#include <PixelHitMatcher.h>
Public Types | |
typedef TransientTrackingRecHit::ConstRecHitPointer | ConstRecHitPointer |
typedef TransientTrackingRecHit::RecHitContainer | RecHitContainer |
typedef TransientTrackingRecHit::RecHitPointer | RecHitPointer |
Public Member Functions | |
std::vector< std::pair < RecHitWithDist, ConstRecHitPointer > > | compatibleHits (const GlobalPoint &xmeas, const GlobalPoint &vprim, float energy, float charge) |
std::vector< SeedWithInfo > | compatibleSeeds (TrajectorySeedCollection *seeds, const GlobalPoint &xmeas, const GlobalPoint &vprim, float energy, float charge) |
float | getVertex () |
PixelHitMatcher (float phi1min, float phi1max, float phi2minB, float phi2maxB, float phi2minF, float phi2maxF, float z2minB, float z2maxB, float r2minF, float r2maxF, float rMinI, float rMaxI, bool searchInTIDTEC) | |
std::vector< CLHEP::Hep3Vector > | predicted1Hits () |
std::vector< CLHEP::Hep3Vector > | predicted2Hits () |
void | set1stLayer (float dummyphi1min, float dummyphi1max) |
void | set1stLayerZRange (float zmin1, float zmax1) |
void | set2ndLayer (float dummyphi2minB, float dummyphi2maxB, float dummyphi2minF, float dummyphi2maxF) |
void | setES (const MagneticField *, const MeasurementTracker *theMeasurementTracker, const TrackerGeometry *trackerGeometry) |
void | setUseRecoVertex (bool val) |
virtual | ~PixelHitMatcher () |
Private Attributes | |
RecHitContainer | hitsInTrack |
std::vector< std::pair < std::pair< const GeomDet *, GlobalPoint > , TrajectoryStateOnSurface > > | mapTsos2_ |
std::vector< std::pair< const GeomDet *, TrajectoryStateOnSurface > > | mapTsos_ |
BarrelMeasurementEstimator | meas1stBLayer |
ForwardMeasurementEstimator | meas1stFLayer |
BarrelMeasurementEstimator | meas2ndBLayer |
ForwardMeasurementEstimator | meas2ndFLayer |
FTSFromVertexToPointFactory | myFTS |
std::vector< CLHEP::Hep3Vector > | pred1Meas |
std::vector< CLHEP::Hep3Vector > | pred2Meas |
PropagatorWithMaterial * | prop1stLayer |
PropagatorWithMaterial * | prop2ndLayer |
bool | searchInTIDTEC_ |
PixelMatchStartLayers | startLayers |
const GeometricSearchTracker * | theGeometricSearchTracker |
const LayerMeasurements * | theLayerMeasurements |
const MagneticField * | theMagField |
const TrackerGeometry * | theTrackerGeometry |
bool | useRecoVertex_ |
float | vertex_ |
Description: Class to match an ECAL cluster to the pixel hits. Two compatible hits in the pixel layers are required.
Implementation: future redesign
Definition at line 140 of file PixelHitMatcher.h.
Definition at line 144 of file PixelHitMatcher.h.
Definition at line 146 of file PixelHitMatcher.h.
Definition at line 145 of file PixelHitMatcher.h.
PixelHitMatcher::PixelHitMatcher | ( | float | phi1min, |
float | phi1max, | ||
float | phi2minB, | ||
float | phi2maxB, | ||
float | phi2minF, | ||
float | phi2maxF, | ||
float | z2minB, | ||
float | z2maxB, | ||
float | r2minF, | ||
float | r2maxF, | ||
float | rMinI, | ||
float | rMaxI, | ||
bool | searchInTIDTEC | ||
) |
Definition at line 24 of file PixelHitMatcher.cc.
