CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
CSCTFPtMethods.cc
Go to the documentation of this file.
3 
4 #include <cmath>
5 
6 //-----------------
7 // Static variables
8 //-----------------
9 
10 //L1MuTriggerPtScale CSCTFPtMethods::trigger_scale;
11 
12 // Global scale factor to multiply all parameterizations by
13 //const float CSCTFPtMethods::kGlobalScaleFactor = 1.055;
14 // Now scale to 90% effic definition like in old ORCA
15 const float CSCTFPtMethods::kGlobalScaleFactor = 1.36;
16 
17 // First ME1andME2, then ME1andME3, then MB1andME2
18 // units are radians*GeV
19 
20 // These arrays contain the values for the best fit parameters for three station measurements
21 
23  {
24  // {-4.026, 8.139, -5.350, 1.176}, //hit detectors 1 and 2
25  //??? {0.5170, -11.13, 8.255, -1.980}, //hit detectors 1 and 2
26  {3.900, -8.391, 6.062, -1.436}, //hit detectors 1 and 2
27  // {-2.241, 4.405, -2.756, 0.5878}, //13
28  {8.03602, -17.5355, 12.7725, -3.0616 }, //13
29  {0.8372, -2.220, 1.908, -0.5233}, //23
30  {-0.04389, 0.05174, 0.0, 0.0}, //24
31  {-0.5519E-02, 0.8496E-02, 0.0, 0.0}, //34
32  {-4.228, 8.546, -5.617, 1.235}, //12
33  {0.80, -0.54, 0.0, 0.0}, //25
34  {0.80, -0.54, 0.0, 0.0}, //26
35  };
36 
38  {
39  // {0.6644, -0.2312, 0.0, 0.0}, //12
40  {0.6275, -0.2133, 0.0, 0.0}, //12
41  {-1.124, 2.492, -1.347, 0.2204}, //13
42  {0.5214, -0.7536, 0.3913, -.06739}, //23
43  {1.394, -1.886, 0.8809, -0.1369}, //24
44  {-0.5519E-02, 0.8496E-02, 0.0, 0.0}, //34
45  {0.6644, -0.2312, 0.0, 0.0}, //12
46  {0.80, -0.54, 0.0, 0.0}, //25
47  {0.80, -0.54, 0.0, 0.0}, //26
48  };
49 
50 // These arrays contain the values for the best fit parameters found imperically to determine Pt for a two station measurement
51 // The realtionship is dphi = A/Pt + B/Pt^2
53  {
54  // {-3.198, 6.703, -4.539, 1.028}, //12
55  {-0.6131, 0.6870, 0.0285, -0.1147}, //12
56  // {-6.705, 14.52, -10.32, 2.449}, //13
57  {8.03602, -17.5355, 12.7725, -3.0616 }, //13
58  {5.765, -12.85, 9.543, -2.345}, //23
59  {-4.068, 8.254, -5.491, 1.214}, //24
60  {-.02974, .04816, -.02105, .003640}, //34
61  {-3.358, 7.038, -4.766, 1.079}, //12
62  {0.80, -0.54, 0.0, 0.0}, //25
63  {0.80, -0.54, 0.0, 0.0}, //26
64  };
66  {
67  {0.6425, -0.2308, 0.0, 0.0}, //12
68  {0.6923, -0.2336, 0.0, 0.0}, //13
69  {-0.7147, .01117, -0.5255E-04, 0.7991E-07}, //23
70  {-1.377, 2.150, -1.046, 0.1667}, //24
71  {-.02974, .04816, -.02105, .003640}, //34
72  {0.6425, -0.2308, 0.0, 0.0}, //12
73  {0.80, -0.54, 0.0, 0.0}, //25
74  {0.80, -0.54, 0.0, 0.0}, //26
75  };
76 
78  {
79  // {-0.5873, 0.0802, 0.2337, 0.0}, //12
80  {7.0509, -7.3282, -0.1465, 1.308}, //12
81  // {-0.5677, 1.907, -1.365, 0.2899}, //13
82  {0.0, 0.0, 0.0, 0.0}, //13
83  {-38.55, 82.95, -59.66, 14.29}, //23
84  {20.71, -45.34, 32.05, -7.415}, //24
85  {0.0, 0.0, 0.0, 0.0}, //34
86  {-0.6167, 0.08421, 0.2454, 0.0}, //12
87  {0.0, 0.0, 0.0, 0.0}, //25
88  {0.0, 0.0, 0.0, 0.0} //26
89  };
91  {
92  {14.79, -21.10, 10.16, -1.623}, //12
93  {70.67, -105.7, 52.49, -8.631}, //13
94  {15.70, -23.94, 11.89, -1.939}, //23
95  {17.18, -26.38, 13.13, -2.139}, //24
96  {0.0, 0.0, 0.0, 0.0}, //34
97  {14.79, -21.10, 10.16, -1.623}, //12
98  {0.0, 0.0, 0.0, 0.0}, //25
99  {0.0, 0.0, 0.0, 0.0} //26
100  };
101 
102 const float CSCTFPtMethods::FRCorrLowEta[kME2andMB2][2] =
103  {
104 // {1.13, 0.87}, //12
105 // {1.14, 0.85}, //13
106  {1.30, 1.0}, //12
107  {1.30, 1.0}, //13
108  {1.0, 1.0}, //23
109  {1.0, 1.0}, //24
110  {1.0, 1.0}, //34
111  {1.0, 1.0}, //12
112  {1.0, 1.0}, //25
113  {1.0, 1.0} //26
114  };
115 const float CSCTFPtMethods::FRCorrHighEta[kME2andMB2][2] =
116  {
117 // {0.92, 1.12}, //12
118 // {0.92, 1.12}, //13
119  {0.966, 1.176}, //12
120  {0.966, 1.176}, //13
121  {1.0, 1.0}, //23
122  {1.0, 1.0}, //24
123  {1.0, 1.0}, //34
124  {1.0, 1.0}, //12
125  {1.0, 1.0}, //25
126  {1.0, 1.0} //26
127  };
128 
129 // Anna's 2011 parametrization
130 
131 double CSCTFPtMethods::AB_mu12FnoME11[4][15] =
132  {
133  {0, 0, 0, 0.089491067646809183134, 0.10739646024310070538, 0.12549844133338972085, 0.11746188101535759429, 0.11365654376086815891, 0, 0, 0, 0, 0, 0, 0},
134  {0, 0, 0, -0.16463359422729287318, -0.18522613297525072906, -0.17065296570525056996, -0.11673113772749151018, -0.096673008784020367234, 0, 0, 0, 0, 0, 0, 0},
135  {0, 0, 0, 5.0479701928535670313e-06, -8.5107255627149016024e-05, -0.00031591725812981632723, 2.8829297417277944225e-05, -3.3664459708458401629e-05, 0, 0, 0, 0, 0, 0, 0},
136  {0, 0, 0, 1.6276716966428210753, 1.1244502885068945464, 0.44061802755260442988, 0.82271567628154873564, 0.65764083792276606388, 0, 0, 0, 0, 0, 0, 0}
137  };
138 double CSCTFPtMethods::AB_mu13FnoME11[4][15] =
139  {
140  {0, 0, 0, 0.11479489063486028599, 0.1385846143670735886, 0.16069130395935576905, 0.16229285551120029019, 0.15970793987729367536, 0, 0, 0, 0, 0, 0, 0},
141  {0, 0, 0, -0.31624871209539057171, -0.37204708239816158821, -0.35001738011313637822, -0.28067946142333310977, -0.22587297159275510072, 0, 0, 0, 0, 0, 0, 0},
142  {0, 0, 0, 4.5422334693538224219e-05, -0.0001534874341906974503, -0.00049456554072302828882, -0.00040362112138876319418, -0.00037532294041719521617, 0, 0, 0, 0, 0, 0, 0},
143  {0, 0, 0, 1.3698214790637726068, 0.83827124867878388681, 0.35268421062422455892, 0.30966868638086236798, 0.39552380610102405578, 0, 0, 0, 0, 0, 0, 0}
144  };
145 double CSCTFPtMethods::AB_mu14FnoME11[4][15] =
146  {
147  {0, 0, 0, 0, 0.10167174785035071327, 0.072305163037876873933, 0.12811797755236814522, 0.15630771929281417343, 0, 0, 0, 0, 0, 0, 0},
148  {0, 0, 0, 0, -0.2851531414997146574, -0.12625245577882274195, -0.2693337001449228052, -0.35816854038946227545, 0, 0, 0, 0, 0, 0, 0},
149  {0, 0, 0, 0, 0.0016536940782984094634, 0.0032050914503555030799, 0.0017500898659728782863, 0.0014193550176488352668, 0, 0, 0, 0, 0, 0, 0},
150  {0, 0, 0, 0, 1.8999999999960794916, 1.8999999999875891721, 1.1603749006227730423, 0.36919547110219635977, 0, 0, 0, 0, 0, 0, 0}
151  };
152 double CSCTFPtMethods::AB_mu12RnoME11[4][15] =
153  {
154  {0, 0.1017548888755877845, 0.13020457985822880831, 0.11777472840868662141, 0.1352735458205116259, 0.14797523226644127003, 0.14891234013414389459, 0, 0, 0, 0, 0, 0, 0, 0},
155  {0, -0.40835812179222591434, -0.4909339449226597929, -0.19396964458569518341, -0.18405457126044733052, -0.15348184403810183341, -0.11949446624665205352, 0, 0, 0, 0, 0, 0, 0, 0},
156  {0, -0.00046324193156588387276, -0.0012328343527384165272, 5.8536010291841255454e-05, 5.3175743777652564014e-05, -0.00027992198289290446886, 0.00017291608058844862988, 0, 0, 0, 0, 0, 0, 0, 0},
157  {0, 0.82326825991227925439, 0.66225151266154569374, 1.6047267765109303195, 1.172660602794620921, 0.91611151466846096891, 0.923434361821059424, 0, 0, 0, 0, 0, 0, 0, 0}
158  };
159 double CSCTFPtMethods::AB_mu13RnoME11[4][15] =
160  {
161  {0, 0, 0, 0.17152643870188713504, 0.18220699353677527466, 0.19718061346676321599, 0.20409261783490945108, 0, 0, 0, 0, 0, 0, 0, 0},
162  {0, 0, 0, -0.51329151983333287657, -0.43421697939765058205, -0.38701854807672181336, -0.29367743292763504037, 0, 0, 0, 0, 0, 0, 0, 0},
163  {0, 0, 0, -0.00028330256767296205581, -0.00011104889576832950495, -0.0003659472931155986178, -0.0004494825869971541348, 0, 0, 0, 0, 0, 0, 0, 0},
164  {0, 0, 0, 1.0806773148892279135, 0.81710737240426545291, 0.49165515886235822141, 0.40288815951359424616, 0, 0, 0, 0, 0, 0, 0, 0}
165  };
166 double CSCTFPtMethods::AB_mu14RnoME11[4][15] =
167  {
168  {0, 0, 0, 0.11411457974213083666, 0.14612498789299999125, 0.15438328053344949065, 0.17021962182813230036, 0, 0, 0, 0, 0, 0, 0, 0},
169  {0, 0, 0, -0.32211539883453449429, -0.3332077022119345755, -0.28947013547326555516, -0.31678412927379157038, 0, 0, 0, 0, 0, 0, 0, 0},
170  {0, 0, 0, 0.0021189308480414714535, 0.0017232488622970817526, 0.0014181868364706309241, 0.0020581588744611055593, 0, 0, 0, 0, 0, 0, 0, 0},
171  {0, 0, 0, 1.8999999998213816799, 1.8999999999320695832, 1.2588510283946776624, 0.91969335359675130626, 0, 0, 0, 0, 0, 0, 0, 0}
172  };
173 double CSCTFPtMethods::AB_mu12FME11[4][15] =
174  {
175  {0, 0, 0, 0, 0, 0, 0, 0.30997988806094234349, 0.2960464576032310613, 0.26865522361643923155, 0.24306471114654951138, 0.21612598016341960649, 0.20916086000526656896, 0.14505390185826338989, 0.19626640578808879356},
176  {0, 0, 0, 0, 0, 0, 0, -0.18938263233962521204, -0.18099881965541908535, -0.15817156292403300455, -0.13527092529520332032, -0.11802970951212833628, -0.13142443653269073045, -0.081045302368033256268, -0.16548691953190999837},
177  {0, 0, 0, 0, 0, 0, 0, 1.9132754352698083493e-05, 0.0001244919158836254626, -0.00036815494148734217474, -0.0003021495594158459864, 0.00032190104529820852321, 5.9699515482881178492e-05, 0.0035011369787794933972, -0.0021251348628855359045},
178  {0, 0, 0, 0, 0, 0, 0, 1.2633991230895826874, 1.2237510610710955472, 1.2446734233372107603, 1.2072459880229720053, 1.2073932498298223237, 0.64342700161682475635, 1.0965614756840385002, 0.41184878672694380519}
179  };
180 double CSCTFPtMethods::AB_mu13FME11[4][15] =
181  {
182  {0, 0, 0, 0, 0, 0, 0.17684262466990949281, 0.34711584948456875033, 0.34173632193931768875, 0.31856060138741582044, 0.29169375726034846297, 0.24666606646956890092, 0.21434901698955760585, 0.22194241387027591195, 0.13650791328679393044},
183  {0, 0, 0, 0, 0, 0, 0.99999999999949551466, 0.99999999999457755973, -0.30995317528055632561, -0.26510423524582477084, -0.22052246537701888918, -0.1597247313884862796, -0.14032250966056744601, -0.14430798488566201621, -0.075894576731296098382},
184  {0, 0, 0, 0, 0, 0, 0.010426580434797315736, 0.00056720513052092998933, -0.00047916406780649806879, -0.00043513801305821104073, -0.00035934925416836774022, 0.00064159373840440422562, 0.0011012063282968072471, 0.00059066112387542329433, 0.0061369729760295480686},
185  {0, 0, 0, 0, 0, 0, -0.46194813956282321232, -2.1380051317667612132, 0.99475655086418368622, 1.0240107231697159751, 1.0710375546859214335, 1.1466745846418702204, 1.0634581787492956018, 0.35737857407704720636, 1.1165504043676175439}
186  };
187 double CSCTFPtMethods::AB_mu14FME11[4][15] =
188  {
189  {0, 0, 0, 0, 0, 0, 0, 0, 0.21118188098880102954, 0.33402008586605308471, 0.29298980221468984286, 0.26806296448653738063, 0.23720733268363508595, 0.2510285652964933667, 0.14583302968662079091},
190  {0, 0, 0, 0, 0, 0, 0, 0, -0.14883704087325219656, -0.39197899608005709604, -0.28520435482868433663, -0.23819454759756183981, -0.2024802801289519727, -0.2369976701205682712, -0.086510146140783658608},
191  {0, 0, 0, 0, 0, 0, 0, 0, 0.010748111373072187155, -0.00054440793841566191644, -6.6117096422286744401e-05, 0.00032426109337843134813, 0.00086123563095007638242, 0.00046858791450944800496, 0.0055934740677286293176},
192  {0, 0, 0, 0, 0, 0, 0, 0, 1.8177576283415954883, 0.90124364385162747393, 1.0058576108118726378, 0.97434013632935245752, 0.75135849774137752899, 0.090012990328703759713, 1.1491738867249043921}
193  };
194 double CSCTFPtMethods::AB_mu12RME11[4][15] =
195  {
196  {0, 0, 0, 0, 0, 0, 0, 0.27354810039733407079, 0.25530642585169710523, 0.2281232078009739761, 0.20002002697391027541, 0.18418628467434680629, 0.1691868825133146792, 0.15081083142497944682, 0.11470950819931940989},
197  {0, 0, 0, 0, 0, 0, 0, -0.16735504499789077837, -0.15229365225374749682, -0.12925824722117412735, -0.10394284592720609561, -0.093240817997744127044, -0.073171468346305876262, -0.088574463929812302654, -0.066404461904397707461},
198  {0, 0, 0, 0, 0, 0, 0, -0.00050299673411093688211, 5.1602356927429220493e-05, -3.0794024894263357945e-05, 0.0004052733857930102164, -7.420268691546845442e-05, 0.00011377542095117624751, 0.002401982811750403863, 0.0024540507098964291222},
199  {0, 0, 0, 0, 0, 0, 0, 1.1883256550892249415, 1.1930557391196678907, 1.1956122499877577248, 1.2507536548522568687, 1.1818664879149434199, 0.74072892184538741134, 0.4975999389532442807, 1.0630008076007997353}
200  };
201 double CSCTFPtMethods::AB_mu13RME11[4][15] =
202  {
203  {0, 0, 0, 0, 0, 0, 0, 0.28630621682529061589, 0.29827733143141249572, 0.27230375589683164517, 0.23990484313749371736, 0.21461969319969206871, 0.20904691221965984727, 0.17455215996464093497, 0.10530528191221873169},
204  {0, 0, 0, 0, 0, 0, 0, -0.21320341298073050562, -0.27792002471345611525, -0.22893879370711203713, -0.17267579393860862935, -0.13655560753368203852, -0.13221415752155918355, -0.092817386598587681146, -0.047633722138851357364},
205  {0, 0, 0, 0, 0, 0, 0, 0.0012300659344863943204, -0.00026218872327451808128, -0.00020411464851349467309, 8.8191777702590311294e-05, 0.00044047024925421437123, -0.00067348979494906663183, 0.0026726730924768165448, 0.0067869186945352134865},
206  {0, 0, 0, 0, 0, 0, 0, 1.2315550372405590362, 0.86296110777082257748, 0.94745955410457627366, 1.0617206089293684812, 1.0876186592684131682, 0.81349751399897141102, 0.51174005862466220851, 1.3970393153313427348}
207  };
208 double CSCTFPtMethods::AB_mu14RME11[4][15] =
209  {
210  {0, 0, 0, 0, 0, 0, 0, 0.2321760802583729133, 0.17425716826944270821, 0.28951128850821888916, 0.26122027532891867185, 0.23988161223010590062, 0.21857963541150710052, 0.15353493229255876784, 0.09952290576921750398},
211  {0, 0, 0, 0, 0, 0, 0, -0.20453745460356828612, -0.15291198577104561651, -0.370982786914061613, -0.27553292468971468665, -0.22166866616439959148, -0.17253577136118664059, -0.10047612457180872536, -0.044726719317877430826},
212  {0, 0, 0, 0, 0, 0, 0, 0.0075216673069431437548, 0.0091493927899154794958, -0.00026846347496581161613, -0.00028436379808289408404, -0.00033797061806371863149, -0.00032290147294330767604, 0.0043983126453711971632, 0.0087398021641503856327},
213  {0, 0, 0, 0, 0, 0, 0, 1.4021232447364970763, 1.6613910381816205941, 0.73820877609189006208, 0.87917756535000690654, 0.86376276633863802168, 0.64791792386852542496, 1.0974109668506901727, 1.475947804634221372}
214  };
215 double CSCTFPtMethods::AB_sig12FnoME11[4][15] =
216  {
217  {0, 0, 0, -0.0076412310580529349199, 0.013106555291144636813, 0.025063779434470568469, 0.0087226608724667777789, -0.0012964802596261630445, 0, 0, 0, 0, 0, 0, 0},
218  {0, 0, 0, 0.11492024270448454593, 0.021102150917381608253, -4.2436183419689021967e-08, 0.072972237191400349254, 0.19729003982512077764, 0, 0, 0, 0, 0, 0, 0},
219  {0, 0, 0, 0.0021104070024291496713, 0.0018253795336503611177, 0.0016311827288382637312, 0.0024898068482018614021, 0.0023171447579502014481, 0, 0, 0, 0, 0, 0, 0},
220  {0, 0, 0, 0.90082232171804188514, 1.4715701060292549762, 0.38179435996930433106, -0.31089206041852102125, -1.8605481532163505864, 0, 0, 0, 0, 0, 0, 0}
221  };
222 double CSCTFPtMethods::AB_sig13FnoME11[4][15] =
223  {
224  {0, 0, 0, -0.013922695503875197331, -0.0018020343253406317062, 0.017121560844724798001, 0.018609272384097541586, -0.0050380425848817458542, 0, 0, 0, 0, 0, 0, 0},
225  {0, 0, 0, 0.36952186524609842433, 0.29771940602043445168, 0.25881377301982183559, 0.21522443888607742379, 0.59520725339836588752, 0, 0, 0, 0, 0, 0, 0},
226  {0, 0, 0, 0.0021171146723497585689, 0.001962910013039776292, 0.0016295699065661407162, 0.0017542445121842159018, 0.0018291018059847885362, 0, 0, 0, 0, 0, 0, 0},
227  {0, 0, 0, -0.24903532893487495548, -0.20762623792196052697, -1.23723285975173658, -0.93877564336741559092, -2.7137466589111389759, 0, 0, 0, 0, 0, 0, 0}
228  };
229 double CSCTFPtMethods::AB_sig14FnoME11[4][15] =
230  {
231  {0, 0, 0, 0, -0.049226069782944893716, -0.05447625811386536121, 0.024782117383430092572, 0.0087723204390127967195, 0, 0, 0, 0, 0, 0, 0},
232  {0, 0, 0, 0, 0.96194395556167033856, 1.9107390804546595664, 0.10243277620694382635, 0.29010825363315317915, 0, 0, 0, 0, 0, 0, 0},
233  {0, 0, 0, 0, 0.0025849149683154332667, 0.0022908589943121454233, 0.0017080431015829389101, 0.0022045212844627971524, 0, 0, 0, 0, 0, 0, 0},
234  {0, 0, 0, 0, -1.2932328975948934602, -4.7562023014669927434, 0.78711144534012145169, -0.57517454556474645333, 0, 0, 0, 0, 0, 0, 0}
235  };
236 double CSCTFPtMethods::AB_sig12RnoME11[4][15] =
237  {
238  {0, -0.024837587047074519142, -0.038443755326854262, 0.010789426545740953695, 0.016714316978066363906, 0.036977680482507623017, 0.023903736191005935108, 0, 0, 0, 0, 0, 0, 0, 0},
239  {0, 0.44916461963533510504, 0.54293566642571933212, 0.018977673263371359902, 0.007932079958008179596, -9.4309201558850225267e-08, 5.2699963039304353885e-09, 0, 0, 0, 0, 0, 0, 0, 0},
240  {0, 0.0022745078222873717048, 0.0026499504248443657255, 0.0019347176520538985831, 0.0018882668324742895791, 0.0015313004238581028917, 0.0027721700163088574924, 0, 0, 0, 0, 0, 0, 0, 0},
241  {0, -0.87241910961768964761, -1.0549928243465211963, 1.8999999999485288615, 1.6191292705343984792, -0.63912490618228612327, 0.6398194632982362462, 0, 0, 0, 0, 0, 0, 0, 0}
242  };
243 double CSCTFPtMethods::AB_sig13RnoME11[4][15] =
244  {
245  {0, 0, 0, 0.0036225404374523491324, 0.020602869778294785608, 0.031371735116656827846, 0.044385023713376312027, 0, 0, 0, 0, 0, 0, 0, 0},
246  {0, 0, 0, 0.40723755341312423139, 0.24719809506286585798, 0.23886286984905105713, 0.092388265632692603835, 0, 0, 0, 0, 0, 0, 0, 0},
247  {0, 0, 0, 0.0018900875181423510037, 0.0016683560130446085414, 0.0015517088923086459762, 0.0014400104759778459274, 0, 0, 0, 0, 0, 0, 0, 0},
248  {0, 0, 0, -0.50487582216370696653, -0.21797446389232158492, -0.76054681766358056549, -0.16793042826918122556, 0, 0, 0, 0, 0, 0, 0, 0}
249  };
250 double CSCTFPtMethods::AB_sig14RnoME11[4][15] =
251  {
252  {0, 0, 0, -0.035861540596622137889, -0.1163451242952821818, -0.3223054960806409075, 0.028427718090213778546, 0, 0, 0, 0, 0, 0, 0, 0},
253  {0, 0, 0, 0.91272061044138930175, 1.0649835191592700312, 3.75045883898615795, 0.20554379357162461117, 0, 0, 0, 0, 0, 0, 0, 0},
254  {0, 0, 0, 0.0023100741888551377598, 0.0065631885708627574205, 0.010122343115052657297, 0.0021541859801294522929, 0, 0, 0, 0, 0, 0, 0, 0},
255  {0, 0, 0, -0.85246870399928331707, -1.26158946908596592, -4.209205295019181392, 0.071706289987386498397, 0, 0, 0, 0, 0, 0, 0, 0}
256  };
257 double CSCTFPtMethods::AB_sig12FME11[4][15] =
258  {
259  {0, 0, 0, 0, 0, 0, 0, 0.05458876370405055245, 0.014223815371885261197, 0.051739718849001303802, 0.0043781295277517066206, -0.073251670679359628946, 0.016350518117378025351, 0.024953176408713924339, 0.018013937106717257258},
260  {0, 0, 0, 0, 0, 0, 0, -0.037781377479947614306, 0.80848693770251023327, 0.1697030494994675176, 0.78252633158781936817, 1.2537997106918414847, 0.10612967759966565606, -9.206320800321521336e-08, 2.2213840653040328732e-07},
