->make<TH1F>( "HBEneTh",  "HBEneTh", 200, -5, 10 );
  HBEneX    = fs->make<TH1F>( "HBEneX",  "HBEneX", 200, -5, 10 );
  HBEneY    = fs->make<TH1F>( "HBEneY",  "HBEnedY", 200, -5, 10 );
  HBTime    = fs->make<TH1F>( "HBTime", "HBTime", 200, -100, 100 );
  HBTimeTh  = fs->make<TH1F>( "HBTimeTh", "HBTimeTh", 200, -100, 100 );
  HBTimeX   = fs->make<TH1F>( "HBTimeX", "HBTimeX", 200, -100, 100 );
  HBTimeY   = fs->make<TH1F>( "HBTimeY", "HBTimeY", 200, -100, 100 );
  HEEne     = fs->make<TH1F>( "HEEne",  "HEEne", 200, -5, 10 );
  HEEneTh   = fs->make<TH1F>( "HEEneTh",  "HEEneTh", 200, -5, 10 );
  HEEneX    = fs->make<TH1F>( "HEEneX",  "HEEneX", 200, -5, 10 );
  HEEneY    = fs->make<TH1F>( "HEEneY",  "HEEneY", 200, -5, 10 );
  HEposEne  = fs->make<TH1F>( "HEposEne",  "HEposEne", 200, -5, 10 );
  HEnegEne  = fs->make<TH1F>( "HEnegEne",  "HEnegEne", 200, -5, 10 );
  HETime    = fs->make<TH1F>( "HETime", "HETime", 200, -100, 100 );
  HETimeTh  = fs->make<TH1F>( "HETimeTh", "HETimeTh", 200, -100, 100 );
  HETimeX   = fs->make<TH1F>( "HETimeX", "HETimeX", 200, -100, 100 );
  HETimeY   = fs->make<TH1F>( "HETimeY", "HETimeY", 200, -100, 100 );
  HEposTime = fs->make<TH1F>( "HEposTime",  "HEposTime", 200, -100, 100 );
  HEnegTime = fs->make<TH1F>( "HEnegTime",  "HEnegTime", 200, -100, 100 );
  HOEne     = fs->make<TH1F>( "HOEne",  "HOEne", 200, -5, 10 );
  HOEneTh   = fs->make<TH1F>( "HOEneTh",  "HOEneTh", 200, -5, 10 );
  HOTime    = fs->make<TH1F>( "HOTime", "HOTime", 200, -100, 100 );
  HOTimeTh  = fs->make<TH1F>( "HOTimeTh", "HOTimeTh", 200, -100, 100 );

  // Histos for separating SiPMs and HPDs in HO:
  HOSEne     = fs->make<TH1F>( "HOSEne",  "HOSEne", 12000, -20, 100 );
  HOSTime    = fs->make<TH1F>( "HOSTime", "HOSTime", 200, -100, 100 );
  HOHEne     = fs->make<TH1F>( "HOHEne",  "HOHEne", 12000, -20, 100 );
  HOHTime    = fs->make<TH1F>( "HOHTime", "HOHTime", 200, -100, 100 );

  HOHr0Ene      = fs->make<TH1F>( "HOHr0Ene"  ,   "HOHr0Ene", 12000, -20 , 100 );
  HOHr0Time     = fs->make<TH1F>( "HOHr0Time" ,  "HOHr0Time",   200, -200, 200 );
  HOHrm1Ene     = fs->make<TH1F>( "HOHrm1Ene" ,  "HOHrm1Ene", 12000, -20 , 100 );
  HOHrm1Time    = fs->make<TH1F>( "HOHrm1Time", "HOHrm1Time",   200, -200, 200 );
  HOHrm2Ene     = fs->make<TH1F>( "HOHrm2Ene" ,  "HOHrm2Ene", 12000, -20 , 100 );
  HOHrm2Time    = fs->make<TH1F>( "HOHrm2Time", "HOHrm2Time",   200, -200, 200 );
  HOHrp1Ene     = fs->make<TH1F>( "HOHrp1Ene" ,  "HOHrp1Ene", 12000, -20 , 100 );
  HOHrp1Time    = fs->make<TH1F>( "HOHrp1Time", "HOHrp1Time",   200, -200, 200 );
  HOHrp2Ene     = fs->make<TH1F>( "HOHrp2Ene" ,  "HOHrp2Ene", 12000, -20 , 100 );
  HOHrp2Time    = fs->make<TH1F>( "HOHrp2Time", "HOHrp2Time",   200, -200, 200 );