: //zmin1 and zmax1 are dummy at this moment, set from beamspot later meas1stBLayer(phi1min,phi1max,0.,0.), meas2ndBLayer(phi2minB,phi2maxB,z2minB,z2maxB), meas1stFLayer(phi1min,phi1max,0.,0.), meas2ndFLayer(phi2minF,phi2maxF,r2minF,r2maxF), startLayers(), prop1stLayer(0), prop2ndLayer(0),theGeometricSearchTracker(0),theLayerMeasurements(0),vertex_(0.), searchInTIDTEC_(searchInTIDTEC), useRecoVertex_(false) { meas1stFLayer.setRRangeI(rMinI,rMaxI) ; meas2ndFLayer.setRRangeI(rMinI,rMaxI) ; }
PixelHitMatcher::~PixelHitMatcher | ( | ) | [virtual] |
Definition at line 39 of file PixelHitMatcher.cc.
{ delete prop1stLayer ; delete prop2ndLayer ; delete theLayerMeasurements ; }
vector< pair< RecHitWithDist, PixelHitMatcher::ConstRecHitPointer > > PixelHitMatcher::compatibleHits | ( | const GlobalPoint & | xmeas, |
const GlobalPoint & | vprim, | ||
float | energy, | ||
float | charge | ||
) |
Definition at line 252 of file PixelHitMatcher.cc.
References abs, DeDxDiscriminatorTools::charge(), i, TrajectoryStateOnSurface::isValid(), LogDebug, m, PixelMatchNextLayers::measurementsInNextLayers(), FreeTrajectoryState::momentum(), normalized_phi(), PV3DBase< T, PVType, FrameType >::phi(), phi, FreeTrajectoryState::position(), PixelMatchNextLayers::predictionInNextLayers(), Cylinder::radius(), query::result, BarrelDetLayer::specificSurface(), mathSSE::sqrt(), GeometricSearchDet::surface(), Surface::toGlobal(), PV3DBase< T, PVType, FrameType >::x(), PV3DBase< T, PVType, FrameType >::y(), and PV3DBase< T, PVType, FrameType >::z().
{ float SCl_phi = xmeas.phi(); int charge = int(fcharge); // return all compatible RecHit pairs (vector< TSiPixelRecHit>) vector<pair<RecHitWithDist, ConstRecHitPointer> > result; LogDebug("") << "[PixelHitMatcher::compatibleHits] entering .. "; vector<TrajectoryMeasurement> validMeasurements; vector<TrajectoryMeasurement> invalidMeasurements; typedef vector<TrajectoryMeasurement>::const_iterator aMeas; pred1Meas.clear(); pred2Meas.clear(); typedef vector<BarrelDetLayer*>::const_iterator BarrelLayerIterator; BarrelLayerIterator firstLayer = startLayers.firstBLayer(); FreeTrajectoryState fts =myFTS(theMagField,xmeas, vprim, energy, charge); PerpendicularBoundPlaneBuilder bpb; TrajectoryStateOnSurface tsos(fts, *bpb(fts.position(), fts.momentum())); if (tsos.isValid()) { vector<TrajectoryMeasurement> pixelMeasurements = theLayerMeasurements->measurements(**firstLayer,tsos, *prop1stLayer, meas1stBLayer); LogDebug("") <<"[PixelHitMatcher::compatibleHits] nbr of hits compatible with extrapolation to first layer: " << pixelMeasurements.size(); for (aMeas m=pixelMeasurements.begin(); m!=pixelMeasurements.end(); m++){ if (m->recHit()->isValid()) { float localDphi = normalized_phi(SCl_phi-m->forwardPredictedState().globalPosition().phi()) ; if(std::abs(localDphi)>2.5)continue; CLHEP::Hep3Vector prediction(m->forwardPredictedState().globalPosition().x(), m->forwardPredictedState().globalPosition().y(), m->forwardPredictedState().globalPosition().z()); LogDebug("") << "[PixelHitMatcher::compatibleHits] compatible hit position " << m->recHit()->globalPosition(); LogDebug("") << "[PixelHitMatcher::compatibleHits] predicted position " << m->forwardPredictedState().globalPosition(); pred1Meas.push_back( prediction); validMeasurements.push_back(*m); LogDebug("") <<"[PixelHitMatcher::compatibleHits] Found a rechit in layer "; const BarrelDetLayer *bdetl = dynamic_cast<const BarrelDetLayer *>(*firstLayer); if (bdetl) { LogDebug("") <<" with radius "<<bdetl->specificSurface().radius(); } else LogDebug("") <<"Could not downcast!!"; } } // check if there are compatible 1st hits in the second layer firstLayer++; vector<TrajectoryMeasurement> pixel2Measurements = theLayerMeasurements->measurements(**firstLayer,tsos, *prop1stLayer, meas1stBLayer); for (aMeas m=pixel2Measurements.begin(); m!=pixel2Measurements.end(); m++){ if (m->recHit()->isValid()) { float localDphi = normalized_phi(SCl_phi-m->forwardPredictedState().globalPosition().phi()) ; if(std::abs(localDphi)>2.5)continue; CLHEP::Hep3Vector prediction(m->forwardPredictedState().globalPosition().x(), m->forwardPredictedState().globalPosition().y(), m->forwardPredictedState().globalPosition().z()); pred1Meas.push_back( prediction); LogDebug("") << "[PixelHitMatcher::compatibleHits] compatible hit position " << m->recHit()->globalPosition() << endl; LogDebug("") << "[PixelHitMatcher::compatibleHits] predicted position " << m->forwardPredictedState().globalPosition() << endl; validMeasurements.push_back(*m); LogDebug("") <<"[PixelHitMatcher::compatibleHits] Found a rechit in layer "; const BarrelDetLayer *bdetl = dynamic_cast<const BarrelDetLayer *>(*firstLayer); if (bdetl) { LogDebug("") <<" with radius "<<bdetl->specificSurface().radius(); } else LogDebug("") <<"Could not downcast!!"; } } } // check if there are compatible 1st hits the forward disks typedef vector<ForwardDetLayer*>::const_iterator ForwardLayerIterator; ForwardLayerIterator flayer; TrajectoryStateOnSurface tsosfwd(fts, *bpb(fts.position(), fts.momentum())); if (tsosfwd.isValid()) { for (int i=0; i<2; i++) { i == 0 ? flayer = startLayers.pos1stFLayer() : flayer = startLayers.neg1stFLayer(); if (i==0 && xmeas.z() < -100. ) continue; if (i==1 && xmeas.z() > 100. ) continue; vector<TrajectoryMeasurement> pixelMeasurements = theLayerMeasurements->measurements(**flayer, tsosfwd, *prop1stLayer, meas1stFLayer); for (aMeas m=pixelMeasurements.begin(); m!=pixelMeasurements.end(); m++){ if (m->recHit()->isValid()) { float localDphi = normalized_phi(SCl_phi-m->forwardPredictedState().globalPosition().phi()); if(std::abs(localDphi)>2.5)continue; CLHEP::Hep3Vector prediction(m->forwardPredictedState().globalPosition().x(), m->forwardPredictedState().globalPosition().y(), m->forwardPredictedState().globalPosition().z()); pred1Meas.push_back( prediction); validMeasurements.push_back(*m); } } //check if there are compatible 1st hits the outer forward disks if (searchInTIDTEC_) { flayer++; vector<TrajectoryMeasurement> pixel2Measurements = theLayerMeasurements->measurements(**flayer, tsosfwd, *prop1stLayer, meas1stFLayer); for (aMeas m=pixel2Measurements.begin(); m!