261  {0, 0, 0, 0, 0, 0, 0, 0.0013753615162960116606, 0.0017341536986479849473, 0.0013675349666495530479, 0.0017609996279085446749, 0.0046166207484297843919, 0.00495761383888420476, 0.0050988257402144569752, 0.0064203615570604640264},
262  {0, 0, 0, 0, 0, 0, 0, 1.8999999999988979038, -3.2324234827503541823, -0.81829590015205422304, -2.7507108181454631435, -1.7359928981630718958, 0.40689058927975751967, 1.4828812725128097672, 1.5951851243514818535}
263  };
264 double CSCTFPtMethods::AB_sig13FME11[4][15] =
265  {
266  {0, 0, 0, 0, 0, 0, -0.19347059395018284533, 0.072568004970527941189, 0.08577237659734933406, 0.078682638529076837086, 0.077062920521249994588, 0.080098726616512086474, 0.023748955156449799708, 0.015834208336261056116, -0.021587059944354128338},
267  {0, 0, 0, 0, 0, 0, 2.6546929735503304038, -0.040973653768088071081, -0.063777717641833361895, -0.050952537148763105135, -0.044007209248372716748, -0.044262064708301115945, 0.29785332091460725579, 0.71835272096206526093, 0.65633476797761147736},
268  {0, 0, 0, 0, 0, 0, 0.0065104044193550428959, 0.0011700415681633554756, 0.00045437269348538639104, 0.0008801332589677031415, 0.00078367838118213598627, 0.00060453583918787642728, 0.004657287607776092013, 0.0037849066904824596111, 0.0061259831222526071187},
269  {0, 0, 0, 0, 0, 0, -4.9999999979557490093, 1.1707517726253902079, 1.0992454619450249265, 1.2206213897813062985, 1.2578764060460077001, 1.3625276752124573232, -1.0956263938322794438, -2.8508701454429501432, -2.1472735770040620729}
270  };
271 double CSCTFPtMethods::AB_sig14FME11[4][15] =
272  {
273  {0, 0, 0, 0, 0, 0, 0, 0, 0.0011704660991897508117, 0.084739514416067682201, 0.086139578586588813613, 0.093199773864805768309, 0.0068597584931722067197, 0.073137137801632320921, -0.024117519905137906056},
274  {0, 0, 0, 0, 0, 0, 0, 0, 0.7338374554546823747, -0.036989032906862853722, -0.038391760412970953042, -0.046077469375633541004, 0.62423005995004055002, -0.040314539852839455236, 0.63248947781334297069},
275  {0, 0, 0, 0, 0, 0, 0, 0, 0.0031924502818212936207, 0.0010331185400558220815, 0.0010342430652703427443, 0.00092674943585657754141, 0.0050760196464007447531, 0.0032319531506008868788, 0.0067125188107654068514},
276  {0, 0, 0, 0, 0, 0, 0, 0, -1.785448670968939, 1.3255257799041022526, 1.3571670682651415518, 1.3337095100618956423, -2.0375413343465438309, 1.4881244856244408847, -1.5048835864460361478}
277  };
278 double CSCTFPtMethods::AB_sig12RME11[4][15] =
279  {
280  {0, 0, 0, 0, 0, 0, 0, 0.029083895221947490134, 0.02931261189231387787, -0.035917405392017993926, 0.02606608527812858539, -0.032213952425992904705, 0.034901077580037881409, 0.038079609520293045133, -0.087892299038559315583},
281  {0, 0, 0, 0, 0, 0, 0, 0.41762122325588330041, 0.24571503336772770876, 1.382448398827999192, 0.59561568267877507132, 1.3203480961328621923, -2.9132130347376411494e-08, -4.2309101866118761781e-07, 1.3315902017409027014},
282  {0, 0, 0, 0, 0, 0, 0, 0.0019308246518827238379, 0.0018496885043595501577, 0.0027736328929315792052, 0.0017558352623714590553, 0.0025111400562270263202, 0.0029777661938234362138, 0.0043603459843407146868, 0.0076843830249820627848},
283  {0, 0, 0, 0, 0, 0, 0, -2.0511755338229731294, -0.82689722791688569092, -4.4494753588966791114, -2.9771639615408234114, -4.4060610830752349187, 0.96642022916504122243, 0.27488639218488036819, -4.9999999999412514384}
284  };
285 double CSCTFPtMethods::AB_sig13RME11[4][15] =
286  {
287  {0, 0, 0, 0, 0, 0, 0, 0.069382927814675421363, 0.062546773192992718982, 0.066219648548532128451, 0.066114165177748651647, 0.06496853782135392219, 0.051540701102725301752, -0.14520516691085255667, -0.029300158926639723045},
288  {0, 0, 0, 0, 0, 0, 0, -0.03808324381918145457, -0.02868588030414172263, -0.031288010457747920945, -0.030725505585511597717, -0.02843978176922726947, 8.9697287389278734793e-07, 1.7723836220217532578, 0.79014048067174824652},
289  {0, 0, 0, 0, 0, 0, 0, 0.00031828670642815944016, 0.0012881264558822541535, 0.00092903731815034164537, 0.0011795342397226430894, 0.00083538336551440930174, 0.0027329868075334912136, 0.0097615976891543883992, 0.0062076155203765765594},
290  {0, 0, 0, 0, 0, 0, 0, 1.3727842579605455953, 1.5374702505093122973, 1.4476836940454602676, 1.4342564093482235155, 1.3613055874742052698, 0.85184697646817630901, -3.994547310920665506, -2.8070031114324471844}
291  };
292 double CSCTFPtMethods::AB_sig14RME11[4][15] =
293  {
294  {0, 0, 0, 0, 0, 0, 0, 0.082096556211616628085, -0.15497763380540566236, 0.077768957501462190884, 0.079360215708304482352, 0.070390471145737557035, 0.045116756706396796139, -0.064677235510244679428, 0.042981004219577227665},
295  {0, 0, 0, 0, 0, 0, 0, -0.046354224360547445494, 3.4600023508388892957, -0.029070628904851493479, -0.030476400557346697284, -0.023356274628402451388, 0.42581998625965733485, 1.1914459601216282891, 0.11545316275932009098},
296  {0, 0, 0, 0, 0, 0, 0, 0.0018078552644396556418, 0.0040218048707196616537, 0.00086395925657936829302, 0.0010071336547866846251, 0.0010978456712284635072, 0.002842508081006394835, 0.0071491121214516993934, 0.0050018422461340821331},
297  {0, 0, 0, 0, 0, 0, 0, 1.2752968417470296192, -4.9999999984414591481, 1.5920301262211007387, 1.5139579024840714716, 1.5241944165676217793, -2.2799951898153256735, -3.0288054012274616689, -0.35716168503710210569}
298  };
299 double CSCTFPtMethods::AB_mu12F[4][15] =
300  {
301  {0, 0, 0, 0.089491067646809183134, 0.10739646024310070538, 0.12549844133338972085, 0.1194760053165676017, 0.30626893792235526659, 0.30009410052196983099, 0.2690532347360728993, 0.23688757461948814487, 0.21899489554680626191, 0.21285418228245533978, 0.15525112596260939868, 0.1770936851403528689},
302  {0, 0, 0, -0.16463359422729287318, -0.18522613297525072906, -0.17065296570525056996, -0.1155394236109319045, -0.18380971440851143206, -0.1859966131117936905, -0.15845841533583629457, -0.12868208564229521862, -0.11875959710980291129, -0.13461549793851387835, -0.090885866696312114787, -0.14347961143957646546},
303  {0, 0, 0, 5.0479701928535670313e-06, -8.5107255627149016024e-05, -0.00031591725812981632723, -0.00010313307150067754737, 6.1998863886012596167e-05, 3.5535741450015050427e-05, -0.00033034534768735314718, 0.00025570884563717226432, -3.2430491772480606483e-05, -3.928192779951495588e-05, 0.0028259336045576349469, -0.00124297387660909117},
304  {0, 0, 0, 1.6276716966428210753, 1.1244502885068945464, 0.44061802755260442988, 0.68081944372417602107, 1.2892912513078853554, 1.2098030702058406582, 1.2406526312160988113, 1.2588644895814975477, 1.2343544778925670258, 0.59901494992516879368, 0.9845753793507600049, 0.72134724334000244195}
305  };
306 double CSCTFPtMethods::AB_mu13F[4][15] =
307  {
308  {0, 0, 0, 0.11794009048617049018, 0.14086291718874013879, 0.16139997805131156561, 0.15937656116892420788, 0.34414162356457134173, 0.34440937003010801964, 0.31471704006829814837, 0.27226322158180205069, 0.24550847587442392594, 0.24463956799494918082, 0.16276628030235296141, 0.183078101259807835},
309  {0, 0, 0, -0.33781826981928775311, -0.37684193029815427067, -0.3462789133929889962, -0.25060466660909758163, 0.99999999999361011138, -0.31182750009024823301, -0.25849818207822566896, -0.19230025423676194718, -0.15638199224610474514, -0.1860677216141479462, -0.089736178206281214109, -0.12591247971454427867},
310  {0, 0, 0, -1.8754239266677112923e-05, -0.00019673769085880689952, -0.00052669062346466261493, -0.00030449439108233132979, 0.00071230918348081078556, -0.00045941836356435766754, -0.00045256277284001311754, 0.00064215185932415489584, 0.00046541851817373622747, 0.00019049878005133037782, 0.0043442731774379211851, 0.0015460291314785047125},
311  {0, 0, 0, 1.2452803747346312679, 0.74944265252708708314, 0.37224767027460281543, 0.31339057767893530038, -2.0890914872066272956, 0.95830873379506731347, 1.0457163419608694888, 1.1230565694613476868, 1.1770351235140514845, 0.65014435708651741042, 1.129972103442078657, 0.68378819802357770907}
312  };
313 double CSCTFPtMethods::AB_mu14F[4][15] =
314  {
315  {0, 0, 0, 0.12104944074518421415, 0.10503732418316034936, 0.099386285225076712035, 0.15823526186568545593, 0.25605688745800425643, 0.39267951247468363407, 0.32990417209085837191, 0.29155610498631334693, 0.25993455189370084923, 0.27876104145873625839, 0.17123500452830145435, 0.1377101784898823178},
316  {0, 0, 0, -0.34834159047255092156, -0.3100051372552997675, -0.19689884687529440876, -0.42846101907983596968, -0.19825501228941203036, -0.69127391031064666649, -0.37799519092326222536, -0.2813623780771447036, -0.21851172477385713555, -0.29451256139301251746, -0.11968566909919842178, -0.082430041079910781887},
317  {0, 0, 0, 0.0006127466960683334565, 0.0018163416142308417157, 0.0023773788535300438216, 0.0015618030372482551073, 0.0074745015886553429346, 0.018200042017815356438, -0.00044263832599834499045, -0.00013173112084098321899, 0.00048044142847010538715, -0.00028331509653057088387, 0.0047044170533411542104, 0.0077579174433774081635},
318  {0, 0, 0, 1.8999999999207801693, 1.3811827661042299642, 1.361253443017911513, 0.16448981101549500772, 1.7211759130995385458, 0.30399083099267765196, 0.92381972077138352351, 0.98949705099683071818, 1.0305604944719717331, 0.18365768267421325732, 0.96525152167887728893, 1.1235655996998157313}
319  };
320 double CSCTFPtMethods::AB_mu12R[4][15] =
321  {
322  {0, 0.1017548888755877845, 0.13020457985822880831, 0.11777472840868662141, 0.1352735458205116259, 0.14797523226644127003, 0.14891234013414389459, 0.27354809992824791198, 0.25530642162633726544, 0.22812303598569572127, 0.20002002697417936572, 0.18418627647990021279, 0.16918688305075030298, 0.1508108314248207682, 0.11470950874198342084},
323  {0, -0.40835812179222591434, -0.4909339449226597929, -0.19396964458569518341, -0.18405457126044733052, -0.15348184403810183341, -0.11949446624665205352, -0.16735504431990988472, -0.15229364636923176102, -0.1292580848284842765, -0.10394284592826465163, -0.093240808678399900167, -0.073171468194201616519, -0.088574463928718608074, -0.066404462713869835677},
324  {0, -0.00046324193156588387276, -0.0012328343527384165272, 5.8536010291841255454e-05, 5.3175743777652564014e-05, -0.00027992198289290446886, 0.00017291608058844862988, -0.00050299670363365375, 5.1602382309461525441e-05, -3.0783724988483899057e-05, 0.00040527338575157016622, -7.4202404535834238977e-05, 0.00011377538633743067547, 0.0024019828117533849852, 0.0024540507720086741569},
325  {0, 0.82326825991227925439, 0.66225151266154569374, 1.6047267765109303195, 1.172660602794620921, 0.91611151466846096891, 0.923434361821059424, 1.188325655620871224, 1.1930557749505621423, 1.1956156176382155554, 1.2507536548585385106, 1.1818666483459900896, 0.74072890966654614253, 0.49759993894696635808, 1.0630007937555521202}
326  };
327 double CSCTFPtMethods::AB_mu13R[4][15] =
328  {
329  {0, 0, 0, 0.17152643870188713504, 0.18220699353677527466, 0.19718061346676321599, 0.20409261783490945108, 0.28630621673439216046, 0.29827733143097401314, 0.27230375589695204885, 0.23990484313734378174, 0.21461969319950535695, 0.20904691238932027186, 0.17455215996309358939, 0.10530527961885094435},
330  {0, 0, 0, -0.51329151983333287657, -0.43421697939765058205, -0.38701854807672181336, -0.29367743292763504037, -0.21320341238440754239, -0.27792002471255045082, -0.22893879370744105173, -0.17267579393834603385, -0.13655560753345002967, -0.13221415770245384391, -0.092817386598829765276, -0.047633719610788972931},
331  {0, 0, 0, -0.00028330256767296205581, -0.00011104889576832950495, -0.0003659472931155986178, -0.0004494825869971541348, 0.0012300659193085917292, -0.00026218872326014996304, -0.00020411464851317293609, 8.8191777707538176329e-05, 0.0004404702492616239173, -0.00067348981143074907862, 0.0026726730925728564743, 0.0067869187519593900115},
332  {0, 0, 0, 1.0806773148892279135, 0.81710737240426545291, 0.49165515886235822141, 0.40288815951359424616, 1.2315550399117412006, 0.86296110777384626989, 0.94745955410233306804, 1.0617206089312878348, 1.0876186592703975808, 0.81349751271060222191, 0.51174005866205685145, 1.3970393581376403525}
333  };
334 double CSCTFPtMethods::AB_mu14R[4][15] =
335  {
336  {0, 0, 0, 0.11411457974213083666, 0.14612498789299999125, 0.15438328053344949065, 0.17021962182813230036, 0.23217608026225655671, 0.17425716827684778476, 0.28951128865791975198, 0.26122027861775976021, 0.23988161223077880679, 0.21857963541170638555, 0.15353493229270298581, 0.099522853724256579722},
337  {0, 0, 0, -0.32211539883453449429, -0.3332077022119345755, -0.28947013547326555516, -0.31678412927379157038, -0.20453745460807634671, -0.15291198578472323111, -0.37098278728491984602, -0.2755329314623077841, -0.22166866616574540383, -0.17253577136159981009, -0.10047612457203594638, -0.044726394456946053091},
338  {0, 0, 0, 0.0021189308480414714535, 0.0017232488622970817526, 0.0014181868364706309241, 0.0020581588744611055593, 0.0075216673068132632735, 0.0091493927895737042766, -0.00026846347791510813061, -0.00028436387259422706009, -0.00033797061809048655314, -0.00032290147294203845477, 0.0043983126453652227755, 0.0087398105487928243185},
339  {0, 0, 0, 1.8999999998213816799, 1.8999999999320695832, 1.2588510283946776624, 0.91969335359675130626, 1.402123244759204912, 1.6613910381353069745, 0.73820877543905039087, 0.87917754884863041909, 0.86376276633290960394, 0.6479179238685032205, 1.0974109668483333913, 1.4759522529227795395}
340  };
341 double CSCTFPtMethods::AB_sig12F[4][15] =
342  {
343  {0, 0, 0, -0.0076412310580529349199, 0.013106555291144636813, 0.025063779434470568469, 0.01934375127428624927, 0.053326545670601563365, 0.0093197497326487303143, 0.0564902513339693782, 0.032206519204039697757, -0.035023660563668873591, 0.028213900213068406758, 0.022784114759202493683, 0.042615038347082211112},
344  {0, 0, 0, 0.11492024270448454593, 0.021102150917381608253, -4.2436183419689021967e-08, 1.3095720405656430252e-08, -0.037472879155788924033, 0.84044166517252949511, 0.15966830269465748238, 0.37149319186299001316, 0.84416754574977770353, 0.033343799149249016278, 6.6539790067633719506e-08, -1.3686068460749822862e-06},
345  {0, 0, 0, 0.0021104070024291496713, 0.0018253795336503611177, 0.0016311827288382637312, 0.0021015267562687076422, 0.0014715412047011698984, 0.0018518237493182830404, 0.0011606808553826068482, 0.0013698268430796098002, 0.0034437807938464026943, 0.004439146916271847175, 0.0056493862115556715831, 0.0036722950074267479183},
346  {0, 0, 0, 0.90082232171804188514, 1.4715701060292549762, 0.38179435996930433106, 0.90052675260749392994, 1.8999999999893364411, -3.1887755118603267057, -0.93952603198035322674, -1.4200273548894686293, -1.3313935786554595975, 0.84940608722578914147, 1.5495399676596248728, 0.1693217499087649458}
347  };
348 double CSCTFPtMethods::AB_sig13F[4][15] =
349  {
350  {0, 0, 0, -0.016313221502792758094, -0.0012344271616210600317, 0.022739050214132340566, 0.019894322103056659434, 0.070152538754905693907, 0.079150371235280320148, 0.079140295486563524974, 0.073877518420634002982, 0.082767871936852088766, 0.021369139940037504971, -0.16477473035652481781, -0.055605012351420450567},
351  {0, 0, 0, 0.40633016978672931163, 0.31906794350617523337, 0.18604815325310422591, 0.22274309425577301647, -0.038098997442242876765, -0.054611240400435009934, -0.050739779309414811959, -0.040691137768363160043, -0.046730053313388586478, 0.34160850069918163863, 2.4811837846155828657, 1.1192582255168381788},
352  {0, 0, 0, 0.002149342213264975824, 0.0019487436377840527436, 0.0015505100309095498287, 0.0017303935347270330437, 0.0012782681837905638701, 0.00077081684260600570775, 0.00078212255888550081661, 0.00085709016208379811951, 0.00040671635301994584974, 0.0047052241934661294398, 0.0091387563643038176309, 0.0065810423040581775625},
353  {0, 0, 0, -0.47422656465701568118, -0.40214476680739164038, -0.807446632577722756, -1.1159653538458467192, 1.1939302604989951995, 1.2565879679975411332, 1.2135620508983242516, 1.3126461466411822876, 1.3303466630446105778, -1.3225160658785197754, -4.99999996608921915, -3.3146932668018336265}
354  };
355 double CSCTFPtMethods::AB_sig14F[4][15] =
356  {
357  {0, 0, 0, -0.023008179953388042255, -0.087196623845599563474, 0.014221968418245287125, -0.021787486380662964697, 0.066204099694590276548, 0.13000102518515968542, 0.086982120087735009806, 0.086006702272218293892, 0.090001124258988041138, 0.013343436845426187576, 0.058197437679117815235, 0.015055422275464733217},
358  {0, 0, 0, 0.58165240914811378037, 1.6572607614650631813, 0.26374858984348420465, 0.56929114216912790614, -0.031761470721266109318, 6.8045996289272520086e-06, -0.040675205849149999315, -0.038282822732629118168, -0.041914122856581741139, 0.73743983985226857492, -0.015956321538818291073, 0.31976184596833290286},
359  {0, 0, 0, 0.0021194192496740956247, 0.0031051396726804536899, 0.0016030344438190185716, 0.0037337124950505506081, 0.00038923034858751352164, 0.00435858958532461295, 0.00085195563700394898957, 0.0011709394391764601367, 0.0007183252935922569693, 0.0048589598885515790372, 0.0035711294225182332179, 0.0063024666771318840416},
360  {0, 0, 0, -0.11185686895850970035, -2.8414639600328577274, -0.10356160152745381986, -1.2383039973901615038, 1.8999999999999264144, -1.1268332104959208895, 1.3399041969100440319, 1.3441201753115872286, 1.4026191965547902818, -2.9935330315178338978, 1.8045262655928504536, -1.0659192090967317679}
361  };
362 double CSCTFPtMethods::AB_sig12R[4][15] =
363  {
364  {0, -0.024837587047074519142, -0.038443755326854262, 0.010789426545740953695, 0.016714316978066363906, 0.036977680482507623017, 0.023903736191005935108, 0.029083895240537907534, 0.029312604029813168344, -0.035917405187485026974, 0.026066086885230148329, -0.032213952427413247714, 0.034901078113956519877, 0.038079760873761171747, -0.087892299405550919356},
365  {0, 0.44916461963533510504, 0.54293566642571933212, 0.018977673263371359902, 0.007932079958008179596, -9.4309201558850225267e-08, 5.2699963039304353885e-09, 0.41762122295566816987, 0.24571510737505500299, 1.3824483935622682296, 0.59561566602531357262, 1.3203480960823190671, -2.930413320681446443e-08, 6.1897109794855492693e-08, 1.3315902039120812717},
366  {0, 0.0022745078222873717048, 0.0026499504248443657255, 0.0019347176520538985831, 0.0018882668324742895791, 0.0015313004238581028917, 0.0027721700163088574924, 0.0019308246515342586576, 0.0018496886131083114559, 0.0027736328912367847269, 0.0017558352148668789246, 0.0025111400562838814485, 0.0029777661392665598361, 0.0043603280275831372836, 0.0076843830377456264283},