  HBTvsE    = fs->make<TH2F>( "HBTvsE", "HBTvsE",100, -5, 50, 100, -100, 100);
  HETvsE    = fs->make<TH2F>( "HETvsE", "HETvsE",100, -5, 50, 100, -100, 100);
  HFTvsE    = fs->make<TH2F>( "HFTvsE", "HFTvsE",100, -5, 50, 100, -100, 100);
  HOTvsE    = fs->make<TH2F>( "HOTvsE", "HOTvsE",100, -5, 50, 100, -100, 100);

  HFvsZ    = fs->make<TH2F>( "HFvsZ", "HFvsZ",100,-50,50,100,-50,50);

  HOocc    = fs->make<TH2F>( "HOocc", "HOocc",81,-40.5,40.5,70,0.5,70.5);
  HBocc    = fs->make<TH2F>( "HBocc", "HBocc",81,-40.5,40.5,70,0.5,70.5);
  HEocc    = fs->make<TH2F>( "HEocc", "HEocc",81,-40.5,40.5,70,0.5,70.5);
  HFocc    = fs->make<TH2F>( "HFocc", "HFocc",81,-40.5,40.5,70,0.5,70.5);

  HFEne     = fs->make<TH1F>( "HFEne",  "HFEne", 210, -10, 200 );
  HFEneTh   = fs->make<TH1F>( "HFEneTh",  "HFEneTh", 210, -10, 200 );
  HFEneP    = fs->make<TH1F>( "HFEneP",  "HFEneP", 200, -5, 10 );
  HFEneM    = fs->make<TH1F>( "HFEneM",  "HFEneM", 200, -5, 10 );
  HFTime    = fs->make<TH1F>( "HFTime", "HFTime", 200, -100, 100 );
  HFTimeTh  = fs->make<TH1F>( "HFTimeTh", "HFTimeTh", 200, -100, 100 );
  HFTimeP   = fs->make<TH1F>( "HFTimeP", "HFTimeP", 100, -100, 50 );
  HFTimeM   = fs->make<TH1F>( "HFTimeM", "HFTimeM", 100, -100, 50 );
  HFTimePMa = fs->make<TH1F>( "HFTimePMa", "HFTimePMa", 100, -100, 100 );
  HFTimePM  = fs->make<TH1F>( "HFTimePM", "HFTimePM", 100, -100, 100 );

  // Histos for separating HF long/short fibers:
  HFLEne     = fs->make<TH1F>( "HFLEne",  "HFLEne", 200, -5, 10 );
  HFLTime    = fs->make<TH1F>( "HFLTime", "HFLTime", 200, -100, 100 );
  HFSEne     = fs->make<TH1F>( "HFSEne",  "HFSEne", 200, -5, 10 );
  HFSTime    = fs->make<TH1F>( "HFSTime", "HFSTime", 200, -100, 100 );

  HFLvsS     = fs->make<TH2F>( "HFLvsS", "HFLvsS",220,-20,200,220,-20,200);