=pixel2Measurements.end(); m++){ if (m->recHit()->isValid()) { float localDphi = normalized_phi(SCl_phi-m->forwardPredictedState().globalPosition().phi()) ; if(std::abs(localDphi)>2.5)continue; CLHEP::Hep3Vector prediction(m->forwardPredictedState().globalPosition().x(), m->forwardPredictedState().globalPosition().y(), m->forwardPredictedState().globalPosition().z()); pred1Meas.push_back( prediction); validMeasurements.push_back(*m); } // else{std::cout<<" hit non valid "<<std::endl; } } //end 1st hit in outer f disk } } } // now we have the vector of all valid measurements of the first point for (unsigned i=0; i<validMeasurements.size(); i++){ const DetLayer * newLayer = theGeometricSearchTracker->detLayer(validMeasurements[i].recHit()->det()->geographicalId()); double zVertex ; if (!useRecoVertex_) { // we don't know the z vertex position, get it from linear extrapolation // compute the z vertex from the cluster point and the found pixel hit double pxHit1z = validMeasurements[i].recHit()->det()->surface().toGlobal( validMeasurements[i].recHit()->localPosition()).z(); double pxHit1x = validMeasurements[i].recHit()->det()->surface().toGlobal( validMeasurements[i].recHit()->localPosition()).x(); double pxHit1y = validMeasurements[i].recHit()->det()->surface().toGlobal( validMeasurements[i].recHit()->localPosition()).y(); double r1diff = (pxHit1x-vprim.x())*(pxHit1x-vprim.x()) + (pxHit1y-vprim.y())*(pxHit1y-vprim.y()); r1diff=sqrt(r1diff); double r2diff = (xmeas.x()-pxHit1x)*(xmeas.x()-pxHit1x) + (xmeas.y()-pxHit1y)*(xmeas.y()-pxHit1y); r2diff=sqrt(r2diff); zVertex = pxHit1z - r1diff*(xmeas.z()-pxHit1z)/r2diff; } else { // here we use the reco vertex z position zVertex = vprim.z(); } if (i==0) { vertex_ = zVertex; } GlobalPoint vertexPred(vprim.x(),vprim.y(),zVertex) ; GlobalPoint hitPos( validMeasurements[i].recHit()->det()->surface().toGlobal( validMeasurements[i].recHit()->localPosition() ) ) ; FreeTrajectoryState secondFTS=myFTS(theMagField,hitPos,vertexPred,energy, charge); PixelMatchNextLayers secondHit(theLayerMeasurements, newLayer, secondFTS, prop2ndLayer, &meas2ndBLayer,&meas2ndFLayer,searchInTIDTEC_); vector<CLHEP::Hep3Vector> predictions = secondHit.predictionInNextLayers(); for (unsigned it = 0; it < predictions.size(); it++) pred2Meas.push_back(predictions[it]); // we may get more than one valid second measurements here even for single electrons: // two hits from the same layer/disk (detector overlap) or from the loop over the // next layers in EPMatchLoopNextLayers. Take only the 1st hit. if(!secondHit.measurementsInNextLayers().empty()){ for(unsigned int shit=0; shit<secondHit.measurementsInNextLayers().size(); shit++) { float dphi = normalized_phi(pred1Meas[i].phi()-validMeasurements[i].recHit()->globalPosition().phi()) ; if (std::abs(dphi)<2.5) { ConstRecHitPointer pxrh = validMeasurements[i].recHit(); RecHitWithDist rh(pxrh,dphi); // pxrh = secondHit.measurementsInNextLayers()[0].recHit(); pxrh = secondHit.measurementsInNextLayers()[shit].recHit(); pair<RecHitWithDist,ConstRecHitPointer> compatiblePair = pair<RecHitWithDist,ConstRecHitPointer>(rh,pxrh) ; result.push_back(compatiblePair); break; } } } } return result; }
std::vector< SeedWithInfo > PixelHitMatcher::compatibleSeeds | ( | TrajectorySeedCollection * | seeds, |
const GlobalPoint & | xmeas, | ||
const GlobalPoint & | vprim, | ||
float | energy, | ||
float | charge | ||
) |
Definition at line 103 of file PixelHitMatcher.cc.