367  {0, -0.87241910961768964761, -1.0549928243465211963, 1.8999999999485288615, 1.6191292705343984792, -0.63912490618228612327, 0.6398194632982362462, -2.0511755324568126113, -0.82689751226606089674, -4.4494753423464956654, -2.9771639242617897736, -4.40606108289291587, 0.96642021015404266926, 0.27486695110845749124, -4.9999999999409219242}
368  };
369 double CSCTFPtMethods::AB_sig13R[4][15] =
370  {
371  {0, 0, 0, 0.0036225404374523491324, 0.020602869778294785608, 0.031371735116656827846, 0.044385023713376312027, 0.069382928901304388725, 0.062546773237833669379, 0.066219648548455148362, 0.066114165216842671335, 0.064968538738919279218, 0.051540701111634862341, -0.14520516686903245374, -0.029300157343301824753},
372  {0, 0, 0, 0.40723755341312423139, 0.24719809506286585798, 0.23886286984905105713, 0.092388265632692603835, -0.038083245108582644556, -0.028685880355116981366, -0.031288010457665590969, -0.03072550558016601957, -0.028439782714834840882, 8.984728870169156334e-07, 1.7723836216527502074, 0.79014046453097108724},
373  {0, 0, 0, 0.0018900875181423510037, 0.0016683560130446085414, 0.0015517088923086459762, 0.0014400104759778459274, 0.00031828667387254205856, 0.0012881264560692922555, 0.00092903731815355522061, 0.0011795342366973096335, 0.00083538332113278278117, 0.0027329868075049237874, 0.0097615976878032660602, 0.0062076155003686038503},
374  {0, 0, 0, -0.50487582216370696653, -0.21797446389232158492, -0.76054681766358056549, -0.16793042826918122556, 1.3727842428768588512, 1.5374702497476731011, 1.4476836940468174042, 1.4342564113548856852, 1.3613055688979065483, 0.85184694861412824096, -3.9945473104690254473, -2.8070030811132413717}
375  };
376 double CSCTFPtMethods::AB_sig14R[4][15] =
377  {
378  {0, 0, 0, -0.035861540596622137889, -0.1163451242952821818, -0.3223054960806409075, 0.028427718090213778546, 0.082096556211394805525, -0.15497655162567502973, 0.077768957491548482142, 0.079360069813406791672, 0.070390471478570457164, 0.045116757562121037606, -0.064677236200079091244, 0.042980998502111025794},
379  {0, 0, 0, 0.91272061044138930175, 1.0649835191592700312, 3.75045883898615795, 0.20554379357162461117, -0.046354224360297492658, 3.4599916691801695379, -0.029070628890768772379, -0.03047627128290695056, -0.02335627487211913364, 0.42581999019359662029, 1.1914459601497096042, 0.11545322117611778179},
380  {0, 0, 0, 0.0023100741888551377598, 0.0065631885708627574205, 0.010122343115052657297, 0.0021541859801294522929, 0.0018078552644429368712, 0.0040217835853228389373, 0.00086395925415043829752, 0.0010071371561587601478, 0.0010978456762463116234, 0.0028425080621485550661, 0.0071491121463381828924, 0.0050018423505071209906},
381  {0, 0, 0, -0.85246870399928331707, -1.26158946908596592, -4.209205295019181392, 0.071706289987386498397, 1.2752968417552010827, -4.9999999999938600226, 1.5920301264071463621, 1.5139604617023065813, 1.5241944088777494848, -2.2799952377707408679, -3.0288053889674522168, -0.35716203827983550312}
382  };
383 double CSCTFPtMethods::AB_mu23[4][15] =
384  {
385  {0, 0, 0.040640362633691015648, 0.04143975404558240816, 0.04469283410800238554, 0.050265056377639047436, 0.057855720910264404888, 0.040911062522024761734, 0.054867130272661442103, 0.054846907254368672258, 0.046280965740868151848, 0.038682214878367017497, 0.047358821703414828719, 0.037269955397813366027, 0.015397788631092694522},
386  {0, 0, -0.30371495175799717581, -0.27234040198084696893, -0.27046501071411871431, -0.26067833814957336314, -0.26954736490580177843, -0.1426457415021130104, -0.23307410221367635961, -0.18779763084602629775, -0.11810763599908662147, -0.072929591279204522558, -0.079006610877654537273, -0.042031527428910676891, 0.46158743398909729549},
387  {0, 0, -0.00025828047348465653929, -0.00027808828382601912237, -0.00020419752504549583318, -0.00028862468215624839229, -0.00051268154965345151715, 0.00019102278127906206339, -0.00054091437361434690362, -0.00041573301097917752687, -0.000207953040744469843, 0.0001988367837501522125, -0.00031823156270582506067, 0.00033071671524661735465, 0.00045799410811140088724},
388  {0, 0, 0.72752266254137853974, 1.0478492412845885617, 0.60915246815134527214, 0.26469232068298520488, 0.036425986309331782886, 0.7132004473344412121, 0.4197273677305951578, 0.44676889254736196211, 0.60643361041043153392, 0.7258089895367305644, 0.21165518657016521575, 0.40994342351793594537, -4.9999999982804226306}
389  };
390 double CSCTFPtMethods::AB_mu24[4][15] =
391  {
392  {0, 0, 0, 0.053011865513752004508, 0.062832623407280213668, 0.052170541013462037871, 0.041027537810126024631, 0.040854761324689348179, 0.071402550009543430676, 0.076745077029754082965, 0.079391267110108354466, 0.061688220309377483908, 0.067651891693652002613, 0.053009728431201032228, 0.046716301280283124842},
393  {0, 0, 0, -0.3616747887108062165, -0.45141581345418907434, -0.28705970459229912528, -0.2938013269353861312, -0.27050961323017558291, -0.55762354970371696972, -0.39024523502067204328, -0.31496123297823475085, -0.1983420756482438263, -0.17915991058479247, -0.1008896787182539112, -0.055261431747836577133},
394  {0, 0, 0, -0.00011948386184051261938, -0.00041171189171825890067, 4.5077223215480308541e-05, 0.00064791923408717482999, 0.00079626044366867831676, -0.00020119232396926791046, -0.00036565327240405023478, -0.00092893743231344070178, -0.00011554026166780945835, -0.00037143262941893379287, 0.00034827979969636918729, 0.00038063971268359605635},
395  {0, 0, 0, 1.2751116233058998883, 0.70084162417453721439, 0.90478318682312330878, 0.6800676895845826353, 0.50537353022178055362, 0.054689818098332523832, 0.35827703859892973126, 0.37385157757276732404, 0.50609881884151997067, 0.24620464307424153039, 0.33739943648039177893, 0.61708181749152601903}
396  };
397 double CSCTFPtMethods::AB_mu34[4][15] =
398  {
399  {0, 0, 0, 0.019865692759581058541, 0.028670254062000518486, 0.0062000769568667634529, 0.059000642112303595954, 0.021075145497371470388, -0.058857073670921543351, 0.022193946634618946789, 0.032900966871925077517, 0.022468452340586538007, 0.017925131684213620187, 0.021562743542542832376, 0.0096332062965229867807},
400  {0, 0, 0, -0.16028204223466294143, -0.24129340031911647446, -0.12167938296678502963, -0.48887217760468759664, -0.41129235965903232497, -0.0044574375495286568116, -0.20497526229305951251, -0.20945390137984670753, -0.133016919476993567, -0.09164367838969658675, -0.078156831196806775264, -0.027061677954361280235},
401  {0, 0, 0, -7.2934093657490810247e-05, -0.0005630858306214800782, 0.00056399922304054862787, -0.0014284170932996325277, 0.00026420696996418537115, 0.0019432020683277269335, 5.0465562334091047629e-05, -0.00051405817655614813658, -0.0001476820743599914173, 6.32019763480822774e-05, -0.00034513677440660433691, 0.00057652344564092553817},
402  {0, 0, 0, 1.4981302006935997007, 0.74196319813429467693, 1.0145720473926143068, -0.61744054266046588531, -0.95877986541993265313, 1.2494500863514628186, 0.39038293713197214085, 0.24923581566989111424, 0.37358913393430570604, 0.3656156971405563616, 0.18480549227136852664, 0.58966094664056056818}
403  };
404 double CSCTFPtMethods::AB_mu51[4][15] =
405  {
406  {0.30091153701686212951, 0.21726754617902110933, 0.1456728385238945378, 0.043250093988852815474, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
407  {-0.29502353719653978681, -0.19109266041343297982, -0.12108184175216289702, 0.72288502126591014374, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
408  {0.00012873560389623916068, 4.9291809907909536412e-05, -0.00021151799450913838594, 0.00032645001523661659488, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
409  {1.5787330473223266658, 1.6594505002776189784, 1.8999999999615408974, -4.9999999999974642506, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
410  };
411 double CSCTFPtMethods::AB_mu52[4][15] =
412  {
413  {0, 0.28757434234141143747, 0.22290303793570814817, 0.17273536730279337448, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
414  {0, -0.42706501927164292054, -0.32770564806566382376, -0.24329418737097086023, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
415  {0, -1.4010615867360699891e-05, -0.00025119211587389166183, 0.0004052999487437024392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
416  {0, 1.3739531719045416924, 1.2264113571191062046, 1.5786429063982712062, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
417  };
418 double CSCTFPtMethods::AB_mu53[4][15] =
419  {
420  {0, 0, 0.26147063359849342934, 0.21941755760197284575, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
421  {0, 0, -0.62831662471165483641, -0.5360020970162280296, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
422  {0, 0, -0.00054456170542904129128, -5.2823850021272572564e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
423  {0, 0, 0.90160457604797583642, 0.89939017343329996645, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
424  };
425 double CSCTFPtMethods::AB_mu5[4][15] =
426  {
427  {-21.733893412375444143, -20.005957733042006197, -17.376452159382715479, -17.985193664266713398, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
428  {16.418302072038855499, 13.469008846185953843, 12.429426411511585115, 13.9963454706980297, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
429  {-0.055045848107516816283, -0.040869122792827908275, -0.025980934073070366397, 0.24210701585155450233, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
430  {1.8999999999801029382, 1.7642902553920492004, 1.8222993024358542513, 1.7990108859658437979, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
431  };
432 double CSCTFPtMethods::AB_sig23[4][15] =
433  {
434  {0, 0, -0.010357268292725162889, -0.016380566175621592839, -0.019840699509577841564, -0.0086381386262834487788, -0.003374013086892733819, -0.011814434815520722527, -0.00084060561010774765417, -0.017179591290799121894, 0.0035639959717427907582, 0.0047700899414562444867, 0.010577222576560912568, 0.02059122419865432041, 0.011800502388303060752},
435  {0, 0, 0.14187419330052780664, 0.23041504331599421684, 0.31155426692107951459, 0.26259379394895659976, 0.22004268983078550947, 0.34945904479011519195, 0.26666091393686436328, 0.38600077292544848762, 0.18137548923438057136, 0.12968791855407682534, 0.083124796029554012811, 0.010205021983518632739, 0.071807703627737515251},
436  {0, 0, 0.0021465575441230368842, 0.0022224405572812359205, 0.002251545746496887504, 0.0020929103385102986942, 0.0020355680620528313757, 0.0020702424442080634773, 0.0018383336874655056836, 0.0025004017593913750554, 0.001949774989293934788, 0.001939959052276510592, 0.0017195026729185311498, 0.0017139698182589511305, 0.0019431688340545527453},
437  {0, 0, 1.0630745945983459677, 0.3265773132215800123, -0.65134529804641994044, -1.0524984197072553282, -1.0511032049676600764, -1.8483720507053891247, -1.3389601882033761449, -1.8551069091565570712, -0.98414331636612584209, -0.6063730875586622604, -0.38865902654376205394, 0.43290122641744543941, -0.53818963658092677793}
438  };
439 double CSCTFPtMethods::AB_sig24[4][15] =
440  {
441  {0, 0, 0, -0.019324652110983078085, -0.012002425151063148695, -0.02231499394993846988, -0.020935767372829247601, -0.066886386651832344108, -0.04726302695322702474, -0.04612160370322201941, -0.0015531365858601525916, 0.013723579428071824154, 0.016617430908367349096, 0.030685502798890051251, 0.002966505822064327124},
442  {0, 0, 0, 0.38549899615915406148, 0.32619220210735977439, 0.34706342932948464064, 0.68304114341992616666, 0.9242780677421167379, 0.9319676477585573382, 0.81979381283063590402, 0.4452794101956150663, 0.25406245303464969343, 0.16553792723142907173, 0.11438558724198649719, 0.32271248995562107353},
443  {0, 0, 0, 0.0022171043021711415305, 0.0021520852248391748179, 0.0029359514546444223822, 0.0021275297531913790229, 0.0033328143360110804201, 0.0024627396815788253105, 0.0037704003574912637285, 0.0023868429840302176834, 0.0020064709921131366512, 0.0021463956760972590677, 0.0015026596429240307931, 0.0023198792169650144825},
444  {0, 0, 0, 0.086888271968145289192, 0.019758737551725517878, -0.17987080158763540938, -1.7261300785529098967, -2.6644913692232643498, -2.3141437377987581492, -1.8966055410735647158, -1.2208593823013969004, -0.653071688514877291, -0.34080947192812982571, -0.40136037854760781007, -1.4481957993152787534}
445  };
446 double CSCTFPtMethods::AB_sig34[4][15] =
447  {
448  {0, 0, 0, -0.012400659358070893756, -0.009978612935288379282, -0.038466135371859951075, -0.01237181151567546232, -0.055252999880455823389, 0.044965296368124886561, 0.0020215713950015390746, 0.0018486442968475248413, -0.011461744909954231161, 0.00041337329418400558037, 0.013323692621683664444, -0.0011526907758626363416},
449  {0, 0, 0, 0.11483786317689233247, 0.17614008187718299681, 0.35943587710185270767, 0.31393248752071051255, 0.81003852118825403483, 2.8222370465191132238e-07, 0.15870310756426259102, 0.18489150278200164323, 0.2277514636318530572, 0.10863865522427501586, 0.0081807264119966201232, 0.10304189680104243465},
450  {0, 0, 0, 0.0023086535455528549819, 0.002110004845191660542, 0.0030013629537848584249, 0.0021561954526101824794, 0.0029044705640973510034, 0.001129264217117841116, 0.0020148575420415437004, 0.0022924616641584912025, 0.0022462281749858711323, 0.001953151997646814745, 0.0022772917353313174016, 0.002205332383050566912},
451  {0, 0, 0, 1.4465873202620711524, 0.018290937265976234261, -1.0034048194561047129, -1.5842206847979445339, -3.6001627650055127994, 0.54269742517812191718, -0.54629346359450747794, -0.88004590995407039333, -1.0607951764628562596, -0.386770214915317323, 0.73185507165720742329, -0.7791766852022135037}
452  };
453 double CSCTFPtMethods::AB_sig51[4][15] =
454  {
455  {0.0019758831360956788901, 0.046577756215196844392, -0.05341714103952534265, 0.038119020055320480822, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
456  {0.85917433021287148431, 3.6326347655629698252e-08, 1.2753791210899891873, -0.02296026572998403209, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
457  {0.0018421521390111581656, 0.0013309336424003853465, 0.0024439910926895226824, 0.00084506127844618638811, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
458  {-2.8012298341138666125, 0.89678691204809468651, -4.9999999999931583616, 1.899999999961135444, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
459  };
460 double CSCTFPtMethods::AB_sig52[4][15] =
461  {
462  {0, 0.015190485414726475483, 0.029402840059661459332, -0.03788341461455211473, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
463  {0, 0.57880911770054299659, 0.086708840790683153199, 0.96143975820959226564, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
464  {0, 0.0017431812547872745089, 0.0016439557621822475496, 0.0024073931799825833838, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
465  {0, -1.4962480474138397657, 0.43719757342237014486, -2.5570410154645890621, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
466  };
467 double CSCTFPtMethods::AB_sig53[4][15] =
468  {
469  {0, 0, 0.0048807272389305694088, 0.072311934401593946919, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
470  {0, 0, 0.58247011082391897396, -0.031665576145842380673, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
471  {0, 0, 0.0019289670515048294459, -0.00057867999502623438789, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
472  {0, 0, -1.1919870686056455167, 1.8999999999981564969, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
473  };
474 double CSCTFPtMethods::AB_sig5[4][15] =
475  {
476  {8.0056375707676412645, 2.9947749309947320207, 1.2367570923503916624, 19.305763753429292962, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
477  {-30.026695140142752649, 8.307837839928444712e-06, -2.4301404809023985365e-06, -99.99999999998537703, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
478  {0.49287055372768900918, 0.59795299802278500945, 0.72517967446074338422, 1.499999999999955147, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
479  {-4.7146152770331735127, -1.6075341775064360128, 0.81763143841002616785, -2.2550678981626472996, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
480  };
481 double CSCTFPtMethods::AB_rho123F[5][15] =
482  {
483  {0, 0, 0, 0.22630471857151249204, -0.013379305064225920779, -0.095121706310405507168, 0.090200403370782444856, 0.068042852566437661554, 0.079571614226972439687, 0.088219335458001243988, 0.11303324434571153378, 0.10710141493712137251, 0.026455786925147606325, 0.046817553749737651769, 0.039162183157051222437},
484  {0, 0, 0, -0.10527570667400622251, 0.12879264930099568187, 0.15092684710998546804, 0.007231087835331297814, -0.015515942667432135182, -0.028054920465640682814, -0.025513746642979444335, -0.038661914393439029969, -0.033319542824023648531, 0.017459601922314698513, -0.015147480411169431461, -0.0040274062679487923622},
485  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
486  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
487  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
488  };
489 double CSCTFPtMethods::AB_rho123R[5][15] =
490  {
491  {0, 0, 0, -0.50534064712241677508, 0.15886026549683709974, 0.24117112423743908289, 0.19155165906038881807, 0.082144222540501604657, 0.079920425013872073428, 0.10933442504482954183, 0.11216820513068381793, 0.14139192912438111605, 0.081067695752670754228, 0.068628530591297767782, 0.105151142748966267},
492  {0, 0, 0, 0.4061798017233729241, -0.036885583937586396974, -0.10109132139709975373, -0.093632233538226902758, -0.023232568114674286008, -0.0085349848344330059985, -0.030347560681224468315, -0.04053489453902145434, -0.065178885697974128788, -0.016390211022617402759, -0.016822502733541477155, -0.062227091495819800149},
493  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
494  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
495  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
496  };
497 double CSCTFPtMethods::AB_rho124F[5][15] =
498  {
499  {0, 0, 0, -0.58347458948865937867, 0.40592680503129663361, 0.01641809001879873664, 0.11475806753693058859, -0.18048876743928712885, 0.0068468168498605876462, -0.030777506509684072339, 0.054741994048828152009, 0.097187337842417537148, 0.025067334674935798366, 0.075946312071830973656, 0.085523782829277653073},