  EBEne     = fs->make<TH1F>( "EBEne",  "EBEne", 200, -5, 10 );
  EBEneTh   = fs->make<TH1F>( "EBEneTh",  "EBEneTh", 200, -5, 10 );
  EBEneX    = fs->make<TH1F>( "EBEneX",  "EBEneX", 200, -5, 10 );
  EBEneY    = fs->make<TH1F>( "EBEneY",  "EBEneY", 200, -5, 10 );
  EBTime    = fs->make<TH1F>( "EBTime", "EBTime", 200, -100, 100 );
  EBTimeTh  = fs->make<TH1F>( "EBTimeTh", "EBTimeTh", 200, -100, 100 );
  EBTimeX   = fs->make<TH1F>( "EBTimeX", "EBTimeX", 200, -100, 100 );
  EBTimeY   = fs->make<TH1F>( "EBTimeY", "EBTimeY", 200, -100, 100 );
  EEEne     = fs->make<TH1F>( "EEEne",  "EEEne", 200, -5, 10 );
  EEEneTh   = fs->make<TH1F>( "EEEneTh",  "EEEneTh", 200, -5, 10 );
  EEEneX    = fs->make<TH1F>( "EEEneX",  "EEEneX", 200, -5, 10 );
  EEEneY    = fs->make<TH1F>( "EEEneY",  "EEEneY", 200, -5, 10 );
  EEnegEne  = fs->make<TH1F>( "EEnegEne",  "EEnegEne", 200, -5, 10 );
  EEposEne  = fs->make<TH1F>( "EEposEne",  "EEposEne", 200, -5, 10 );
  EETime    = fs->make<TH1F>( "EETime", "EETime", 200, -100, 100 );
  EETimeTh  = fs->make<TH1F>( "EETimeTh", "EETimeTh", 200, -100, 100 );
  EETimeX   = fs->make<TH1F>( "EETimeX", "EETimeX", 200, -100, 100 );
  EETimeY   = fs->make<TH1F>( "EETimeY", "EETimeY", 200, -100, 100 );
  EEnegTime = fs->make<TH1F>( "EEnegTime", "EEnegTime", 200, -100, 100 );
  EEposTime = fs->make<TH1F>( "EEposTime", "EEposTime", 200, -100, 100 );

  h_ptCal     = fs->make<TH1F>( "ptCal",  "p_{T} of CalJet", 100, 0, 50 );
  h_etaCal    = fs->make<TH1F>( "etaCal", "#eta of  CalJet", 100, -4, 4 );
  h_phiCal    = fs->make<TH1F>( "phiCal", "#phi of  CalJet", 50, -M_PI, M_PI );

  h_nGenJets  =  fs->make<TH1F>( "nGenJets",  "Number of GenJets", 20, 0, 20 );

  h_ptGen     =  fs->make<TH1F>( "ptGen",  "p_{T} of GenJet", 100, 0, 50 );
  h_etaGen    =  fs->make<TH1F>( "etaGen", "#eta of GenJet", 100, -4, 4 );
  h_phiGen    =  fs->make<TH1F>( "phiGen", "#phi of GenJet", 50, -M_PI, M_PI );

  h_ptGenL    =  fs->make<TH1F>( "ptGenL",  "p_{T} of GenJetL", 100, 0, 50 );
  h_etaGenL   =  fs->make<TH1F>( "etaGenL", "#eta of GenJetL", 100, -4, 4 );
  h_phiGenL   =  fs->make<TH1F>( "phiGenL", "#phi of GenJetL", 50, -M_PI, M_PI );

  h_jetEt      = fs->make<TH1F>( "jetEt", "Total Jet Et", 100, 0, 3000 );

  h_jet1Pt       = fs->make<TH1F>( "jet1Pt", "Jet1 Pt", 100, 0, 1000 );
  h_jet2Pt       = fs->make<TH1F>( "jet2Pt", "Jet2 Pt", 100, 0, 1000 );
  h_jet1PtHLT    = fs->make<TH1F>( "jet1PtHLT", "Jet1 Pt HLT", 100, 0, 1000 );

  h_TotalUnclusteredEt = fs->make<TH1F>( "TotalUnclusteredEt", "Total Unclustered Et", 100, 0, 500 );
  h_UnclusteredEt      = fs->make<TH1F>( "UnclusteredEt", "Unclustered Et", 100, 0, 50 );
  h_UnclusteredEts     = fs->make<TH1F>( "UnclusteredEts", "Unclustered Et", 100, 0, 2 );

  h_ClusteredE         = fs->make<TH1F>( "ClusteredE", "Clustered E", 200, 0, 20 );
  h_TotalClusteredE    = fs->make<TH1F>( "TotalClusteredE", "Total Clustered E", 200, 0, 100 );
  h_UnclusteredE       = fs->make<TH1F>( "UnclusteredE", "Unclustered E", 200, 0, 20 );
  h_TotalUnclusteredE  = fs->make<TH1F>( "TotalUnclusteredE", "Total Unclustered E", 200, 0, 100 );