References abs, DeDxDiscriminatorTools::charge(), EleRelPointPair::dZ(), newFWLiteAna::found, TrajectoryStateOnSurface::globalParameters(), i, TrajectoryStateOnSurface::isValid(), FreeTrajectoryState::momentum(), normalized_phi(), PV3DBase< T, PVType, FrameType >::phi(), FreeTrajectoryState::position(), GlobalTrajectoryParameters::position(), query::result, edm::second(), mathSSE::sqrt(), DetId::subdetId(), GeomDet::surface(), Surface::toGlobal(), funct::true, PV3DBase< T, PVType, FrameType >::x(), PV3DBase< T, PVType, FrameType >::y(), and PV3DBase< T, PVType, FrameType >::z().
{ int charge = int(fcharge) ; FreeTrajectoryState fts = myFTS(theMagField,xmeas, vprim, energy, charge); PerpendicularBoundPlaneBuilder bpb; TrajectoryStateOnSurface tsos(fts, *bpb(fts.position(), fts.momentum())); std::vector<SeedWithInfo> result ; mapTsos_.clear() ; mapTsos2_.clear() ; mapTsos_.reserve(seeds->size()) ; mapTsos2_.reserve(seeds->size()) ; for (unsigned int i=0;i<seeds->size();++i) { assert((*seeds)[i].nHits()<=8) ; TrajectorySeed::range rhits=(*seeds)[i].recHits(); // build all possible pairs unsigned char rank1, rank2, hitsMask ; TrajectorySeed::const_iterator it1, it2 ; for ( rank1=0, it1=rhits.first ; it1!=rhits.second ; rank1++, it1++ ) { for ( rank2=rank1+1, it2=it1+1 ; it2!=rhits.second ; rank2++, it2++ ) { //TrajectorySeed::range r(it1,it2) ; // first Hit TrajectorySeed::const_iterator it=it1 ; if (!(*it).isValid()) continue; DetId id=(*it).geographicalId(); const GeomDet *geomdet=theTrackerGeometry->idToDet((*it).geographicalId()); LocalPoint lp=(*it).localPosition() ; GlobalPoint hitPos=geomdet->surface().toGlobal(lp) ; TrajectoryStateOnSurface tsos1; bool found = false; std::vector<std::pair<const GeomDet *, TrajectoryStateOnSurface> >::iterator itTsos ; for (itTsos=mapTsos_.begin();itTsos!=mapTsos_.end();++itTsos) { if ((*itTsos).first==geomdet) { found=true ; break ; } } if (!found) { tsos1 = prop1stLayer->propagate(tsos,geomdet->surface()) ; mapTsos_.push_back(std::pair<const GeomDet *, TrajectoryStateOnSurface>(geomdet,tsos1)); } else { tsos1=(*itTsos).second ; } if (tsos1.isValid()) { std::pair<bool,double> est; if (id.subdetId()%2==1) est=meas1stBLayer.estimate(vprim, tsos1,hitPos); else est=meas1stFLayer.estimate(vprim, tsos1,hitPos); if (!est.first) continue ; if (std::abs(normalized_phi(hitPos.phi()-xmeas.phi()))>2.5) continue ; EleRelPointPair pp1(hitPos,tsos1.globalParameters().position(),vprim) ; int subDet1 = id.subdetId() ; float dRz1 = (subDet1%2==1)?pp1.dZ():pp1.dPerp() ; float dPhi1 = pp1.dPhi() ; // now second Hit //CC@@ //it++; it=it2 ; if (!