500  {0, 0, 0, 0.4258108214245352463, -0.23106738109445768004, 0.052661321450187599524, -0.038151728575192320192, 0.1458955237360785584, 0.024582860384737240111, 0.040630008358215272124, -0.0014353305569224008437, -0.020931085629827921035, 0.029892828324785188088, -0.014638662581363729928, -0.031371352411171941899},
501  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
502  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
503  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
504  };
505 double CSCTFPtMethods::AB_rho124R[5][15] =
506  {
507  {0, 0, 0, -0.36581744112230984989, -0.016324931472307423197, -0.208168363607231649, -0.15220265819093764526, 0.049548837240151813455, -0.046656697978846251029, 0.037095174357064712722, 0.035330048922600804095, 0.074157637081893032494, 0.036436813593929799626, 0.14420567874993162061, 0.19071920385708884815},
508  {0, 0, 0, 0.29009232235255510979, 0.053824155318333753717, 0.11835331987655291208, 0.10356729636019955387, 0.0067230075967922332814, 0.11622283669531324746, 0.0088495323612498635879, 0.010530505354448004701, -0.015216911572413798284, 0.029269517338766565251, -0.060899379503146208736, -0.10887509306211247406},
509  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
510  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
511  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
512  };
513 double CSCTFPtMethods::AB_rho134F[5][15] =
514  {
515  {0, 0, 0, -0.18585738888975150696, 0.13519522007618323123, 0.28221167590680890092, 0.18146765887707849707, 0.1244677849160726324, 0.31105116640597857414, -0.16202243055042145348, 0.039896884577315043507, -0.37248330593247946929, -0.17019868779262120606, -0.029323371944494535518, 0.149148671625682544},
516  {0, 0, 0, 0.14049664985969073649, -0.0029515280689123499225, -0.14984825183404815174, -0.053408519838017261272, -0.055260431588822184201, -0.24961446622059946243, 0.16914774696773446361, 0.026377838114293443439, 0.38350727297664199966, 0.20884886406321828689, 0.088477254929584317478, -0.049311016665284521099},
517  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
518  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
519  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
520  };
521 double CSCTFPtMethods::AB_rho134R[5][15] =
522  {
523  {0, 0, 0, -0.32424288544586399308, 0.065574046096960866836, -0.49534925125377193833, -0.41401921450752909859, 0, -0.054897105600349827004, -0.054121337557626672532, -0.29310761272328111904, -0.15103243717763431553, -0.24914325132296299969, 0.07909932691386906134, 0.12529327248093721781},
524  {0, 0, 0, 0.27459892265632174224, -0.0040433910166926267937, 0.37706697672498318274, 0.4151086501992986566, 0, 0.096654494887792055668, 0.085974946019564915667, 0.29549944312402365298, 0.18974566842525927846, 0.29979099594550706609, 0.0234247525877835025, -0.040829919454425725456},
525  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
526  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
527  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
528  };
529 double CSCTFPtMethods::AB_rho234[5][15] =
530  {
531  {0, 0, 0, -0.66569231418957641733, -0.16487806934241325263, -0.31385730203879769196, 0.52187103693478709143, 0.37489404891915861784, 0.29994883232428287689, -0.12176552846395131968, 0.023619718470720949682, -0.1231122737596004324, -0.013562360832243002678, 0.153600562632957377, 0.21939787654152581586},
532  {0, 0, 0, 0.5208746747250042608, 0.18612484901444453778, 0.27332732398493131409, -0.23999307292846960848, -0.25179957455310036929, -0.18381974435716647021, 0.20095666079537191639, 0.099861239186999406492, 0.23937023494386369671, 0.16677027620912032724, 0.030275177235765518557, -0.0069954356449047749161},
533  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
534  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
535  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
536  };
537 double CSCTFPtMethods::AB_rho512[5][15] =
538  {
539  {0, -0.10435343690000213612, 0.057141083389519162217, 0.023329220607928163878, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
540  {0, 0.061466220874112284522, -0.001239563289620342415, -0.028051900619679361049, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
541  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
542  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
543  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
544  };
545 double CSCTFPtMethods::AB_rho513[5][15] =
546  {
547  {0, 0, -0.089534856488077518843, -0.084337975857153926751, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
548  {0, 0, 0.058028755308100914145, 0.033446616671726735193, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
549  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
550  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
551  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
552  };
553 double CSCTFPtMethods::AB_rho523[5][15] =
554  {
555  {0, -0.48242311538441046137, 0.25779875833780019345, -0.45638836512748476304, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
556  {0, 0.28941463846496195966, -0.15113497713160561897, 0.36832995181674366147, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
557  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
558  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
559  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
560  };
561 double CSCTFPtMethods::AB_rho51B[5][15] =
562  {
563  {98.146234211833089489, 199.99999999999047873, 199.99591177997166369, -3.3007364270967505249, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
564  {-198.36420128721084666, 199.99999999971919351, -68.130825896452520851, 5.6331862234953877788, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
565  {138.59040321786872596, -199.99999999975074161, -75.103918757648003179, -3.3878388130039773785, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
566  {-35.107257005538130556, -78.172491143917071099, 0.25111444908575936141, 0.62856545928460827444, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
567  {3.1832394351004249522, 4.981276803141434506, 4.5629636390469778817, 1.1898949050757507973, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
568  };
569 double CSCTFPtMethods::AB_rho52B[5][15] =
570  {
571  {0, -7.746830214751867949, -0.46812267787622985349, -0.41343591928047368489, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
572  {0, 12.920758877131683917, 2.1193678084821674368, 0.85191889903041662091, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
573  {0, -7.1168839095051934507, -2.1008659109588445624, -0.69884960118479577673, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
574  {0, 1.239800569290119725, 0.49720027595717164459, 0.15699136302342500682, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
575  {0, 1.2582151000263612772, 1.2238929501776998343, 0.88233142702097189236, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
576  };
577 double CSCTFPtMethods::AB_rho53B[5][15] =
578  {
579  {0, 0, 105.35018363918895545, 62.071727282426813588, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
580  {0, 0, -180.24672833591944254, -170.8283169841847382, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
581  {0, 0, 109.89608697213377297, 171.57904987557179766, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
582  {0, 0, -25.005328082184355765, -60.507830469988306277, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
583  {0, 0, 3.0701361165201541681, 4.0540449945183194558, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
584  };
585 
586 /*
587 double CSCTFPtMethods::AB_mu12F[4][15] =
588  {
589  {0, 0, 0, 0.089491197077583115038, 0.10739646114119137665, 0.12484612309276715836, 0.12107457559814104042, 0.32100648056577807399, 0.31559934186960514335, 0.27904201938970829566, 0.24107252259247277659, 0.22375609791218128986, 0.21315488055164613646, 0.15525112328982976218, 0.1770936432612582323},
590  {0, 0, 0, -0.16463926016624763626, -0.18522613246415364774, -0.16806343812839372176, -0.11970576992958406604, -0.20980687790723681618, -0.21121432405796525256, -0.17357771168403127171, -0.13447695742874665736, -0.12462497601448342677, -0.13288174494405455284, -0.090885863966620059062, -0.14347955581137328274},
591  {0, 0, 0, 5.3268434221882604226e-06, -8.5107300514016459483e-05, -0.00030578974891000469888, -0.0001603418756362900272, -0.00053214670979622651168, -0.00055664627477279766433, -0.00067837769016207102087, 9.8375418692391242495e-05, -0.00022734717951328333807, -4.6067317621643834487e-05, 0.0028259338550636840109, -0.0012429687928150318348},
592  {0, 0, 0, 1.6276107021895365179, 1.1244503234167095851, 0.48381199206753811026, 0.6521829384503078364, 1.1967186256839628111, 1.0895619640773057668, 1.1511732463823045602, 1.1902521254981024423, 1.1633346478091382004, 0.57785407327314464165, 0.98457540775822882662, 0.72134750742279629687}
593  };
594 double CSCTFPtMethods::AB_mu13F[4][15] =
595  {
596  {0, 0, 0, 0.11794009048617049018, 0.14088759484277332823, 0.16139997805145156473, 0.15924014633426775145, 0.34166140488658447438, 0.34702413335511289594, 0.32010695305030567592, 0.2754515982876076241, 0.24995233529692478802, 0.24473952965767659107, 0.16276629881527174271, 0.18307810125970991333},
597  {0, 0, 0, -0.33781826981928775311, -0.37697407458444626149, -0.34627891339356470235, -0.2495281510358635102, 0.99999999999997757349, -0.31970550241711948036, -0.27098552536887665632, -0.19871096917742270271, -0.16382565983962907308, -0.18583964558555723934, -0.089736193434904326649, -0.12591247971420319041},
598  {0, 0, 0, -1.8754239266677112923e-05, -0.00019661947183321836592, -0.00052669062346857333217, -0.00031426336450206927104, 0.00074135784198859060873, -0.00055327447631547889591, -0.00061397357196147500646, 0.0005513478108715907846, 0.00030281795212565223042, 0.00018809277538133742542, 0.0043442716153720252817, 0.0015460291315088062116},
599  {0, 0, 0, 1.2452803747346312679, 0.74899299728776114193, 0.3722476702724113462, 0.32663500009046370076, -2.0530993850153551605, 0.94271305514658809699, 1.0071853490324427227, 1.0853085211028365986, 1.1204909555426088019, 0.64565209089225994443, 1.1299720140519045053, 0.68378819801841583814}
600  };
601 double CSCTFPtMethods::AB_mu14F[4][15] =
602  {
603  {0, 0, 0, 0.12104944074518421415, 0.10503732418316034936, 0.099386285225076712035, 0.15823526186568545593, 0.25605688745800425643, 0.39267951247468363407, 0.32713902125758226314, 0.29153130557246226262, 0.26057754487562223566, 0.2787610414578671203, 0.17123500452835416219, 0.13771017848907712855},
604  {0, 0, 0, -0.34834159047255092156, -0.3100051372552997675, -0.19689884687529440876, -0.42846101907983596968, -0.19825501228941203036, -0.69127391031064666649, -0.37133716526774046551, -0.28129274363985412588, -0.22005378496424787826, -0.29451256139072762297, -0.11968566909928436692, -0.082430041078971602597},
605  {0, 0, 0, 0.0006127466960683334565, 0.0018163416142308417157, 0.0023773788535300438216, 0.0015618030372482551073, 0.0074745015886553429346, 0.018200042017815356438, -0.00037850173062430958817, -0.0001310013795632218917, 0.0004588064301207423791, -0.00028331509652615585, 0.0047044170533407638976, 0.0077579174434402355109},
606  {0, 0, 0, 1.8999999999207801693, 1.3811827661042299642, 1.361253443017911513, 0.16448981101549500772, 1.7211759130995385458, 0.30399083099267765196, 0.93667281777770805551, 0.98970790081004300642, 1.0239036500876732561, 0.18365768268235896366, 0.9652515216778745355, 1.1235655997117797167}
607  };
608 double CSCTFPtMethods::AB_mu12R[4][15] =
609  {
610  {0, 0.1017548888755877845, 0.13020457923539549561, 0.11777472840871647253, 0.135259653412823172, 0.15046936351520370789, 0.15033311904520965663, 0.27592431185059518306, 0.26261203783391384725, 0.23590422375068151317, 0.20542666917863602882, 0.18571989573685471209, 0.16892774190980749949, 0.15081083142543386111, 0.11470950869186374854},
611  {0, -0.40835812179222591434, -0.49093394317051980424, -0.19396964458572663048, -0.18295086340095234601, -0.15883083260793051661, -0.12180030676387867961, -0.17142280024651118664, -0.16303048487901222741, -0.13932305333731584418, -0.10994759868937176162, -0.094596273339978872996, -0.074565522370199435742, -0.088574463930121957733, -0.066404462635971134299},
612  {0, -0.00046324193156588387276, -0.0012328343343721989093, 5.853601028974310741e-05, 4.6551402962594318029e-05, -0.00037379710698656352843, 0.00013027765573736787424, -0.00058774094710430232688, -0.00026013465704373937588, -0.00031686525863970090673, 0.00019995024156887846161, -0.00013201225684480750316, 0.00012138566102844140695, 0.0024019828116854068101, 0.002454050768466287287},
613  {0, 0.82326825991227925439, 0.6622515135971137612, 1.604726776511440578, 1.1913289041725036999, 0.92295363547504083446, 0.88387376488231517158, 1.1710955379641101448, 1.1237408525988819008, 1.090451903341310258, 1.1596094691084575246, 1.1568643334317050275, 0.75952946727681092121, 0.49759993894885606869, 1.063000794824717099}
614  };
615 double CSCTFPtMethods::AB_mu13R[4][15] =
616  {
617  {0, 0, 0, 0.17151724172609877916, 0.18220699354740277354, 0.1971806134666532484, 0.20374010863761735091, 0.28349946603158304725, 0.29955890850476568632, 0.27687904734885987468, 0.24303184602970617778, 0.21558087490443028633, 0.20880080988319943414, 0.17455215996556627811, 0.10530527997452461542},
618  {0, 0, 0, -0.51324304402681020232, -0.43421697944855691675, -0.38701854807632224409, -0.29241935343763897359, -0.20871597367009694923, -0.28188419096433631195, -0.24021461843739672082, -0.17856499996545552311, -0.13799534780447694771, -0.13259660131895426027, -0.092817386598798845565, -0.047633720002815273242},
619  {0, 0, 0, -0.0002832228831297351054, -0.00011104889602297010609, -0.00036594729311201532962, -0.00045307390748000288998, 0.0013004023247916438651, -0.00030382496669450169283, -0.00035621571030299009489, -1.5526317287871784553e-05, 0.00040373454108751040317, -0.00066646698390456816929, 0.0026726730924115484414, 0.0067869187429414031335},
620  {0, 0, 0, 1.0807877438092829969, 0.81710737216052486964, 0.4916551588634892056, 0.41353040356462944516, 1.2440300524121079562, 0.85083388011817795427, 0.89970477318504005204, 1.0198709857106920129, 1.0706254801939762977, 0.82353411895961936562, 0.51174005860627325148, 1.3970393515240444593}
621  };
622 double CSCTFPtMethods::AB_mu14R[4][15] =
623  {
624  {0, 0, 0, 0.11411457974213083666, 0.14612498789299999125, 0.15438328053344949065, 0.17021962182813230036, 0.23217608026225655671, 0.17425716827684778476, 0.28951128865791975198, 0.26122027861775976021, 0.24000759859415121689, 0.21857963541141381403, 0.1535349322927131166, 0.099523188319583275052},
625  {0, 0, 0, -0.32211539883453449429, -0.3332077022119345755, -0.28947013547326555516, -0.31678412927379157038, -0.20453745460807634671, -0.15291198578472323111, -0.37098278728491984602, -0.2755329314623077841, -0.22199156842477890672, -0.17253577136104261691, -0.10047612457202366454, -0.044726844357957776244},
626  {0, 0, 0, 0.0021189308480414714535, 0.0017232488622970817526, 0.0014181868364706309241, 0.0020581588744611055593, 0.0075216673068132632735, 0.0091493927895737042766, -0.00026846347791510813061, -0.00028436387259422706009, -0.00034200230860254732116, -0.00032290147293964632531, 0.0043983126453619632301, 0.0087397754915012667437},
627  {0, 0, 0, 1.8999999998213816799, 1.8999999999320695832, 1.2588510283946776624, 0.91969335359675130626, 1.402123244759204912, 1.6613910381353069745, 0.73820877543905039087, 0.87917754884863041909, 0.86223584668569153155, 0.64791792386949675908, 1.0974109668486700109, 1.4759477521933648259}
628  };
629 double CSCTFPtMethods::AB_sig12F[4][15] =
630  {
631  {0, 0, 0, -0.0072662909883246416462, 0.013719915012791324485, 0.025391731980074987163, 0.019339420068030886007, 0.053326545665516936201, 0.0093197486670135200326, 0.056490074687743196957, 0.032206767426382759689, -0.035023634200557013374, 0.028213900230512060918, 0.022784146439966394826, 0.042614741605066668029},
632  {0, 0, 0, 0.10823046777530002938, 0.01878931206060864903, 7.6655861869050212487e-08, 2.6103505241896474143e-08, -0.037472879148333762545, 0.84044168914522066061, 0.1596730107851508651, 0.37148947348342054031, 0.84416665360404552487, 0.033343799167991072796, -3.0637296741242714404e-08, 1.0763679972065204327e-07},
633  {0, 0, 0, 0.0021057909484815525922, 0.001787927570908084832, 0.0016044920308954427855, 0.0021017028916686941731, 0.0014715412052789850379, 0.0018518237683180956143, 0.0011606826124997866867, 0.0013698228830716840596, 0.0034437828228962175797, 0.0044391469161792901366, 0.0056493798171646505621, 0.0036723245279772593827},
634  {0, 0, 0, 0.99067714489116509569, 1.5044636171885787945, 0.35129633070368504466, 0.90079093171596547052, 1.8999999999893355529, -3.1887755854982775539, -0.93955730039878893045, -1.4200124454624811765, -1.3313909517381459224, 0.84940608625462010739, 1.5495433266818319229, 0.16930559499641162358}
635  };
636 double CSCTFPtMethods::AB_sig13F[4][15] =
637  {
638  {0, 0, 0, -0.018414620671899382953, -0.0063421183947521258401, 0.019621855504556442312, 0.022067753543131330557, 0.070152538754796989195, 0.079150371235707506212, 0.079140295486170103567, 0.073877518421508400759, 0.082767871937039536046, 0.021369139938776086918, -0.16477473170806974934, -0.055605010807305503551},
639  {0, 0, 0, 0.43219221841769328574, 0.38483806508941348357, 0.21697207053032832591, 0.2101344849017230676, -0.038098997442349964715, -0.054611240401914125375, -0.050739779308866243823, -0.040691137769481910968, -0.046730053313653409364, 0.34160850071169007736, 2.4811837948791053421, 1.119258204820076763},
640  {0, 0, 0, 0.0021781382803023824693, 0.0019875143955268028371, 0.0016285688513061977872, 0.0016305488842204146627, 0.0012782681837918978725, 0.00077081684258208809941, 0.00078212255890452531213, 0.00085709016204132926989, 0.00040671635300752262757, 0.0047052241935035543641, 0.009138756403904884848, 0.006581042287601297433},
641  {0, 0, 0, -0.57972924553460980501, -0.68468820136347818828, -0.97038451810774917217, -1.0717793859812905222, 1.1939302605060790885, 1.256587967991098731, 1.2135620509254290145, 1.3126461466228707131, 1.3303466630418721017, -1.3225160659219186154, -4.9999999661396543615, -3.3146932332622203177}
642  };
643 double CSCTFPtMethods::AB_sig14F[4][15] =
644  {