  jetHOEne              = fs->make<TH1F>("jetHOEne" ,"HO Energy in Jet",100, 0,100);
  jetEMFraction         = fs->make<TH1F>( "jetEMFraction", "Jet EM Fraction", 100, -1.1, 1.1 );
  NTowers              = fs->make<TH1F>( "NTowers", "Number of Towers", 100, 0, 100 );


  h_EmEnergy   = fs->make<TH2F>( "EmEnergy",  "Em Energy",  90, -45, 45, 73, 0, 73 );
  h_HadEnergy  = fs->make<TH2F>( "HadEnergy", "Had Energy", 90, -45, 45, 73, 0, 73 );

  st_Pt            = fs->make<TH1F>( "st_Pt", "Pt", 200, 0, 200 );
  st_Constituents  = fs->make<TH1F>( "st_Constituents", "Constituents", 200, 0, 200 );
  st_Energy        = fs->make<TH1F>( "st_Energy", "Tower Energy", 200, 0, 200 );
  st_EmEnergy      = fs->make<TH1F>( "st_EmEnergy", "Tower EmEnergy", 200, 0, 200 );
  st_HadEnergy     = fs->make<TH1F>( "st_HadEnergy", "Tower HadEnergy", 200, 0, 200 );
  st_OuterEnergy   = fs->make<TH1F>( "st_OuterEnergy", "Tower OuterEnergy", 200, 0, 200 );
  st_Eta           = fs->make<TH1F>( "st_Eta", "Eta", 100, -4, 4 );
  st_Phi           = fs->make<TH1F>( "st_Phi", "Phi", 50, -M_PI, M_PI );
  st_iEta          = fs->make<TH1F>( "st_iEta", "iEta", 60, -30, 30 );
  st_iPhi          = fs->make<TH1F>( "st_iPhi", "iPhi", 80, 0, 80 );
  st_Frac          = fs->make<TH1F>( "st_Frac", "Frac", 100, 0, 1 );


  EBvHB           = fs->make<TH2F>( "EBvHB", "EB vs HB",1000,0,4500000.,1000,0,1000000.);
  EEvHE           = fs->make<TH2F>( "EEvHE", "EE vs HE",1000,0,4500000.,1000,0,200000.);

  ECALvHCAL       = fs->make<TH2F>( "ECALvHCAL", "ECAL vs HCAL",100,0,20000000.,100,-500000,500000.);
  ECALvHCALEta1   = fs->make<TH2F>( "ECALvHCALEta1", "ECAL vs HCALEta1",100,0,20000000.,100,-500000,500000.);
  ECALvHCALEta2   = fs->make<TH2F>( "ECALvHCALEta2", "ECAL vs HCALEta2",100,0,20000000.,100,-500000,500000.);
  ECALvHCALEta3   = fs->make<TH2F>( "ECALvHCALEta3", "ECAL vs HCALEta3",100,0,20000000.,100,-500000,500000.);

  EMF_Eta   = fs->make<TProfile>("EMF_Eta","EMF Eta", 100, -50, 50, 0, 10);
  EMF_Phi   = fs->make<TProfile>("EMF_Phi","EMF Phi", 100, 0, 100, 0, 10);
  EMF_EtaX  = fs->make<TProfile>("EMF_EtaX","EMF EtaX", 100, -50, 50, 0, 10);
  EMF_PhiX  = fs->make<TProfile>("EMF_PhiX","EMF PhiX", 100, 0, 100, 0, 10);


  totBNC = 0;
  for (int i=0; i<4000; i++)  nBNC[i] = 0;

}
void myJetAna::endJob ( void  ) [private, virtual]

Reimplemented from edm::EDAnalyzer.

Definition at line 2067 of file myJetAna.cc.

References gather_cfg::cout, i, nBNC, and totBNC.

                      {

  for (int i=0; i<4000; i++) {
    if ((nBNC[i]/totBNC) > 0.05) {
      std::cout << "+++ " << i << " " 
                << (nBNC[i]/totBNC) << " "
                << nBNC[i]          << " " 
                << totBNC           << " " 
                << std::endl;      
    }
  }


}

Member Data Documentation

TH1F* myJetAna::caloEta [private]

Definition at line 245 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::caloEtaEt [private]

Definition at line 244 of file myJetAna.h.