(*it).isValid()) continue ; DetId id2=(*it).geographicalId(); const GeomDet *geomdet2=theTrackerGeometry->idToDet((*it).geographicalId()); TrajectoryStateOnSurface tsos2; double zVertex; if (!useRecoVertex_) // we don't know the z vertex position, get it from linear extrapolation { // compute the z vertex from the cluster point and the found pixel hit double pxHit1z = hitPos.z(); double pxHit1x = hitPos.x(); double pxHit1y = hitPos.y(); double r1diff = (pxHit1x-vprim.x())*(pxHit1x-vprim.x()) + (pxHit1y-vprim.y())*(pxHit1y-vprim.y()) ; r1diff=sqrt(r1diff) ; double r2diff = (xmeas.x()-pxHit1x)*(xmeas.x()-pxHit1x) + (xmeas.y()-pxHit1y)*(xmeas.y()-pxHit1y) ; r2diff=sqrt(r2diff); zVertex = pxHit1z - r1diff*(xmeas.z()-pxHit1z)/r2diff; } else // here use rather the reco vertex z position { zVertex = vprim.z() ; } GlobalPoint vertex(vprim.x(),vprim.y(),zVertex) ; FreeTrajectoryState fts2 = myFTS(theMagField,hitPos,vertex,energy, charge) ; found = false; std::vector<std::pair< std::pair<const GeomDet *,GlobalPoint>, TrajectoryStateOnSurface> >::iterator itTsos2 ; for (itTsos2=mapTsos2_.begin();itTsos2!=mapTsos2_.end();++itTsos2) { if (((*itTsos2).first).first==geomdet2 && (((*itTsos2).first).second).x()==hitPos.x() && (((*itTsos2).first).second).y()==hitPos.y() && (((*itTsos2).first).second).z()==hitPos.z() ) { found=true; break; } } if (!found) { tsos2 = prop2ndLayer->propagate(fts2,geomdet2->surface()) ; std::pair<const GeomDet *,GlobalPoint> pair(geomdet2,hitPos); mapTsos2_.push_back(std::pair<std::pair<const GeomDet *,GlobalPoint>, TrajectoryStateOnSurface> (pair,tsos2)); } else { tsos2=(*itTsos2).second ; } if (tsos2.isValid()) { LocalPoint lp2=(*it).localPosition() ; GlobalPoint hitPos2=geomdet2->surface().toGlobal(lp2) ; std::pair<bool,double> est2 ; if (id2.subdetId()%2==1) est2=meas2ndBLayer.estimate(vertex, tsos2,hitPos2) ; else est2=meas2ndFLayer.estimate(vertex, tsos2,hitPos2) ; if (est2.first) { EleRelPointPair pp2(hitPos2,tsos2.globalParameters().position(),vertex) ; int subDet2 = id2.subdetId() ; float dRz2 = (subDet2%2==1)?pp2.dZ():pp2.dPerp() ; float dPhi2 = pp2.dPhi() ; hitsMask = (1<<rank1)|(1<<rank2) ; result.push_back(SeedWithInfo((*seeds)[i],hitsMask,subDet2,dRz2,dPhi2,subDet1,dRz1,dPhi1)) ; } } } // end tsos1 is valid } // end loop on second seed hit } // end loop on first seed hit } // end loop on seeds mapTsos_.clear() ; mapTsos2_.clear() ; return result ; }
float PixelHitMatcher::getVertex | ( | ) |
Definition at line 95 of file PixelHitMatcher.cc.
{ return vertex_ ; }
vector< CLHEP::Hep3Vector > PixelHitMatcher::predicted1Hits | ( | ) |
Definition at line 89 of file PixelHitMatcher.cc.
{ return pred1Meas ; }
vector< CLHEP::Hep3Vector > PixelHitMatcher::predicted2Hits | ( | ) |
Definition at line 92 of file PixelHitMatcher.cc.
{ return pred2Meas ; }
void PixelHitMatcher::set1stLayer | ( | float | dummyphi1min, |
float | dummyphi1max | ||
) |
Definition at line 46 of file PixelHitMatcher.cc.
{ meas1stBLayer.setPhiRange(dummyphi1min,dummyphi1max) ; meas1stFLayer.setPhiRange(dummyphi1min,dummyphi1max) ; }
void PixelHitMatcher::set1stLayerZRange | ( | float | zmin1, |
float | zmax1 | ||
) |
Definition at line 52 of file PixelHitMatcher.cc.
{ meas1stBLayer.setZRange(zmin1,zmax1) ; meas1stFLayer.setRRange(zmin1,zmax1) ; }
void PixelHitMatcher::set2ndLayer | ( | float | dummyphi2minB, |
float | dummyphi2maxB, | ||
float | dummyphi2minF, | ||
float | dummyphi2maxF | ||
) |
Definition at line 58 of file PixelHitMatcher.cc.