645  {0, 0, 0, -0.023008179953388042255, -0.087196623845599563474, 0.014221968418245287125, -0.021787486380662964697, 0.066204099694590276548, 0.13000102518515968542, 0.088152940985918665229, 0.086006702296547610231, 0.090001124259240672387, 0.013343436852110169069, 0.058197437719081840379, 0.01505542228323810891},
646  {0, 0, 0, 0.58165240914811378037, 1.6572607614650631813, 0.26374858984348420465, 0.56929114216912790614, -0.031761470721266109318, 6.8045996289272520086e-06, -0.041841810393849120098, -0.038282822754810812149, -0.041914122856969986131, 0.7374398397890853385, -0.015956321800768006464, 0.3197618459139073277},
647  {0, 0, 0, 0.0021194192496740956247, 0.0031051396726804536899, 0.0016030344438190185716, 0.0037337124950505506081, 0.00038923034858751352164, 0.00435858958532461295, 0.00082943931444573449057, 0.0011709394337778087757, 0.00071832529359430491878, 0.0048589598883952743805, 0.0035711294356746648912, 0.0063024666768379707105},
648  {0, 0, 0, -0.11185686895850970035, -2.8414639600328577274, -0.10356160152745381986, -1.2383039973901615038, 1.8999999999999264144, -1.1268332104959208895, 1.3179872870842119781, 1.3441201747507667275, 1.4026191965487366797, -2.9935330314488335368, 1.8045262602213363312, -1.0659192089400841841}
649  };
650 double CSCTFPtMethods::AB_sig12R[4][15] =
651  {
652  {0, -0.024707713454999773173, -0.038443755326060806421, 0.010871842479360502298, 0.016714368961743577419, 0.038685029953164279393, 0.02390372984130531564, 0.029083895236059510714, 0.029312604030381151504, -0.035917405189748431715, 0.026066042529095882763, -0.032213952423461089669, 0.034901078112193437142, 0.038079734973208073656, -0.087892299438871682171},
653  {0, 0.40843932424117945779, 0.54293566641814372531, 0.018832795613827488235, 0.0079319743967482744806, -1.3344384624776675641e-07, 2.4731323841273300523e-08, 0.41762122302294357734, 0.2457151073649548878, 1.3824483935679199309, 0.59561752502182341296, 1.3203480959501494585, -2.9300474866690573439e-08, -5.0505151304169881854e-08, 1.33159020410869533},
654  {0, 0.0023254028360933497871, 0.002649950424820056178, 0.0019277178040729803059, 0.0018882653538893393562, 0.0014641263016252968436, 0.0027721702922578615909, 0.0019308246516262011702, 0.0018496886131080477779, 0.0027736328913035065286, 0.0017558336048563169887, 0.0025111400562683348567, 0.0029777661394122844143, 0.0043603321450967087031, 0.0076843830389115574953},
655  {0, -0.57683271957068615876, -1.054992824312653843, 1.899999999963281061, 1.6191284732501969312, -0.81388064201435006417, 0.63981909200404141203, -2.051175532753063635, -0.82689751221137741677, -4.4494753422774939722, -2.9771693614691576713, -4.4060610825726218565, 0.96642021012703760441, 0.2748708997533949594, -4.9999999999408935025}
656  };
657 double CSCTFPtMethods::AB_sig13R[4][15] =
658  {
659  {0, 0, 0, 0.00360542021125605152, 0.020602869777912733579, 0.03338432349679926886, 0.044385023713335559903, 0.069822381089744381399, 0.062546773236855104927, 0.066219648547959142348, 0.06611416521692425885, 0.06497177188943759063, 0.051540701348302922491, -0.14520516680358769301, -0.029300157339847341526},
660  {0, 0, 0, 0.4085534255831447803, 0.24719809506838325008, 0.22799199818643953175, 0.092388265633298341517, -0.038646029439082504875, -0.028685880353590667569, -0.031288010457215374716, -0.030725505580235051156, -0.028415643540171672127, 9.3603867356737910366e-07, 1.7723836209535592801, 0.79014046450754893414},
661  {0, 0, 0, 0.0018866521687494811326, 0.0016683560130498699577, 0.0014583718343991452365, 0.0014400104759788815573, 0.00030960964835738120741, 0.0012881264560630871496, 0.00092903731815353960809, 0.0011795342366904821955, 0.00083536183942388160095, 0.0027329868065747320999, 0.0097615976862859086399, 0.0062076155002320975926},
662  {0, 0, 0, -0.51153770481744431642, -0.21797446392083433264, -0.73366402168423128227, -0.16793042827415577412, 1.3634759226070360949, 1.5374702497725512007, 1.4476836940432020739, 1.4342564113539701953, 1.3603273178484918127, 0.85184624997002589275, -3.994547309503146959, -2.8070030810796544607}
663  };
664 double CSCTFPtMethods::AB_sig14R[4][15] =
665  {
666  {0, 0, 0, -0.035861540596622137889, -0.1163451242952821818, -0.3223054960806409075, 0.028427718090213778546, 0.082096556211394805525, -0.15497655162567502973, 0.077768957491548482142, 0.079360069813406791672, 0.070390830092954659314, 0.045116757562570351803, -0.064677236200661736287, 0.042980998498605572922},
667  {0, 0, 0, 0.91272061044138930175, 1.0649835191592700312, 3.75045883898615795, 0.20554379357162461117, -0.046354224360297492658, 3.4599916691801695379, -0.029070628890768772379, -0.03047627128290695056, -0.023352404883102650252, 0.42581999018403432489, 1.1914459601584066473, 0.11545322121954273986},
668  {0, 0, 0, 0.0023100741888551377598, 0.0065631885708627574205, 0.010122343115052657297, 0.0021541859801294522929, 0.0018078552644429368712, 0.0040217835853228389373, 0.00086395925415043829752, 0.0010071371561587601478, 0.0010978464681265795791, 0.0028425080621420056176, 0.007149112146344593563, 0.0050018423505699708895},
669  {0, 0, 0, -0.85246870399928331707, -1.26158946908596592, -4.209205295019181392, 0.071706289987386498397, 1.2752968417552010827, -4.9999999999938600226, 1.5920301264071463621, 1.5139604617023065813, 1.5240783568834928019, -2.2799952377284649074, -3.0288053889868216118, -0.35716203856376926851}
670  };
671 double CSCTFPtMethods::AB_mu23[4][15] =
672  {
673  {0, 0, 0.040640362633691015648, 0.041439895659457770538, 0.044692834118692070788, 0.050265059196205767733, 0.057855781845786831419, 0.040911062011686524786, 0.054867129215603105408, 0.054950002550886931085, 0.04628096985537989011, 0.0386822143533562951, 0.047358821668104643388, 0.037269724720912909832, 0.015397965365282755001},
674  {0, 0, -0.30371495175799717581, -0.27234144993672854129, -0.27046501074758982908, -0.26067835847765863377, -0.26954762805984294749, -0.1426457406009814799, -0.23307410258067257081, -0.18832397122889199537, -0.11810764453638407379, -0.07292958939195615109, -0.079006610759413689604, -0.042031026026755985425, 0.46158683411526485463},
675  {0, 0, -0.00025828047348465653929, -0.00027809037187354816549, -0.00020419752530604902245, -0.00028862476294847243165, -0.0005126844925482460175, 0.00019102281095152457563, -0.00054091429879001191611, -0.00041787351999948647895, -0.00020795331916966821283, 0.00019883680996083264846, -0.00031823156140864297236, 0.00033073555709824023052, 0.00045798264976761775616},
676  {0, 0, 0.72752266254137853974, 1.0478460846247070748, 0.60915246823586477465, 0.26469225006383612087, 0.03642520365582532782, 0.71320044222334588735, 0.41972736248122854974, 0.44434170513663123758, 0.60643357599054859008, 0.72580899653377339842, 0.21165518987418086017, 0.40996107847780505207, -4.9999999999467634737}
677  };
678 double CSCTFPtMethods::AB_mu24[4][15] =
679  {
680  {0, 0, 0, 0.053011865513752004508, 0.06313177697029372093, 0.05352084682330453258, 0.041027537820005684222, 0.040854761316574075836, 0.071402550245544899044, 0.07736719855382165334, 0.079438040698963527375, 0.061688220302594951039, 0.067651891731527510898, 0.052963807889076452984, 0.046716371658662027289},
681  {0, 0, 0, -0.3616747887108062165, -0.44478796457305330714, -0.29166259789877752029, -0.29380132699441008359, -0.27050961328514633308, -0.55762354967613492196, -0.3936011893747999868, -0.31526772180018108882, -0.19834207563864661439, -0.17915991072026557496, -0.10076823982822344372, -0.055261578442674569311},
682  {0, 0, 0, -0.00011948386184051261938, -0.0004377035707288234748, -1.5096856666038595447e-06, 0.00064791923379202854411, 0.00079626044396309916297, -0.00020119232514042466927, -0.00038577749709032405209, -0.00093011706547101180315, -0.00011554026119632592904, -0.00037143263105509765351, 0.00035067034962929022942, 0.00038063551578985043659},
683  {0, 0, 0, 1.2751116233058998883, 0.73216838887711510608, 0.89682810391191047916, 0.68006768939986506073, 0.50537352978830141215, 0.054689817039132032628, 0.3551147830680470574, 0.37259002091189941108, 0.50609881889683205891, 0.24620464257366159178, 0.33817952977709087037, 0.61708106073631430188}
684  };
685 double CSCTFPtMethods::AB_mu34[4][15] =
686  {
687  {0, 0, 0, 0.019865692759581058541, 0.028669852043158385729, 0.0061995800427958030338, 0.059000299883545020974, 0.021075145735423551907, -0.058857041409780444519, 0.024667592379148572251, 0.032653808103308000488, 0.022458031770245540787, 0.01792514222572837157, 0.021562783607549321913, 0.0096216089563556771863},
688  {0, 0, 0, -0.16028204223466294143, -0.24129291619361287191, -0.12167690740695827345, -0.48886768749438458403, -0.41129236199911262117, -0.0044580020884623077632, -0.21747416644594624868, -0.20792639176268520873, -0.13295152726891287798, -0.091643743275156591688, -0.078156998408433070447, -0.027032449911459321273},
689  {0, 0, 0, -7.2934093657490810247e-05, -0.00056307052572997283533, 0.00056401627209529397056, -0.001428418455371307811, 0.00026420696280349427725, 0.0019432058653304881864, -1.4101588242989779309e-05, -0.00050638968612514670842, -0.00014734760272619207332, 6.320198060251979149e-05, -0.00034513817764213352126, 0.00057747077087608850686},
690  {0, 0, 0, 1.4981302006935997007, 0.74195678633729156282, 1.0145865296590363958, -0.61742551412101398522, -0.95877987406953490979, 1.2494426320923743834, 0.36142361465918354524, 0.25628769594642597518, 0.3741147629105586736, 0.365615069336391596, 0.18480357829838381378, 0.5901979250242155306}
691  };
692 double CSCTFPtMethods::AB_mu51[4][15] =
693  {
694  {0.30968585217406008336, 0.22114029366912527075, 0.14560838945559098634, 0.043050218711845451847, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
695  {-0.317391172523608045, -0.19748764832039111816, -0.12103956190508825819, 0.72463403638600509815, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
696  {-0.00010752106748940020668, -4.6072314728751336248e-05, -0.00020800584810109703929, 0.00033077669460946062651, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
697  {1.5451989748370562605, 1.5930686622089456073, 1.8999999999979138021, -4.9999999999877386969, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
698  };
699 double CSCTFPtMethods::AB_mu52[4][15] =
700  {
701  {0, 0.29089555712829096024, 0.22409035657291778709, 0.17273536730257388339, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
702  {0, -0.43681921590138955702, -0.33001737647025841671, -0.24329418737026767272, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
703  {0, -0.00010643314222352778407, -0.00031956169647435724371, 0.00040529994876056351771, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
704  {0, 1.3951067657640845443, 1.2698178861615445623, 1.5786429063985620846, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
705  };
706 double CSCTFPtMethods::AB_mu53[4][15] =
707  {
708  {0, 0, 0.26038412925299281309, 0.21941755760271858255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
709  {0, 0, -0.61721194828669312393, -0.53600209701934642403, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
710  {0, 0, -0.00056428232649683839756, -5.2823850044021085706e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
711  {0, 0, 0.94850025872825582951, 0.89939017342749116857, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
712  };
713 double CSCTFPtMethods::AB_mu5[4][15] =
714  {
715  {-21.773943957733699506, -20.451306495642462835, -17.619293017663956391, -17.985193664137248959, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
716  {15.981287025955555947, 13.662338397855792849, 12.698834069804624036, 13.996345470486554419, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
717  {-0.061346409143613597759, -0.030528939724191926641, -0.021492236674697007964, 0.24210701584829638633, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
718  {1.8075565358091265633, 1.6365385762740469744, 1.7445149566969406774, 1.7990108859790623352, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
719  };
720 double CSCTFPtMethods::AB_sig23[4][15] =
721  {
722  {0, 0, -0.0094472830143822704441, -0.010353883065660221541, -0.015601327378638136373, -0.0083991887622088135662, -0.0038116819341330646607, 0.017694776574912907813, -3.0418423374763137179e-05, -0.017083474678572161537, 0.0030620488929764769909, 0.017250003890826686587, 0.0093475052428345049849, 0.020375148710649073486, 0.010825941272754753195},
723  {0, 0, 0.12318105169788677589, 0.16505972139582619773, 0.263159083213652778, 0.26421790122008942392, 0.23011122781312612351, -0.0029907504110232440049, 0.2662480243269049196, 0.37307765589709518395, 0.18835664858385614551, -0.0037750353709654835277, 0.098617292357490976551, 0.012272312117637594608, 0.08273140888309518659},
724  {0, 0, 0.0021613847603855311508, 0.0021330265880287833241, 0.0021695206819646582243, 0.0020640370557124072468, 0.0020048207254594494972, 0.0014767405252029560357, 0.0017674128894213845219, 0.0025204999982808081078, 0.0019567585272304921853, 0.0017176170124729862442, 0.0017211733630609592216, 0.0017231460782773917826, 0.0019575057733585408438},
725  {0, 0, 1.2774261918853997422, 0.78296130809877573231, -0.37439956367077026345, -1.069757156759185035, -1.1169051718060274414, 1.8723437538832861105, -1.3529025051179361938, -1.7597610310938422984, -1.0397927716846628865, 1.751460152036041773, -0.5607845639862726328, 0.38169069644802128272, -0.67820448402866129189}
726  };
727 double CSCTFPtMethods::AB_sig24[4][15] =
728  {
729  {0, 0, 0, -0.019324652110983078085, -0.014097627204506661333, -0.024009933572701678411, -0.020935767487239648893, -0.066886386670231376406, -0.04726302695081713301, -0.04581885223042039823, -0.0022530391239994115166, 0.012941230376038602781, 0.015015675163022421112, 0.040290964473749905916, 0.00057743831082023152831},
730  {0, 0, 0, 0.38549899615915406148, 0.36399829139474371154, 0.35169918487968249154, 0.68304114463142939773, 0.924278067861450503, 0.93196764772733042825, 0.81473285865204680967, 0.45546643991332796952, 0.26322508591964527414, 0.1818180989316907914, 0.043498303978469606002, 0.34659825827423174083},
731  {0, 0, 0, 0.0022171043021711415305, 0.0021747338101839835782, 0.0029940267352052294877, 0.0021275297553744344087, 0.00333281433667635121, 0.0024627396815433810068, 0.0037669222073941294529, 0.0023976648979574955584, 0.0020217750711657845979, 0.0021837076490728861596, 0.0012144425569054367355, 0.002374985696282168237},
732  {0, 0, 0, 0.086888271968145289192, -0.16601964501317648115, -0.17314993364576378165, -1.7261300821354781387, -2.664491369228591644, -2.3141437377298186284, -1.8792879627112784036, -1.2606774796648803072, -0.69467662222261306049, -0.43108677719729054933, 0.10302409352825184219, -1.5414538145867078267}
733  };
734 double CSCTFPtMethods::AB_sig34[4][15] =
735  {
736  {0, 0, 0, -0.011900935391395110405, -0.0099786129323683296632, -0.03846567510080637492, -0.012370991149719094346, -0.055252999502503549745, 0.044966193083524036433, -0.00027213472446938578864, 0.0021399237064631750245, -0.012043959370962682362, 0.00030539002522898643643, 0.013165853183139508698, 0.00031172134354808022152},
737  {0, 0, 0, 0.111273956912252725, 0.1761400818445788552, 0.35943108699238940362, 0.31392703938750776693, 0.81003851538686244549, 7.9026928716339345238e-07, 0.17123782818945096351, 0.18309348520126816906, 0.23474101370135130873, 0.10971023080469560762, 0.010540318711930948131, 0.097075156214686139644},
738  {0, 0, 0, 0.0023008684843514003171, 0.0021100048451113389419, 0.0030013525121405674675, 0.0021561747583490843347, 0.0029044705579195947802, 0.0011292473915371563191, 0.0020602518937551739589, 0.0022831018423480099744, 0.0022549864255083677464, 0.0019554188567418107417, 0.0022790974638247727541, 0.002187312548748918551},
739  {0, 0, 0, 1.4773740578325260664, 0.018290937563995572634, -1.0033798535764466564, -1.5842086993923574223, -3.6001627441020871423, 0.54264104475808871975, -0.59687853097356946552, -0.87818291672479875665, -1.1101641260377899112, -0.39819220908857072549, 0.64153798465161648856, -0.77169187422540497234}
740  };
741 double CSCTFPtMethods::AB_sig51[4][15] =
742  {
743  {0.00020466983430282321282, 0.047505782475661187392, -0.053417141048077265708, 0.039017115805722264732, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
744  {0.91340592460032132838, -2.3265261778725176978e-09, 1.2753791211682063977, -0.024097491702141229236, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
745  {0.0018152770979815904123, 0.0012666078956331508661, 0.0024439910928461300484, 0.00081068594431841524677, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
746  {-2.9577250260529730497, 0.83105421659328959638, -4.9999999999931565853, 1.8999999999836647557, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
747  };
748 double CSCTFPtMethods::AB_sig52[4][15] =
749  {
750  {0, 0.013024634848957779287, 0.030326831867631701134, -0.037883414612387561471, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
751  {0, 0.60655763110407245886, 0.086549467449585568146, 0.96143975817822979746, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
752  {0, 0.0017838502242368942628, 0.001549072940288412966, 0.0024073931799526598375, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
753  {0, -1.5742327665558009109, 0.42138058335326011861, -2.5570410153890166249, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
754  };
755 double CSCTFPtMethods::AB_sig53[4][15] =
756  {
757  {0, 0, 0.0050716226036932833196, 0.072311934385767509537, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
758  {0, 0, 0.584416896221089055, -0.031665576103488260462, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
759  {0, 0, 0.0019163928931876126824, -0.00057867999258552171686, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
760  {0, 0, -1.1966097325097744264, 1.8999999999981582732, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
761  };
762 double CSCTFPtMethods::AB_sig5[4][15] =
763  {
764  {7.8205209077391470984, 2.9855734606682107213, 1.1825497246141358776, 19.305732840291909724, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
765  {-28.925099295750328565, -1.1590698515764885634e-05, 2.1058004914323302792e-06, -99.999999999237957127, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
766  {0.49543754065341683024, 0.59927339473627028177, 0.72787082140560965815, 1.4999999999905031522, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
767  {-4.4205814548277118092, -1.731856240515097678, 0.91982931738965656443, -2.2550825501853273281, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