Referenced by analyze(), and beginJob().

std::string myJetAna::CaloJetAlgorithm [private]

Definition at line 56 of file myJetAna.h.

Referenced by analyze().

TH1F* myJetAna::caloPhi [private]

Definition at line 246 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::dijetMass [private]

Definition at line 239 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::EBEne [private]

Definition at line 141 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::EBEneTh [private]

Definition at line 142 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::EBEneX [private]

Definition at line 143 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::EBEneY [private]

Definition at line 144 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::EBTime [private]

Definition at line 145 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::EBTimeTh [private]

Definition at line 146 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::EBTimeX [private]

Definition at line 147 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::EBTimeY [private]

Definition at line 148 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::EBvHB [private]

Definition at line 300 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::ECALvHCAL [private]

Definition at line 302 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::ECALvHCALEta1 [private]

Definition at line 303 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::ECALvHCALEta2 [private]

Definition at line 304 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::ECALvHCALEta3 [private]

Definition at line 305 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::EEEne [private]

Definition at line 149 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::EEEneTh [private]

Definition at line 150 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::EEEneX [private]

Definition at line 151 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::EEEneY [private]

Definition at line 152 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::EEnegEne [private]

Definition at line 153 of file myJetAna.h.

Referenced by beginJob().

TH1F* myJetAna::EEnegTime [private]

Definition at line 159 of file myJetAna.h.

Referenced by beginJob().

TH1F* myJetAna::EEposEne [private]

Definition at line 154 of file myJetAna.h.

Referenced by beginJob().

TH1F* myJetAna::EEposTime [private]

Definition at line 160 of file myJetAna.h.

Referenced by beginJob().

TH1F* myJetAna::EETime [private]

Definition at line 155 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::EETimeTh [private]

Definition at line 156 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::EETimeX [private]

Definition at line 157 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::EETimeY [private]

Definition at line 158 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::EEvHE [private]

Definition at line 301 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::emEneLeadJetEta1 [private]

Definition at line 229 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::emEneLeadJetEta2 [private]

Definition at line 230 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::emEneLeadJetEta3 [private]

Definition at line 231 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TProfile* myJetAna::EMF_Eta [private]

Definition at line 307 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TProfile* myJetAna::EMF_EtaX [private]

Definition at line 309 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TProfile* myJetAna::EMF_Phi [private]

Definition at line 306 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TProfile* myJetAna::EMF_PhiX [private]

Definition at line 308 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::ETime [private]

Definition at line 211 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::fedSize [private]

Definition at line 162 of file myJetAna.h.

std::string myJetAna::GenJetAlgorithm [private]

Definition at line 57 of file myJetAna.h.

TH1F* myJetAna::h_ClusteredE [private]

Definition at line 273 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::h_EmEnergy [private]

Definition at line 284 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_et [private]

Definition at line 67 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_eta [private]

Definition at line 68 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_etaCal [private]

Definition at line 253 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_etaGen [private]

Definition at line 257 of file myJetAna.h.

Referenced by beginJob().

TH1F* myJetAna::h_etaGenL [private]

Definition at line 261 of file myJetAna.h.

Referenced by beginJob().

TH2F* myJetAna::h_HadEnergy [private]

Definition at line 285 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_jet1Pt [private]

Definition at line 276 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_jet1PtHLT [private]

Definition at line 278 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_jet2Pt [private]

Definition at line 277 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_jetEt [private]

Definition at line 264 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_nCalJets [private]

Definition at line 241 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_nGenJets [private]

Definition at line 242 of file myJetAna.h.

Referenced by beginJob().

TH1F* myJetAna::h_phi [private]

Definition at line 69 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_phiCal [private]

Definition at line 254 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_phiGen [private]

Definition at line 258 of file myJetAna.h.

Referenced by beginJob().

TH1F* myJetAna::h_phiGenL [private]

Definition at line 262 of file myJetAna.h.

Referenced by beginJob().

TH1F* myJetAna::h_pt [private]

Definition at line 63 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_ptCal [private]

Definition at line 252 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_ptGen [private]

Definition at line 256 of file myJetAna.h.

Referenced by beginJob().

TH1F* myJetAna::h_ptGenL [private]

Definition at line 260 of file myJetAna.h.