{ meas2ndBLayer.setPhiRange(dummyphi2minB,dummyphi2maxB) ; meas2ndFLayer.setPhiRange(dummyphi2minF,dummyphi2maxF) ; }
void PixelHitMatcher::setES | ( | const MagneticField * | magField, |
const MeasurementTracker * | theMeasurementTracker, | ||
const TrackerGeometry * | trackerGeometry | ||
) |
Definition at line 68 of file PixelHitMatcher.cc.
References alongMomentum, and oppositeToMomentum.
Referenced by ElectronSeedGenerator::setupES().
{ if (theMeasurementTracker) { theGeometricSearchTracker=theMeasurementTracker->geometricSearchTracker() ; startLayers.setup(theGeometricSearchTracker) ; if (theLayerMeasurements ) delete theLayerMeasurements ; theLayerMeasurements = new LayerMeasurements(theMeasurementTracker) ; } theMagField = magField ; theTrackerGeometry = trackerGeometry ; float mass=.000511 ; // electron propagation if (prop1stLayer) delete prop1stLayer ; prop1stLayer = new PropagatorWithMaterial(oppositeToMomentum,mass,theMagField) ; if (prop2ndLayer) delete prop2ndLayer ; prop2ndLayer = new PropagatorWithMaterial(alongMomentum,mass,theMagField) ; }
void PixelHitMatcher::setUseRecoVertex | ( | bool | val | ) |
Definition at line 64 of file PixelHitMatcher.cc.
{ useRecoVertex_ = val ; }
RecHitContainer PixelHitMatcher::hitsInTrack [private] |
Definition at line 180 of file PixelHitMatcher.h.
std::vector<std::pair<std::pair<const GeomDet*,GlobalPoint>, TrajectoryStateOnSurface> > PixelHitMatcher::mapTsos2_ [private] |
Definition at line 202 of file PixelHitMatcher.h.
std::vector<std::pair<const GeomDet*, TrajectoryStateOnSurface> > PixelHitMatcher::mapTsos_ [private] |
Definition at line 201 of file PixelHitMatcher.h.
Definition at line 185 of file PixelHitMatcher.h.
Definition at line 187 of file PixelHitMatcher.h.
Definition at line 186 of file PixelHitMatcher.h.
Definition at line 188 of file PixelHitMatcher.h.
Definition at line 184 of file PixelHitMatcher.h.
std::vector<CLHEP::Hep3Vector> PixelHitMatcher::pred1Meas [private] |
Definition at line 182 of file PixelHitMatcher.h.
std::vector<CLHEP::Hep3Vector> PixelHitMatcher::pred2Meas [private] |
Definition at line 183 of file PixelHitMatcher.h.
Definition at line 190 of file PixelHitMatcher.h.
Definition at line 191 of file PixelHitMatcher.h.
bool PixelHitMatcher::searchInTIDTEC_ [private] |
Definition at line 199 of file PixelHitMatcher.h.
Definition at line 189 of file PixelHitMatcher.h.
const GeometricSearchTracker* PixelHitMatcher::theGeometricSearchTracker [private] |
Definition at line 192 of file PixelHitMatcher.h.
const LayerMeasurements* PixelHitMatcher::theLayerMeasurements [private] |
Definition at line 193 of file PixelHitMatcher.h.
const MagneticField* PixelHitMatcher::theMagField [private] |
Definition at line 194 of file PixelHitMatcher.h.
const TrackerGeometry* PixelHitMatcher::theTrackerGeometry [private] |
Definition at line 195 of file PixelHitMatcher.h.
bool PixelHitMatcher::useRecoVertex_ [private] |
Definition at line 200 of file PixelHitMatcher.h.
float PixelHitMatcher::vertex_ [private] |
Definition at line 197 of file PixelHitMatcher.h.