768  };
769 double CSCTFPtMethods::AB_rho123F[5][15] =
770  {
771  {0, 0, 0, 0.21591246799314617322, -0.0088050420313028690544, -0.088535622769352645411, 0.1006486675958642163, 0.067288821235719803449, 0.094183111621421872206, 0.11161107798998388951, 0.11398888280887224667, 0.10503939211879674553, 0.024474774056199476852, 0.046753912210887135781, 0.040088150557658401574},
772  {0, 0, 0, -0.098239875317249245046, 0.12779984161744517568, 0.14575642641392180798, 0.00097994339623410156581, -0.017044028681701687417, -0.041821834675341319765, -0.03996460686227946979, -0.038564860655556879032, -0.033600698334453546479, 0.018439524738640494794, -0.015109111485474606418, -0.0045695887184472334247},
773  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
774  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
775  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
776  };
777 double CSCTFPtMethods::AB_rho123R[5][15] =
778  {
779  {0, 0, 0, -0.47568140563221139594, 0.16168003252830986938, 0.25872690555461436146, 0.199495248815122872, 0.10461699853024816753, 0.096749760238894186304, 0.12110848659141376649, 0.11865295930901736954, 0.13774043814412179065, 0.084006936630821260614, 0.068568916018588138561, 0.10326984780227360661},
780  {0, 0, 0, 0.38437441019930046471, -0.039988232827630004751, -0.11333474899807700897, -0.098018610920314108714, -0.027684275921977110485, -0.020477410702221525429, -0.039128511514004080118, -0.041694544300297106676, -0.063510349952433278742, -0.017922560128537899649, -0.016785071384088808, -0.061230529811631448367},
781  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
782  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
783  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
784  };
785 double CSCTFPtMethods::AB_rho124F[5][15] =
786  {
787  {0, 0, 0, -0.59309777973105870519, 0.40674864730572002358, 0.025457362459962610407, 0.12390836361392933151, -0.095057602683116318443, 0.020804212882217412717, 0.0037573456395767730956, 0.051564942370207866862, 0.095392860178285313055, 0.025068145207744741559, 0.074930159107728350198, 0.083894685659705744984},
788  {0, 0, 0, 0.43249344815524365382, -0.22620914049875265328, 0.047340519949311848924, -0.043393009608351185147, 0.089991823076996074748, 0.017785749716159038325, 0.018363489474203294888, 0.00038439875526154188012, -0.01981142588979651134, 0.029870972349476748731, -0.014713153742897349188, -0.030515833639204549554},
789  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
790  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
791  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
792  };
793 double CSCTFPtMethods::AB_rho124R[5][15] =
794  {
795  {0, 0, 0, -0.3790214723591084911, 0.008629294656197683891, -0.18476862186063011673, -0.14382291114342518612, 0.062423042856956378888, -0.01457735302975383257, 0.054710076752791991783, 0.046163675870020424996, 0.073923291317618017304, 0.036368609033315117685, 0.13845699145909207139, 0.19089158859242033595},
796  {0, 0, 0, 0.29446400959310820022, 0.036382668388190271547, 0.10273587571656045414, 0.098901655648261907472, -0.0024084820537273766983, 0.096524156316618106577, -0.0020090841757854135258, 0.0041754682815653386407, -0.015903678190480090987, 0.029186690106470097872, -0.057996964818734043912, -0.10902135889862836493},
797  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
798  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
799  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
800  };
801 double CSCTFPtMethods::AB_rho134F[5][15] =
802  {
803  {0, 0, 0, -0.18540056438689667129, 0.13948900273564729391, 0.28239862898948059344, 0.18152200630689951932, 0.12019173512533826154, 0.33004964169263961704, -0.19271610018409221499, 0.010571838928394724014, -0.35782517965138482818, -0.1667933388665421568, -0.029610523966235428178, 0.14921983595489249352},
804  {0, 0, 0, 0.14018592629407464201, -0.0058491444860705784498, -0.15000052378446995793, -0.053446371008268357683, -0.054095925229749527996, -0.25878658016296007816, 0.19159454488908850278, 0.051622440147487090589, 0.37406385695410443448, 0.20690833738895109128, 0.088602990694543637407, -0.049658965143950316301},
805  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
806  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
807  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
808  };
809 double CSCTFPtMethods::AB_rho134R[5][15] =
810  {
811  {0, 0, 0, -0.32466278494115075048, 0.06557151645351706748, -0.49502508225505659212, -0.41235874470132255487, 0, -0.058206185496771437049, -0.11994212694833844557, -0.28765504885129739021, -0.14630986783496638393, -0.2506902435838725407, 0.077895192872688825969, 0.124491687529346029},
812  {0, 0, 0, 0.27488604690515439088, -0.0040425703778970423219, 0.37667381909165875697, 0.41399717354299681027, 0, 0.099105082166226002305, 0.14152702361577107482, 0.29199015482789675291, 0.18481068509958351043, 0.30061000836172008244, 0.024035962765780741895, -0.039987755352911616424},
813  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
814  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
815  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
816  };
817 double CSCTFPtMethods::AB_rho234[5][15] =
818  {
819  {0, 0, 0, -0.70172108162723456637, -0.16790171221494132325, -0.31359257756370256809, 0.52195596788366016572, 0.35469616250708335681, 0.29972961639836864789, -0.12733383185241853308, 0.023732260311915418655, -0.11620070369401960808, -0.012271043428981569592, 0.15272636020019583758, 0.22639228046259637916},
820  {0, 0, 0, 0.5466181131903057322, 0.1896976252586676237, 0.27309056219009231192, -0.2403671552670139655, -0.24805788613689500055, -0.18366569226946502513, 0.20613233813122075477, 0.099476351393539552692, 0.23721131992179073089, 0.1662158153666866145, 0.030774565037216095043, -0.011281034689275959773},
821  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
822  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
823  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
824  };
825 double CSCTFPtMethods::AB_rho512[5][15] =
826  {
827  {0, -0.10122374386788027256, 0.05867279399992569866, 0.022992784714161641768, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
828  {0, 0.060780405957416211438, -0.0018903031693155436521, -0.027696685591685570732, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
829  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
830  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
831  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
832  };
833 double CSCTFPtMethods::AB_rho513[5][15] =
834  {
835  {0, 0, -0.089930042979514415724, -0.093269939725297734689, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
836  {0, 0, 0.058029285354766410587, 0.03709347335623498082, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
837  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
838  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
839  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
840  };
841 double CSCTFPtMethods::AB_rho523[5][15] =
842  {
843  {0, -0.36007557586623134549, 0.36086751765228869404, -0.49597380394918910707, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
844  {0, 0.23104888116180791191, -0.21165442151467717125, 0.39616810472416036371, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
845  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
846  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
847  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
848  };
849 double CSCTFPtMethods::AB_rho51B[5][15] =
850  {
851  {-23.317206441977930353, 0.38311096711317893515, 138.73025928148325647, -3.3895984991624619198, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
852  {39.81331931040932659, -0.58265538873024502742, -197.09814590529396128, 5.7801784630612900173, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
853  {-21.692379671233720018, 0.16303933981615081894, 92.527943431966605203, -3.4630147948370328947, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
854  {3.6815612322193729256, 2.1215317965894708863e-05, -18.739157224127048096, 0.64092416582054112517, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
855  {1.4065782520225946772, 0.47918084713644876205, 3.4270868776988145932, 1.1911679883977874805, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
856  };
857 double CSCTFPtMethods::AB_rho52B[5][15] =
858  {
859  {0, -11.115614234839123142, 199.99999993867194803, -0.41345082980668335093, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
860  {0, 18.640929927342266836, 199.91384480242638233, 0.85194663719311369832, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
861  {0, -10.215935151734681696, -199.99199382783231727, -0.69886651036510760715, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
862  {0, 1.758281666952397071, -95.546949944038203739, 0.15699448924348563539, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
863  {0, 1.3487188994777750128, 5.4534491073916449011, 0.88233434422240508699, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
864  };
865 double CSCTFPtMethods::AB_rho53B[5][15] =
866  {
867  {0, 0, 199.20037694773515113, 58.711955576749318197, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
868  {0, 0, -50.001539058211825761, -162.05665958847185948, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
869  {0, 0, -75.823665036302642761, 163.90256775382573551, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
870  {0, 0, -0.56535096647798599445, -58.227592407129677099, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
871  {0, 0, 4.7457461205225630607, 4.0420077737038067056, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
872  };
873 */
874 
875 // Anna's 2010 parametrization
876 const double CSCTFPtMethods::A_mu12Front[4][15] =
877  {
878  {0, 0, 0, -0.10523922235654110946, -0.10983929659374999654, -0.11452047380694262146, -0.11922097760176857129, -0.31345770385362781152, -0.29879434616186489881, -0.26915122313015271693, -0.23825592462089598134, -0.21577716540165170489, 0, 0, 0},//A_mu
879  {0, 0, 0, 0.26520808786388666567, 0.20543788970357632073, 0.15092171845376831096, 0.10960449046799547457, 0.07249357497808966988, 0.084725241812656573726, 0.080545185052021503469, 0.063499540823294411962, 0.052274729725005748826, 0, 0, 0},//B_mu
880  {0, 0, 0, 0.00053807554094229155788, 0.00045289727656323158257, 0.00048500971554021258918, 0.00062343043239925161666, 0.00018916793540052533398, 9.9877853046464147579e-05, 0.00011936753945903473204, -0.00013555974179713960442, -0.00018396374782998390577, 0, 0, 0},//C_mu
881  {0, 0, 0, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0, 0, 0} //D_mu
882  };
883 
884 const double CSCTFPtMethods::A_sig12Front[3][15] =
885  {
886  {0, 0, 0, 0.012128390128145795368, 0.0060118459615588950434, 0.0066857690437444544998, 0.016870580188088974555, 3.2471855065940857799e-17, 0.04950616849006982817, 0.047875666889731632869, 0.046434926233452016031, 0.043576561593816925955, 0, 0, 0},
887  {0, 0, 0, 0.11205437847560090203, 0.14710111810994394577, 0.12139003108545433351, 0.05805544863709271447, 0.44230910905171338943, 0.097455948703866090987, 0.091167182629549800565, 0.08155034337565571223, 0.10115334241053108855, 0, 0, 0},
888  {0, 0, 0, 0.00045794655246943964493, 0.00060328713936987944655, 0.00059167776206113108402, 0.00032821487645948946993, 0.0017467056059844235372, 0.00059613339189244513722, 0.00058184715339610595854, 0.00064476542748265707177, 0.00065843267283058381015, 0, 0, 0}
889  };
890 const double CSCTFPtMethods::A_mu13Front[4][15] =
891  {
892  {0, 0, 0, -0.13778088536998894797, -0.15278054690526707282, -0.143346136779766542, -0.14969165155567873415, -0.31735124864642083597, -0.33366154127080654979, -0.32035587063652937179, -0.29063133844224109392, -0.2625110988870774098, 0, 0, 0},
893  {0, 0, 0, 0.50472519215627242861, 0.45431218833331760143, 0.27978303792475944789, 0.21659344933388599563, 0.39042059382545513113, 0.21436973705419076763, 0.21989939737961083921, 0.17248537946455347325, 0.14545152483288878442, 0, 0, 0},
894  {0, 0, 0, 0.00074029784977316568338, 0.00094379263107391029794, 0.00044290989468863904959, 0.00032465731761844673995, 0.00080437043173185620963, 0.00030621821048436737717, 0.00036742704696401365556, 0.00031744969589481185704, 4.3755432326479009111e-05, 0, 0, 0},
895  {0, 0, 0, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0, 0, 0}
896  };
897 const double CSCTFPtMethods::A_sig13Front[3][15] =
898  {
899  {0, 0, 0, 0.022229486577380466045, 0.014786622332179612943, 0.022206319015528955263, 0.030956563988669690696, 0.10438632614093404372, 0.052151139493775117151, 0.061379169888241082165, 0.063070119166874993866, 0.062738437335733338029, 0, 0, 0},
900  {0, 0, 0, 0.17561127734822717938, 0.248243347883890908, 0.15435972163154007553, 0.098222588303399416265, 0.28864281120179885454, 0.28143242857015660086, 0.16091447629058408531, 0.13483945718353784748, 0.13542102637707623125, 0, 0, 0},
901  {0, 0, 0, 0.00050105260335033322255, 0.00060095811169912115909, 0.00049407859567527159534, 0.00062091453005704531909, 0.00046438613640785659023, 0.00074251112464886865304, 0.00070054085319381544095, 0.00064104982805283157888, 0.00060566613754535849647, 0, 0, 0}
902  };
903 const double CSCTFPtMethods::A_mu14Front[4][15] =
904  {
905  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.32728513383665119862, -0.30618420062024648276, -0.27554118389520276811, -0.16285631900256525295, 0, 0},
906  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.32023477684420448286, 0.2693691108403535317, 0.22056748837118930751, 0.064251774309308562483, 0, 0},
907  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00042613689417415228419, 0.00055054357631906247761, 0.00015434926334609733872, -0.012950297280226659088, 0, 0},
908  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0, 0}
909  };
910 const double CSCTFPtMethods::A_sig14Front[3][15] =
911  {
912  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.060082258981389996544, 0.07247051398468504213, 0.069785008221314948074, 3.6424053064063738328e-12, 0, 0},
913  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.30722806049859069377, 0.20925971382909466789, 0.21969785537300090539, 0.022179262487250456931, 0, 0},
914  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00094734288756094921311, 0.00069588950170735620632, 0.00069173065831375820777, 0.095265205090887594697, 0, 0}
915  };
916 //
917 // Rare without CSCTF resolution
918 const double CSCTFPtMethods::A_mu12Rare[4][15] =
919  {
920  {0, -0.10374889091836100863, -0.099788822609968519384, -0.13818657823143312702, -0.13717556879309533713, -0.14490849378394998759, -0.14408105919423722097, -0.2740736915947392105, -0.25354252758973594428, -0.22856287512160483599, -0.19978450972956338094, -0.18078462391477437277, 0, 0, 0},
921  {0, 0.43901381552049162371, 0.33269140862921836588, 0.2867281989745522619, 0.1745740696789168378, 0.13068773408294853677, 0.090289532623200399741, 0.14511096793044100939, 0.089110172781148286325, 0.088325915559225531837, 0.058284739852102536439, 0.054838099980182117288, 0, 0, 0},
922  {0, 0.00090427118272218449946, 0.00051285798655137816021, 0.00096712518524937637985, 0.0005533967588738022839, 0.00058699577022335697706, 0.00046096277656442602704, 0.00059775151582151515688, 0.0002982802094889720106, 0.00025087464533485412822, -1.2763501682976573746e-06, 8.7075909949317653082e-05, 0, 0, 0},
923  {0, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0, 0, 0}
924  };
925 const double CSCTFPtMethods::A_sig12Rare[3][15] =
926  {
927  {0, 0.0038093885421048444447, 0.0065769632315039548015, 0.0055592323950014550446, 0.0093835962422483230883, 0.017396352418037726306, 0.020259861529127568686, 0.028034021369845840699, 0.039800110854239546809, 0.039980148857628114434, 0.038524308685830198351, 0.040281758067103733134, 0, 0, 0},
928  {0, 0.23514753393254139713, 0.20840454339700395514, 0.1734554515667367236, 0.14712778893221009624, 0.068478644292554124995, 0.045578777378287992084, 0.17971688457142401263, 0.10413274328597779683, 0.096806606002943468292, 0.095972114441355463321, 0.077888109608563196873, 0, 0, 0},
929  {0, 0.00060835884164537896556, 0.00057248928258038056342, 0.00054601310456751364283, 0.00045596139082362406765, 0.00036256195477186049098, 0.00033554189220614231851, 0.00081415383922815243514, 0.00064529700989722222747, 0.00063280618158918571729, 0.00066801533625483495039, 0.00061304601669530541484, 0, 0, 0}
930  };
931 const double CSCTFPtMethods::A_mu13Rare[4][15] =
932  {
933  {0, 0, -0.12623127354128180211, -0.17935797490956165157, -0.18060840788964968584, -0.18696605249703140972, -0.19077279628481272344, -0.29349472537983850584, -0.28999462954606641807, -0.28042269536018021858, -0.24794997339523475177, -0.22381101094323510581, 0, 0, 0},
934  {0, 0, 0.46581826439734036471, 0.59045368664701669559, 0.42112504758806018623, 0.31214409746624299791, 0.22991099738945788844, 0.38259688787882195626, 0.21032714197086083141, 0.23803428613207575082, 0.16848812991169570541, 0.13391107896586992854, 0, 0, 0},
935  {0, 0, 0.0002201385928033240463, 0.00094588024264893161806, 0.0006090017795757148196, 0.00055819818498869361832, 0.00051220623767016942862, 0.0010722093641169425093, 0.00033951226487555219435, 0.00057667736469464204747, 0.00038672362687909188003, 0.00018665348905046641372, 0, 0, 0},
936  {0, 0, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0, 0, 0}
937  };
938 const double CSCTFPtMethods::A_sig13Rare[3][15] =
939  {
940  {0, 0, 0.015046443595756202674, 0.024350274050281187077, 0.030516519859742685661, 0.034951536569288559064, 0.040872596013944946514, 0.075500038528175023034, 0.054258877880390701809, 0.057948329004836200695, 0.055684189309453437089, 0.055547652610341891055, 0, 0, 0},
941  {0, 0, 0.72981359973468040714, 0.25552798678505961316, 0.20538399097483123201, 0.13568477284924612691, 0.087691623490571385391, 0.14380693710811331965, 0.17784552932129321645, 0.15447707796169932171, 0.15118995597952319954, 0.13106219757004208826, 0, 0, 0},
942  {0, 0, 0.00047001852983351251119, 0.00053481400606665866967, 0.00036348184816972377081, 0.00037774161715020031574, 0.00026657604722595630358, 0.00029086094173271957383, 0.00068184877937593074432, 0.00058313040724595804811, 0.00061068422520455867882, 0.00061315948044054677767, 0, 0, 0}
943  };
944 const double CSCTFPtMethods::A_mu14Rare[4][15] =
945  {