Referenced by beginJob().

TH1F* myJetAna::h_ptHPD [private]

Definition at line 66 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_ptRBX [private]

Definition at line 65 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_ptTower [private]

Definition at line 64 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_TotalClusteredE [private]

Definition at line 274 of file myJetAna.h.

Referenced by analyze(), and beginJob().

Definition at line 271 of file myJetAna.h.

Referenced by analyze(), and beginJob().

Definition at line 268 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_Trk_NTrk [private]

Definition at line 204 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_Trk_pt [private]

Definition at line 203 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_UnclusteredE [private]

Definition at line 270 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_UnclusteredEt [private]

Definition at line 266 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_UnclusteredEts [private]

Definition at line 267 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_VNTrks [private]

Definition at line 199 of file myJetAna.h.

Referenced by beginJob().

TH1F* myJetAna::h_Vx [private]

Definition at line 196 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_Vy [private]

Definition at line 197 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::h_Vz [private]

Definition at line 198 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::hadEneLeadJetEta1 [private]

Definition at line 226 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::hadEneLeadJetEta2 [private]

Definition at line 227 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::hadEneLeadJetEta3 [private]

Definition at line 228 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::hadFracEta1 [private]

Definition at line 233 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::hadFracEta2 [private]

Definition at line 234 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::hadFracEta3 [private]

Definition at line 235 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HBEne [private]

Definition at line 78 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HBEneOOT [private]

Definition at line 73 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HBEneTh [private]

Definition at line 79 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HBEneX [private]

Definition at line 80 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HBEneY [private]

Definition at line 81 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::HBocc [private]

Definition at line 124 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HBTime [private]

Definition at line 82 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HBTimeTh [private]

Definition at line 83 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HBTimeX [private]

Definition at line 84 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HBTimeY [private]

Definition at line 85 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::HBTvsE [private]

Definition at line 113 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HEEne [private]

Definition at line 86 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HEEneOOT [private]

Definition at line 74 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HEEneTh [private]

Definition at line 87 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HEEneX [private]

Definition at line 88 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HEEneY [private]

Definition at line 89 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HEnegEne [private]

Definition at line 91 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HEnegTime [private]

Definition at line 97 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::HEocc [private]

Definition at line 125 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HEposEne [private]

Definition at line 90 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HEposTime [private]

Definition at line 96 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HETime [private]

Definition at line 92 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HETimeTh [private]

Definition at line 93 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HETimeX [private]

Definition at line 94 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HETimeY [private]

Definition at line 95 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::HETvsE [private]

Definition at line 114 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::hf_sumTowerAllEx [private]

Definition at line 207 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::hf_sumTowerAllEy [private]

Definition at line 208 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::hf_TowerJetEt [private]

Definition at line 209 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HFEne [private]

Definition at line 98 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HFEneM [private]

Definition at line 106 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HFEneOOT [private]

Definition at line 75 of file myJetAna.h.

Referenced by beginJob().

TH1F* myJetAna::HFEneP [private]

Definition at line 102 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HFEneTh [private]

Definition at line 99 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HFLEne [private]

Definition at line 108 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HFLTime [private]

Definition at line 109 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::HFLvsS [private]

Definition at line 111 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::HFocc [private]

Definition at line 126 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HFSEne [private]

Definition at line 110 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HFSTime [private]

Definition at line 118 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HFTime [private]

Definition at line 100 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HFTimeM [private]

Definition at line 107 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HFTimeP [private]

Definition at line 103 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HFTimePM [private]

Definition at line 105 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HFTimePMa [private]

Definition at line 104 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HFTimeTh [private]

Definition at line 101 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::HFTvsE [private]

Definition at line 115 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::HFvsZ [private]

Definition at line 299 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::hitEta [private]

Definition at line 249 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::hitEtaEt [private]

Definition at line 248 of file myJetAna.h.

Referenced by beginJob().

TH1F* myJetAna::hitPhi [private]

Definition at line 250 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOEne [private]

Definition at line 119 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOEneOOT [private]

Definition at line 76 of file myJetAna.h.

Referenced by beginJob().

TH1F* myJetAna::HOEneTh [private]

Definition at line 120 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOHEne [private]

Definition at line 129 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOHr0Ene [private]

Definition at line 131 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOHr0Time [private]

Definition at line 132 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOHrm1Ene [private]

Definition at line 133 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOHrm1Time [private]

Definition at line 134 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOHrm2Ene [private]

Definition at line 135 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOHrm2Time [private]

Definition at line 136 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOHrp1Ene [private]

Definition at line 137 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOHrp1Time [private]

Definition at line 138 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOHrp2Ene [private]

Definition at line 139 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOHrp2Time [private]

Definition at line 140 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOHTime [private]

Definition at line 130 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::HOocc [private]

Definition at line 123 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOSEne [private]

Definition at line 127 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOSTime [private]

Definition at line 128 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOTime [private]

Definition at line 121 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HOTimeTh [private]

Definition at line 122 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH2F* myJetAna::HOTvsE [private]

Definition at line 116 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HPD_et [private]

Definition at line 177 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HPD_hadEnergy [private]

Definition at line 178 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HPD_hcalTime [private]

Definition at line 179 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HPD_N [private]

Definition at line 181 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HPD_nTowers [private]

Definition at line 180 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::HTime [private]

Definition at line 212 of file myJetAna.h.

Referenced by analyze(), and beginJob().

std::string myJetAna::JetCorrectionService [private]

Definition at line 59 of file myJetAna.h.

TH1F* myJetAna::jetEMFraction [private]

Definition at line 281 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::jetHOEne [private]

Definition at line 280 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::MET [private]

Definition at line 185 of file myJetAna.h.

TH1F* myJetAna::MET_HPD [private]

Definition at line 188 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::MET_RBX [private]

Definition at line 187 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::MET_Tower [private]

Definition at line 186 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::METPhi [private]

Definition at line 192 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::METSig [private]

Definition at line 189 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::MEx [private]

Definition at line 190 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::MEy [private]

Definition at line 191 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::NTowers [private]

Definition at line 282 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::nTowers1 [private]

Definition at line 214 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::nTowers2 [private]

Definition at line 215 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::nTowers3 [private]

Definition at line 216 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::nTowers4 [private]

Definition at line 217 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::nTowersLeadJetPt1 [private]

Definition at line 218 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::nTowersLeadJetPt2 [private]

Definition at line 219 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::nTowersLeadJetPt3 [private]

Definition at line 220 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::nTowersLeadJetPt4 [private]

Definition at line 221 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::RBX_et [private]

Definition at line 171 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::RBX_hadEnergy [private]

Definition at line 172 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::RBX_hcalTime [private]

Definition at line 173 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::RBX_N [private]

Definition at line 175 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::RBX_nTowers [private]

Definition at line 174 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::st_Constituents [private]

Definition at line 288 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::st_EmEnergy [private]

Definition at line 290 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::st_Energy [private]

Definition at line 289 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::st_Eta [private]

Definition at line 293 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::st_Frac [private]

Definition at line 297 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::st_HadEnergy [private]

Definition at line 291 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::st_iEta [private]

Definition at line 295 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::st_iPhi [private]

Definition at line 296 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::st_OuterEnergy [private]

Definition at line 292 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::st_Phi [private]

Definition at line 294 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::st_Pt [private]

Definition at line 287 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::SumEt [private]

Definition at line 184 of file myJetAna.h.

Referenced by analyze(), and beginJob().

Definition at line 58 of file myJetAna.h.

Referenced by analyze(), and myJetAna().

TH1F* myJetAna::tMassGen [private]

Definition at line 237 of file myJetAna.h.

TH1F* myJetAna::totEneLeadJetEta1 [private]

Definition at line 223 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::totEneLeadJetEta2 [private]

Definition at line 224 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::totEneLeadJetEta3 [private]

Definition at line 225 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::totFedSize [private]

Definition at line 163 of file myJetAna.h.

TH1F* myJetAna::towerEmEn [private]

Definition at line 166 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::towerEmFrac [private]

Definition at line 169 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::towerHadEn [private]

Definition at line 165 of file myJetAna.h.

Referenced by analyze(), and beginJob().

TH1F* myJetAna::towerOuterEn [private]

Definition at line 167 of file myJetAna.h.

Referenced by analyze(), and beginJob().