946  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.2849452232390318196, -0.26600970450734234829, -0.23683395869018955548, -0.22057309433227462181, 0, 0},
947  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.33740004932669764859, 0.27762229117854592131, 0.19628468723350062097, 0.17323896845886521678, 0, 0},
948  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00036794862559287675862, 0.00059266387001125628905, 0.00029802341315537321086, 0.00025629117987456756858, 0, 0},
949  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0, 0}
950  };
951 const double CSCTFPtMethods::A_sig14Rare[3][15] =
952  {
953  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.057936258148966857107, 0.067831242837197713857, 0.065620840504349520206, 0.054328715544637938561, 0, 0},
954  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.30423086251952391468, 0.20761013178198547968, 0.19093892168102474804, 0.38288685251508419727, 0, 0},
955  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00080261760198784384054, 0.00063696047781503656055, 0.00065139580093967995589, 0.00069639579902228165072, 0, 0}
956  };
957 
958 
959 const double CSCTFPtMethods::A_mu51[4][15] =
960  {
961  {-0.30205049387075266765, -0.19825408793401680385, -0.10259572704977054647, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
962  {0.39029489236430164878, -0.99999999999950184293, -0.99999999991334242999, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
963  {-0.0082240407388394932281, -0.008489109806000837144, -0.0096722775887914218262, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
964  {1.4884036315353963431, -2.8577685774096766025, -3.1123617094902709113, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
965  };
966 
967 const double CSCTFPtMethods::A_sig51[3][15] =
968  {
969  {0.013883456707760059509, 0.011790507803505339071, 2.4609763012162222395e-15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
970  {0.33358000572065177325, 0.19837044850549298558, 0.21329994540971500272, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
971  {0.0026062373849642236565, 0.0026272077989507240485, 0.0025484832112267707081, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
972  };
973 
974 const double CSCTFPtMethods::A_mu52[4][15] =
975  {
976  {0, -0.31934822512291188845, -0.24671378669106625026, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
977  {0, -0.99999999999980493381, -0.99999999999999167333, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
978  {0, -0.0073087160764979198016, -0.0070564603063957591009, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
979  {0, -5.0384103551069152616, -5.6736067150957572025, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
980  };
981 const double CSCTFPtMethods::A_sig52[3][15] =
982  {
983  {0, 0.021754484285831678786, 0.0079969520010703034479, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
984  {0, 0.31662456185786602703, 0.25320436095234394314, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
985  {0, 0.0026259453672001680305, 0.0027192866432913216992, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
986  };
987 
988 const double CSCTFPtMethods::A_mu53[4][15] =
989  {
990  {0, 0, -0.2362111548723856147, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
991  {0, 0, 0.58675988413655344456, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
992  {0, 0, -0.0074765217760223816323, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
993  {0, 0, 1.392910355886719076, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
994  };
995 
996 const double CSCTFPtMethods::A_sig53[3][15] =
997  {
998  {0, 0, 0.010082748878246528337, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
999  {0, 0, 0.37397019929001934502, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1000  {0, 0, 0.002686637834141298968, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1001  };
1002 
1004 const double CSCTFPtMethods::A_rho512[5][15] =
1005  {
1006  {0, -1.3270643828972497058, -0.40947841616853780655, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1007  {0, 2.025201781399017964, 0.58089265964690128818, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1008  {0, -0.73760841017029699085, -0.060534778841327505083, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1009  {0, 0.077735281441295198124, -0.017952905037001157251, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1010  {0, 0.005510074476231469412, 0.26061236699994605459, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1011  };
1012 const double CSCTFPtMethods::A_rho513[5][15] =
1013  {
1014  {0, 0, 0.18116780706048338234, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1015  {0, 0, -0.10826967270771679919, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1016  {0, 0, 0.033488168126484141318, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1017  {0, 0, -0.0040355575386412517735, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1018  {0, 0, -0.4934185910548575249, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1019  };
1020 const double CSCTFPtMethods::A_rho523[5][15] =
1021  {
1022  {0, 0, -1.9080285362497979573, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1023  {0, 0, 3.2540326879755121503, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1024  {0, 0, -1.2246911037569772063, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1025  {0, 0, 0.13624286476587679773, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1026  {0, 0, 0.24605674796105389546, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1027  };
1028 
1029 
1030 
1031 const double CSCTFPtMethods::A_mu23[4][15] =
1032  {
1033 
1034  {0, 0, -0.038262994788483634112, -0.038329955987871006107, -0.0374748823380766094, -0.041131685825480934771, -0.041682237062370237901, -0.043941548191289134251, -0.036858451809650610853, -0.041160145519271960912, -0.03640665951155453578, -0.037033177234847232395, -0.039730205721839016719, -0.041049544792113090708, -0.03904511674158141904},
1035  {0, 0, 0.22476203480449799543, 0.19067575131669534105, 0.15256324303025625699, 0.13801063658393192268, 0.12256502197662035025, 0.11905632873396845839, 0.10056103279215167223, 0.094455197819930808434, 0.06542931061274483151, 0.055715924150473321308, 0.053301837423971050456, 0.045890095913808617856, 0.027949821903864861122},
1036  {0, 0, 0.00069404495353071109318, 0.00065670816947569431686, 0.00050715045635956769714, 0.00051087666765004164943, 0.00050201870311558270069, 0.00025160072489320881679, 0.00026119341522217484446, 0.00027099698566654400892, 9.9011225161971808595e-05, 7.3884094779271263388e-05, 0.00025118886053809180194, 0.00035276812785148709559, 0.00023201907068018601732},
1037  {0, 0, 1.5949221750821838128, 1.7201281725872403783, 1.58953615582846286, 1.1423843849936006212, 0.97788843089194554814, 0.90488697221367975221, 1.1715145764654877336, 1.1384185105977693286, 1.1222106905033706337, 0.8870702391119174024, 0.61881410578333895245, 0.2103057782202895909, 0.20906493220451535797}
1038  };
1039 const double CSCTFPtMethods::A_sig23[3][15] =
1040  {
1041  {0, 0, 5.1487948019707241443e-14, 1.371515748194163109e-17, 5.7867664653155070908e-15, 0.0018689633292167232882, 0.0022366390858728274135, 0.0098612407883851022766, 6.8801945206625053642e-12, 0.0032973305248131545321, 0.0054990363466139750501, 0.0092745687266331533483, 0.011501230292384876167, 0.012866555123334103353, 0.01433335748409165708},
1042  {0, 0, 0.20455300017238808863, 0.19201919320235372179, 0.17201776141542601817, 0.12441381076621171875, 0.1050096955004960475, 0.086699597450937707088, 0.12195247491883690061, 0.12325808533281308599, 0.096676601548240911899, 0.075608663356511091047, 0.063411508431177876499, 0.053299915739310803342, 0.048982690822271121589},
1043  {0, 0, 0.00067345631439024247495, 0.00071637601448934864513, 0.00073991596851847836816, 0.0007991069380909875423, 0.0008004777620410123912, 0.00089609812741991013828, 0.001505913962207979526, 0.0014477291363779595194, 0.001410515534491615236, 0.0013306603256628582281, 0.0012465454381592282456, 0.0012290059929163277448, 0.001182792281371985825}
1044  };
1045 const double CSCTFPtMethods::A_mu24[4][15] =
1046  {
1047  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.061959407101930465134, -0.058818321370234280532, -0.068352281408454867995, -0.061460298909070447404, -0.052235918421231680719, -0.072498226107478094815},
1048  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.21211506894042392313, 0.1693324759070968244, 0.16427164509165567696, 0.12206249376578166832, 0.059425221503678751778, 0.10342818163255371178},
1049  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00082310131655814202344, 0.00076119821363284040708, 0.0011383177083823211358, 0.00088025107979697856699, 0.00053811687741542281113, 0.0012072828551724611168},
1050  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.90513569051375386554, 0.84830498879329219175, 0.61907648481747246105, 0.62281733240515868566, 0.96959526780257299095, 0.22278747273629403991}
1051  };
1052 const double CSCTFPtMethods::A_sig24[3][15] =
1053  {
1054  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.036897103741702109991, 0.039899187881393870236, 0.037199371928606554671, 0.044110460084859734464, 0.04574632914580819415, 0.043819228659279139959},
1055  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.12588087914450593607, 0.096275574709463407341, 0.097301378507412841778, 0.062284950968221723666, 0.040981290949611878793, 0.062080679266191686472},
1056  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00015197851743841865125, 0.00020141684336612834154, 0.00023753469072643055345, 5.280883524679438998e-05, 5.5577569515852236366e-05, 6.1083145679098556401e-05}
1057  };
1058 const double CSCTFPtMethods::A_mu34[4][15] =
1059  {
1060  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.0058446275511135183447, -0.0044363335612002457661, -0.0063690633680748938092, -0.0071732602982787522714, -0.0060076595959582691081, -0.0097192787716524169095},
1061  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.069899440774008433919, 0.041945454306693608082, 0.033695321175754334997, 0.02572107994967174141, 0.011966531649750349747, 0.013632158523237790024},
1062  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.00028713324507221590172, -0.00029722368993748908127, -0.00021881992359872021571, -0.00019444183718237873664, -0.00019245346134829781652, -4.7403620157884084486e-05},
1063  {0, 0, 0, 0, 0, 0, 0, 0, 0, 1.23011991602398707, 1.3460026509066507217, 1.3048596027895269511, 1.1101126497057096643, 1.3404667534791459005, 1.1961024662925265893}
1064  };
1065 const double CSCTFPtMethods::A_sig34[3][15] =
1066  {
1067  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.014243461206981972156, 0.010278183995352333305, 0.013373297961434488582, 0.018049641090122695714, 0.018285814028279508137, 0.018004419633993375832},
1068  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.080281940189430453514, 0.097702954127336857915, 0.068717674384759980244, 0.047838267178665204449, 0.043271382660605303694, 0.034571413197575895371},
1069  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00019610172919627981338, 0.00020181030100052541531, 9.721123551963389408e-05, 7.9515919724251022879e-05, 3.152903608551011833e-05, -1.5281155054305934032e-05}
1070  };
1071 
1072 /*
1073 const double CSCTFPtMethods::A_mu23CSCTF[4][15] =
1074  {
1075  {0, 0, -0.05159583579882612292, -0.057495850955557127604, -0.038777381197559336601, -0.034650103854195257735, -0.035866685307932126558, -0.036520018265937925772, -0.039140048431005991514, -0.04132313862170765989, -0.036795418654570546946, -0.034712298048110004633, -0.030675971294882777712, -0.026581567107835060715, -0.027082610124683551694},
1076  {0, 0, 0.30930157379625533576, 0.30528792735566101513, 0.18101621729540517958, 0.13261043687180154582, 0.11710185518524707238, 0.1042269425450448872, 0.12842978872597279882, 0.11026714080229071957, 0.077195052828225488306, 0.052779807661988357992, 0.031907294195008026327, 0.015010793353952620391, 0.0083693744640667474405},
1077  {0, 0, 0.003303237228747075635, 0.0036877622923072827903, 0.0028778748613812418257, 0.0027697479676805046578, 0.0029722472234315878113, 0.0027557729541331493078, 0.0027439686054866367984, 0.0027429867920243330461, 0.0026205380860322580877, 0.0025684796211763527909, 0.0024501533836338673482, 0.0022886566312508992323, 0.0023109047428951515549},
1078  {0, 0, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778}
1079  };
1080 const double CSCTFPtMethods::A_sig23CSCTF[3][15] =
1081  {
1082  {0, 0, 1.9795336160186027818e-14, 1.9915059185082739646e-14, 3.1018595894952150083e-13, 3.247104191431149367e-15, 8.1315162936412832551e-20, 1.240503468176445967e-14, 5.42101086242752217e-20, 1.0611672131288774068e-13, 1.5769479363818283968e-13, 1.3950757324528162417e-13, 9.006754760412793992e-14, 6.4351600220433069488e-14, 3.422793732471562933e-14},
1083  {0, 0, 0.16247290882387102617, 0.17175130285728712476, 0.12863499593873295446, 0.087195343431809388401, 0.075178796525218818947, 0.084968005914806410406, 0.097534051101499472103, 0.10072101959821762318, 0.086515842289935293574, 0.077487068666586722543, 0.066495426545906038962, 0.05829523793723847408, 0.058469062331064518279},
1084  {0, 0, 0.0030866184008234202017, 0.0027157845892710396826, 0.0031000107472930020502, 0.0032948728256854639164, 0.0032523838944876529676, 0.0032908170044063911851, 0.0031077703733701392101, 0.003168310045777431895, 0.0031995826882447926144, 0.0033172473608836330373, 0.003481731357302361371, 0.0035885923423450909013, 0.0036197682854273677093}
1085  };
1086 const double CSCTFPtMethods::A_mu24CSCTF[4][15] =
1087  {
1088  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.040588070215567317867, -0.037244899938720932298, -0.032557928194235655206, -0.033625486248390609734, -0.030979888871088396424, -0.034417775727303090427},
1089  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.14679164922919202274, 0.10155103197601543508, 0.05654629310554831062, 0.045376829456755543579, 0.027509877797561234358, 0.023419523710039816256},
1090  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0020633358759647897618, 0.001896533050698436711, 0.0017858761282068486096, 0.001844050222271934221, 0.0017557139477893672803, 0.0018426777898371733428},
1091  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.8287338692316308375, 0.99774828307731855404, 1.1829866290816364316, 1.1602087549628306018, 1.2464326048294538385, 1.2759641819434877075}
1092  };
1093 const double CSCTFPtMethods::A_sig24CSCTF[3][15] =
1094  {
1095  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.037625952557573547064, 0.01799213091317735172, 1.6125862879181815379e-11, 1.0562397310953652863e-12, 1.241077634541939978e-12, 0.0010355011396506045348},
1096  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.042427032035622765094, 0.098803329688397070751, 0.14389559700484103044, 0.13799560522998333134, 0.12970987520579105312, 0.12360506328208811788},
1097  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0016583711392086320988, 0.0026285030865632191821, 0.0035332492384275056285, 0.0035536381484177958709, 0.0036008804486243150937, 0.003671342260090017847}
1098  };
1099 const double CSCTFPtMethods::A_mu34CSCTF[4][15] =
1100  {
1101  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.024386862247056880632, -0.021528537191676071216, -0.02005083006670880727, -0.01336094590546606925, -0.011202986245246833105, -0.010221348552148104907},
1102  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.13932346391503466765, 0.10879329554634586952, 0.082131024131389118725, 0.049386143583177943839, 0.031626039045900805613, 0.018428910788041489438},
1103  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.002260334327917361795, 0.0022298163315863312253, 0.0022548694122104897576, 0.0018759307742583139749, 0.00177881208252465557, 0.0017313182633728260718},
1104  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778}
1105  };
1106 const double CSCTFPtMethods::A_sig34CSCTF[3][15] =
1107  {
1108  {0, 0, 0, 0, 0, 0, 0, 0, 0, 8.7898167477201694098e-15, 9.6596450456509774796e-15, 5.8301345522149272682e-15, 4.2091980942404738641e-15, 5.3458485468199645751e-15, 3.1712051604473878719e-13},
1109  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.093687563387992001118, 0.079820927326800600321, 0.066984420892720844543, 0.056708328335080805671, 0.047536365785603315604, 0.038169598629265347189},
1110  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0030253104511002268558, 0.0031726875548676886779, 0.0032496716988121504902, 0.0033443354915219845012, 0.0034738654347779623563, 0.0036318730482019275646}
1111 //
1112  };
1113 */
1114 
1115 /*
1116 // correlation
1117 const double CSCTFPtMethods::A_rho123FrontCSCTF[5][15] =
1118  {
1119  {0, 0, 0, -7.1040670977031510347, -12.670315837935662628, -8.7170331637018456661, -0.67519391792989291723, -82.734134458636077625, -0.75423027516740670517, -1.5375638068488624022, -1.9436626689216969233, -3.3048393305106831264, 0, 0, 0},
1120  {0, 0, 0, 13.120105991486797237, 24.351734925387280128, 17.466447377883568493, 3.4093984643667423207, 194.02337279340923715, 2.3366398860307699969, 3.18999491763136378, 3.6653450973208929753, 5.5669645488507377706, 0, 0, 0},
1121  {0, 0, 0, -6.3122732945347292954, -12.092235620129875073, -8.964306376251860442, -2.0956518253881668556, -14.276757245102295713, -1.052341283927880955, -1.3351509494835234193, -1.4259213982588558878, -1.7115493310298179885, 0, 0, 0},
1122  {0, 0, 0, 0.88435981237335747895, 1.7435813620171676241, 1.3426959412552754713, 0.34444942151920626694, -87.449791709635917414, 0.12377690603711703765, 0.15538477196375066747, 0.15008809252689520042, 0.10296388213110005405, 0, 0, 0},
1123  {0, 0, 0, 0.6301630452598394605, 0.95776009332113687389, 0.9017528066816278276, 0.50478537372345588796, 4.2993192028223639056, 0.44617114302999638653, 0.34541691945594366064, 0.42054938381219214572, 0.7433264993299159018, 0, 0, 0}
1124  };
1125 const double CSCTFPtMethods::A_rho124FrontCSCTF[5][15] =
1126  {
1127  {0, 0, 0, 0, 0, 0, 0, 0, -67.653257351760515803, -14.640453888061129462, -8.0061864057341729506, -6.380532066411966241, 0, 0, 0},
1128  {0, 0, 0, 0, 0, 0, 0, 0, 199.99999998356389597, 18.625354490890874359, 10.511672179624257595, 8.772341856627665635, 0, 0, 0},
1129  {0, 0, 0, 0, 0, 0, 0, 0, -190.6065599611967798, -3.7847886886961528141, -2.2651826031392530147, -1.9160721119800219192, 0, 0, 0},
1130  {0, 0, 0, 0, 0, 0, 0, 0, 58.439288729233759057, -2.3364343906401296991e-06, 3.6855623904152867709e-07, -3.0414002648998517131e-06, 0, 0, 0},
1131  {0, 0, 0, 0, 0, 0, 0, 0, 2.8796301484731765541, 1.3626067779332513563, 1.0087454870715759636, 0.90653374832410571482, 0, 0, 0}
1132  };
1133 const double CSCTFPtMethods::A_rho134FrontCSCTF[5][15] =
1134  {
1135  {0, 0, 0, 0, 0, 0, 0, 0, 0, -5.1253686146165238213, -3.9460979852191035988, 50.876993645544430933, 0, 0, 0},
1136  {0, 0, 0, 0, 0, 0, 0, 0, 0, 8.6945510876485556651, 6.9804335263398149536, -138.23002940118752235, 0, 0, 0},
1137  {0, 0, 0, 0, 0, 0, 0, 0, 0, -3.7766962717672067917, -3.021481709800325266, 114.72054763323052384, 0, 0, 0},
1138  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.47276435137618078031, 0.37604585592516825976, -25.936589905717454485, 0, 0, 0},
1139  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.67139180168906242852, 0.65599257431238855443, 2.2983843503797514174, 0, 0, 0}
1140  };
1141 const double CSCTFPtMethods::A_rho123RareCSCTF[5][15] =
1142  {
1143  {0, 3.693736660096563762e-07, -6.3780194230193432148, -13.770035906375994728, -5.1562051118343141809, -3.7461867441730016814, -1.2805080447177172864, 0.50294375115506961826, -1.4740723006986149457, -2.5387426474729517523, -2.1923622917088105844, -3.0911905495886267126, 0, 0, 0},
1144  {0, 1.2460479107724575787e-08, 11.270599218378388073, 22.392173152402016001, 9.3862642825355049325, 7.7578075325167734633, 4.2953294294048536273, 0.22827419724359693243, 3.4825602170197607066, 5.0470037914562615455, 4.4340011683393560915, 6.2256125281916929737, 0, 0, 0},
1145  {0, -3.4521070809865814222e-09, -5.0004899240308509079, -10.311644488849697865, -4.282123228906844048, -3.7150337817860408229, -2.2556284401727886291, -0.25683718959054824271, -1.5532530344313972837, -2.0501268102747358668, -1.6048499907132562914, -2.42639211677826383, 0, 0, 0},
1146  {0, 0.11247782203128549317, 0.65621333795917502485, 1.4508425971339706795, 0.57554752401241371373, 0.51651149712728827712, 0.32553981050209734871, 0.041454698814621479541, 0.1892053332712004543, 0.23183666635265892664, 0.14070399770166691633, 0.25037305153793043555, 0, 0, 0},
1147  {0, 5.2468060541259898405e-05, 0.59902231088968072026, 0.64691306718481345062, 0.56825725017267580963, 0.55227308775738792601, 0.52292618714173277894, 0.15015264640230108206, 0.47276305428305431811, 0.58130632102024715202, 0.66287057871639254447, 0.70571047503796380251, 0, 0, 0}
1148  };
1149 const double CSCTFPtMethods::A_rho124RareCSCTF[5][15] =
1150  {
1151  {0, 0, 0, 0, 0, 0, 0, 0, -62.063614454439573365, -9.3911739932179134627, -6.1205175819402386495, -3.1911920231298327444, 0, 0, 0},
1152  {0, 0, 0, 0, 0, 0, 0, 0, 176.01031612404437965, 12.375741099204100593, 8.5587121090773408127, 5.7559625518179906578, 0, 0, 0},
1153  {0, 0, 0, 0, 0, 0, 0, 0, -160.26616104904954341, -2.5400842729151151822, -1.8386520927660907621, -2.1326757988726772197, 0, 0, 0},
1154  {0, 0, 0, 0, 0, 0, 0, 0, 46.856826297399912562, -4.8053174807327625473e-07, 3.6069918621373098233e-07, 0.21904388264162638622, 0, 0, 0},
1155  {0, 0, 0, 0, 0, 0, 0, 0, 2.6686667219206672286, 1.1798705662301880448, 0.9751334566408034199, 0.50657760373212734617, 0, 0, 0}
1156  };
1157 const double CSCTFPtMethods::A_rho134RareCSCTF[5][15] =
1158  {
1159  {0, 0, 0, 0, 0, 0, 0, 0, 0, 22.63925623244709584, 33.307602374459399641, -4.7351194818759818617, 0, 0, 0},
1160  {0, 0, 0, 0, 0, 0, 0, 0, 0, -81.727537829168539929, -106.94890709205490964, 9.1466321665848884237, 0, 0, 0},
1161  {0, 0, 0, 0, 0, 0, 0, 0, 0, 81.287234092264910146, 99.769637227574477834, -3.9238059375998592948, 0, 0, 0},
1162  {0, 0, 0, 0, 0, 0, 0, 0, 0, -19.366748957614952076, -21.885672253322599801, 0.45930089549956160111, 0, 0, 0},
1163  {0, 0, 0, 0, 0, 0, 0, 0, 0, 2.3976365353544930592, 2.6613591378002552368, 0.90958735012798141994, 0, 0, 0}
1164  };
1165 const double CSCTFPtMethods::A_rho234CSCTF[5][15] =
1166  {
1167  {0, 0, 0, 0, 0, 0, 0, 0, 0, -9.8545541776242284726, -64.883134763134137302, -2.7111481630799327824, -0.094635535725662925377, -0.24145993067693449774, -0.86334668692406080215},
1168  {0, 0, 0, 0, 0, 0, 0, 0, 0, 20.483521463583567623, 128.78793309543945611, 8.4668465066294569255, 3.2196840916959703627, 3.5062716967070435281, 4.8689870431603861078},
1169  {0, 0, 0, 0, 0, 0, 0, 0, 0, -10.072715847457928362, -81.865408753031090328, -4.2797400827660840861, -1.8900888882082564901, -2.0494364954339538976, -2.6715697235200512871},
1170  {0, 0, 0, 0, 0, 0, 0, 0, 0, 1.4368420319765635718, 44.864139609984853507, 0.57906617181020891838, 0.27668065500104588317, 0.30413204972393043102, 0.38082905421452400985},
1171  {0, 0, 0, 0, 0, 0, 0, 0, 0, 1.1952334817255199084, 3.5585102799355743386, 1.062066264100966162, 0.76269875289384825301, 0.75934194995400139394, 0.84343143505690310047}
1172  };
1173 */
1174 // correlation is calculated without CSCTF resolution
1175 const double CSCTFPtMethods::A_rho123FrontCSCTF[5][15] =
1176  {
1177  {0, 0, 0, -1.8018355270558423786, -3.0800442413303450451, -73.019003781704810763, -71.455790570687398144, -64.380384468942153831, 2.1550121774347754666, 2.5576552488389672213, 2.449616802429892104, 2.6048654763866916362, 0, 0, 0},
1178  {0, 0, 0, -2.1007675246065984354, 5.0425956104081919307, 199.99999998505296617, 197.550283903424031, 199.99999998947504309, -3.6752175165788334432, -5.1722529027050292427, -4.3622079033393852399, -3.8822092661387657131, 0, 0, 0},
1179  {0, 0, 0, 4.7467280498208239692, -0.9954101483761357283, -174.31370635014994264, -172.76138545990900752, -195.76348611065316163, 3.4105036734574345481, 4.6147873662827647578, 3.7484788313774726198, 3.1712066148946220778, 0, 0, 0},
1180  {0, 0, 0, 0.30810891952961361184, -1.5943850767419220915e-06, 54.774256057823905053, 53.990647071858525408, 62.484493391665445472, -0.69848464296741152868, -0.91930506751317175862, -0.74283883233049896599, -0.63029551267626326982, 0, 0, 0},
1181  {0, 0, 0, 1.5832663901749726154, 0.74552216086091394054, 2.3871718840149540597, 2.3429031884405246977, 2.5923987724387411724, 0.78470036712835855575, 0.84997184658808944135, 0.77449725473134001241, 0.7103384244719952445, 0, 0, 0}
1182  };
1183 const double CSCTFPtMethods::A_rho124FrontCSCTF[5][15] =
1184  {
1185  {0, 0, 0, 0, 0, 0, 0, 0, 0, 1.3870060999256690337, 2.9712356450806232111, 3.570810174736656073, 0, 0, 0},
1186  {0, 0, 0, 0, 0, 0, 0, 0, 0, -2.5249315692538325528, -5.0029964029336300158, -5.9723457657194050086, 0, 0, 0},
1187  {0, 0, 0, 0, 0, 0, 0, 0, 0, 2.5905258665507675531, 3.7350919226554304409, 4.4308882990573090765, 0, 0, 0},
1188  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.46509034721864128681, -0.65123509278498414865, -0.77222404956138701593, 0, 0, 0},
1189  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.80362588618902608406, 0.76388670904989408594, 0.8119443249235495097, 0, 0, 0}
1190  };
1191 const double CSCTFPtMethods::A_rho134FrontCSCTF[5][15] =
1192  {
1193  {0, 0, 0, 0, 0, 0, 0, 0, 0, 1.9650106495811070495, 4.4682144046367060497, 3.6127345552596952238, 0, 0, 0},
1194  {0, 0, 0, 0, 0, 0, 0, 0, 0, -2.8639423697800454605, -8.5042162539937766752, -6.2743097440414938859, 0, 0, 0},
1195  {0, 0, 0, 0, 0, 0, 0, 0, 0, 2.3846745836159768395, 6.2976695885419857746, 4.8907783903396619962, 0, 0, 0},
1196  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.45508861624906205012, -1.1535577557401812676, -0.887603855749135362, 0, 0, 0},
1197  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.61133320621013831353, 0.8416666357275194299, 0.84060163399865650558, 0, 0, 0}
1198  };
1199 const double CSCTFPtMethods::A_rho123RareCSCTF[5][15] =
1200  {
1201  {0, 3.693736660096563762e-07, 3.6624889920579235536, -1.5878130861362493853, -16.882029490672145755, -19.782998814333478066, -60.455933184308456418, 4.7409034663087075145, 1.2313698717610916944, 4.0535624038761168819, 2.839672990936767949, 1.1264072104945499486, 0, 0, 0},
1202  {0, 1.2460479107724575787e-08, -9.1322692253088106895, 2.7885945213228429118, 35.574384349975474606, 52.562872763020486389, 165.96545891988304788, -7.8572084740661054525, -2.2073725837258022509, -8.2319545861659868535, -5.2739465547973312098, -1.6641893104460985242, 0, 0, 0},
1203  {0, -3.4521070809865814222e-09, 0.304049807886722534, -1.0070939003771062215, -25.509204584815140748, -43.856338459435548316, -142.9795139802988615, 5.1120722960994200434, 2.5507720910098483635, 6.5298492011791555711, 4.4578719360600889132, 2.2487455007422072484, 0, 0, 0},
1204  {0, 0.11247782203128549317, 6.1743739480412145326, 0.11162411914689808479, 8.9528675403092599083, 15.100558849256662697, 44.430568006333729159, -0.9341261050017011236, -0.55701647459573400134, -1.2571707419142834627, -0.88779580801276813951, -0.51779245640493165581, 0, 0, 0},
1205  {0, 5.2468060541259898405e-05, 1.8940496384956984066, 0.066707207826664116634, 1.7508237418861856138, 1.8900280458873763845, 2.1844068317738409846, 0.76180412238695105476, 0.72372957011062566401, 0.89275082928758009437, 0.81250184984526685472, 0.71783981961882159517, 0, 0, 0}
1206  };
1207 const double CSCTFPtMethods::A_rho124RareCSCTF[5][15] =
1208  {
1209  {0, 0, 0, 0, 0, 0, 0, 0, 0, 3.6863837484595949334, 2.3224336525694582178, 3.2507026803368823664, 0, 0, 0},
1210  {0, 0, 0, 0, 0, 0, 0, 0, 0, -6.9075821699787951502, -4.3426737934213210934, -6.2428017762167931082, 0, 0, 0},
1211  {0, 0, 0, 0, 0, 0, 0, 0, 0, 5.1741882361155777659, 3.6659747818805397124, 5.1137870308059385493, 0, 0, 0},
1212  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.8788429753762293517, -0.6687776952912940498, -0.89611818355296113392, 0, 0, 0},
1213  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.89064996021251574554, 0.79339716446029262542, 0.92504977817804989737, 0, 0, 0}
1214  };
1215 const double CSCTFPtMethods::A_rho134RareCSCTF[5][15] =
1216  {
1217  {0, 0, 0, 0, 0, 0, 0, 0, 0, 3.4612440846722587473, 5.7154640478562965811, 6.1988763822017318716, 0, 0, 0},
1218  {0, 0, 0, 0, 0, 0, 0, 0, 0, -5.7252426310553330424, -10.734814097449786985, -11.773479219426080888, 0, 0, 0},
1219  {0, 0, 0, 0, 0, 0, 0, 0, 0, 4.1825411479975462825, 7.4929964403945605866, 8.4655628853855269256, 0, 0, 0},
1220  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.76190351147590362757, -1.349101837260204606, -1.4909015696715794963, 0, 0, 0},
1221  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.73180297067413413448, 0.85937126410475961347, 0.96408406745158758966, 0, 0, 0}
1222  };
1223 //
1224 const double CSCTFPtMethods::A_rho234CSCTF[5][15] =
1225  {
1226  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.90545523934272553745, 0.87175008048078328482, 11.473027189906936485, 11.663806475851881572, 0.42441495626586411838, 0.32838673222117276129},
1227  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.44139458152853866535, -0.42393288245808863346, -22.394533628750806997, -23.701781706067023947, 0.3795109868989199331, 0.61276617249320963765},
1228  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.051844682585598461655, 0.049996912305763613338, 16.507523030995347568, 17.496995261382853215, -0.25771028946901503032, -0.35814371755433299649},
1229  {0, 0, 0, 0, 0, 0, 0, 0, 0, 2.7429208195040022389e-07, 9.0318461390404003453e-08, -3.1629404839892929502, -3.4008584782052286855, 0.032310851118482836197, 0.04444079467290308616},
1230  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.42794073513595692893, -0.42484700224018712156, 1.2597467573071601254, 1.2343273593218078155, -0.1335866415068663049, -0.10123375520631937297}
1231  };
1232 
1233 // Constructor
1235  : trigger_scale( ptScale )
1236 {
1237 }
1238 
1239 // compute PT from dphi = A/Pt + B/Pt^2
1240 // this involves solving the quadratic equation and storing it as Pt
1241 // out of the two possible roots, the return value is always the larger value for Pt
1242 
1243 float CSCTFPtMethods::Pt2Stn(int type, float eta, float dphi, int fr) const
1244 {
1245  float A = 0;
1246  float B = 0;
1247  if (dphi == 0.0) dphi = 1.e-6;
1248  if (eta < 0.0) eta = static_cast<float>(fabs(static_cast<double>(eta)));
1249  if (dphi < 0.0) dphi = static_cast<float>(fabs(static_cast<double>(dphi)));
1251 #ifdef L1CSC_STANDALONE
1252  if (type == kME1andME2 && eta <= 1.25) fr = 1;
1253 #else
1254  if (type == kME1andME2 && eta < 1.2) fr = 1;
1255 #endif
1256  if (type >= kME1andME2 &&
1257  type <= kME2andMB2 && eta < 2.5)
1258  {
1259  if (eta >= 0.0 && eta < 1.6)
1260  {
1261  A = AkLowEta_Fit2[type-1][0] + AkLowEta_Fit2[type-1][1]*eta
1262  + AkLowEta_Fit2[type-1][2]*eta*eta + AkLowEta_Fit2[type-1][3]*eta*eta*eta;
1263  B = BkLowEta_Fit2[type-1][0] + BkLowEta_Fit2[type-1][1]*eta
1264  + BkLowEta_Fit2[type-1][2]*eta*eta + BkLowEta_Fit2[type-1][3]*eta*eta*eta;
1265  if (fr >= 0 && fr <= 1)
1266  {
1267  A *= FRCorrLowEta[type-1][fr];
1268  B *= FRCorrLowEta[type-1][fr];
1269  }
1270  }
1271 
1272  if (eta >= 1.6 && eta < 2.5)
1273  {
1274  A = AkHighEta_Fit2[type-1][0] + AkHighEta_Fit2[type-1][1]*eta
1275  + AkHighEta_Fit2[type-1][2]*eta*eta + AkHighEta_Fit2[type-1][3]*eta*eta*eta;
1276  B = BkHighEta_Fit2[type-1][0] + BkHighEta_Fit2[type-1][1]*eta
1277  + BkHighEta_Fit2[type-1][2]*eta*eta + BkHighEta_Fit2[type-1][3]*eta*eta*eta;
1278  if (fr >= 0 && fr <= 1)
1279  {
1280  A *= FRCorrHighEta[type-1][fr];
1281  B *= FRCorrHighEta[type-1][fr];
1282  }
1283  }
1284 
1285  A *= kGlobalScaleFactor;
1286  B *= kGlobalScaleFactor;
1287  float Pt = (A + sqrt(A*A + 4.*dphi*B))/(2.*dphi);
1288 
1289  // return (Pt>0.0) ? Pt : 0.0;
1290  return (Pt>trigger_scale->getPtScale()->getLowEdge(1)) ? Pt
1292  }
1293  return 0.0;
1294 }
1295 
1296 float CSCTFPtMethods::Pt3Stn(int type, float eta, float dphi1, float dphi2, int fr ) const
1297 {
1298  int ty1 = 0, ty2 =0;
1299 
1300  switch (type)
1301  {
1302  case 1 :
1303  ty1 = kME1andME2 -1; // subtype sets the right position for array A
1304  ty2 = kME2andME3 -1;
1305  break;
1306  case 2 :
1307  ty1 = kME1andME2 -1;
1308  ty2 = kME2andME4 -1;
1309  break;
1310  case 3 :
1311  ty1 = kME1andME3 -1;
1312  ty2 = kME3andME4 -1;
1313  break;
1314  case 4 :
1315  ty1 = kME2andME3 -1;
1316  ty2 = kME3andME4 -1;
1317  break;
1318  default:
1319  return 0.0;
1320  }
1321 
1322  // Switch to 2-Station measurement if dphi is too small
1323  // box cut around Pt of 10 GeV
1324  float Pt;
1325 // if ( (fabs(static_cast<double>(dphi2))<0.004) &&
1326 // (fabs(static_cast<double>(dphi1))<0.030)) {
1327  if ( fabs(static_cast<double>(dphi2))<0.004 )
1328  {
1329  Pt = Pt2Stn((ty1+1), eta, dphi1, fr);
1330  }
1331  else
1332  {
1333  float c1=(-.2999 * (eta*eta*eta) + 2.030 * (eta*eta) - 4.235 * eta + 3.024) + 0.02;
1334  float c2=(-2.484 * (eta*eta*eta) + 14.43 * (eta*eta) - 27.66 * eta + 18.47)*.72;
1335  float r = 0.6; //correlation
1336  float A1 = 0;
1337  float A2 = 0;
1338 
1339  if (dphi1 == 0.0) dphi1 = 1.e-6;
1340  if (dphi2 == 0.0) dphi2 = 1.e-6;
1341  if (eta < 0.0) eta = static_cast<float>(fabs(static_cast<double>(eta)));
1342  if (eta >= 0.0 && eta < 1.6)
1343  {
1344  A1 = AkLowEta_Fit1[ty1][0] + AkLowEta_Fit1[ty1][1]*eta
1345  + AkLowEta_Fit1[ty1][2]*eta*eta + AkLowEta_Fit1[ty1][3]*eta*eta*eta;
1346  A2 = AkLowEta_Fit1[ty2][0] + AkLowEta_Fit1[ty2][1]*eta
1347  + AkLowEta_Fit1[ty2][2]*eta*eta + AkLowEta_Fit1[ty2][3]*eta*eta*eta;
1348  if (fr >= 0 && fr <= 1)
1349  {
1350  A1 *= FRCorrLowEta[ty1][fr];
1351  }
1352  }
1353 
1354  if (eta >= 1.6 && eta < 2.5)
1355  {
1356  A1 = AkHighEta_Fit1[ty1][0] + AkHighEta_Fit1[ty1][1]*eta
1357  + AkHighEta_Fit1[ty1][2]*eta*eta + AkHighEta_Fit1[ty1][3]*eta*eta*eta;
1358  A2 = AkHighEta_Fit1[ty2][0] + AkHighEta_Fit1[ty2][1]*eta
1359  + AkHighEta_Fit1[ty2][2]*eta*eta + AkHighEta_Fit1[ty2][3]*eta*eta*eta;
1360  if (fr >= 0 && fr <= 1)
1361  {
1362  A1 *= FRCorrHighEta[ty1][fr];
1363  }
1364  }
1365  A1 *= kGlobalScaleFactor;
1366  A2 *= kGlobalScaleFactor;
1367  Pt = 1/((( -dphi1/c1/c1/A1+r*dphi2/c1/c2/A2+dphi1*r/c1/c2/A1-dphi2/c2/c2/A2)
1368  + sqrt( (dphi1/c1/c1/A1-r*dphi2/c1/c2/A2-dphi1*r/c1/A1/c2+dphi2/c2/c2/A2)
1369  *(dphi1/c1/c1/A1-r*dphi2/c1/c2/A2-dphi1*r/c1/A1/c2+dphi2/c2/c2/A2)
1370  + 8*(1-r*r)*(dphi1*dphi1/c1/c1/A1/A1-2*dphi1*dphi2*r/c1/A1/c2/A2
1371  +dphi2*dphi2/c2/c2/A2/A2)))/(4*(1-r*r)));
1372 
1373  } // end 2 or 3 station method
1374  // if (Pt<0.0) Pt = 0.0;
1375  if (Pt<trigger_scale->getPtScale()->getLowEdge(1))
1376  Pt = trigger_scale->getPtScale()->getLowEdge(1);
1377 
1378  // switch to 2-stn Pt above 10 GeV:
1379  /*
1380  if (Pt>10.0) {
1381  switch (type)
1382  {
1383  case 1 :
1384  case 2 :
1385  Pt = Pt2Stn(1, eta, dphi1);
1386  break;
1387  case 3:
1388  Pt = Pt2Stn(2, eta, dphi1);
1389  break;
1390  case 4:
1391  Pt = Pt2Stn(3, eta, dphi1);
1392  }
1393  }
1394  */
1395 
1396  return Pt;
1397 }
1398 
1399 // Now for C.Yeh's Chisquare method
1400 
1401 /*
1402 type:
1403 sta1-2 = 0
1404 sta1-3 = 1
1405 sta2-3 = 2
1406 sta2-4 = 3
1407 sta1-2-3 = 4
1408 sta1-2-4 = 5
1409 
1410 2.0 <= pt < 140.0
1411 0.9 <= eta < 2.4
1412 
1413 Note: So far,
1414 Pt2Stn only defined for types 0 and 1
1415 Pt3Stn only defined for types 4 and 5
1416 */
1417 
1418 //arrays for pt and eta bins
1419 
1420 const float CSCTFPtMethods::ptbins[29] =
1421  {2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0,
1422  10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 25.0, 30.0, 35.0, 40.0,
1423  45.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 120.0, 140.0};
1424 
1425 const float CSCTFPtMethods::etabins[16] =
1426  {0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,
1427  1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4};
1428 
1429 double CSCTFPtMethods::Likelihood2(double *phi12, double *par_m12, double *par_sig12, double *v) const
1430  {
1431  double fitval = 0.;
1432  double Pi = acos(-1.);
1433  double m12 = 0;
1434  if(v[0] > par_m12[3])
1435  m12 = par_m12[0]/(v[0]-par_m12[3]) + par_m12[1]/(v[0]-par_m12[3])/(v[0]-par_m12[3]) + par_m12[2]; //mu12
1436  double sig12 = 0.1;
1437  if(v[0] > 0.) sig12 = par_sig12[0]/v[0] + par_sig12[1]/v[0]/v[0] + par_sig12[2];//sig12
1438 //
1439  fitval = -(phi12[0] - m12)*(phi12[0] - m12)/2./sig12/sig12;
1440  fitval = fitval - log(sig12) - 0.5*log(2*Pi) ;
1441 
1442  return fitval; }
1443 double CSCTFPtMethods::Likelihood2_2011(double *phi12, double *par_m12, double *par_sig12, double *v) const
1444  {
1445  double fitval = 0.;
1446  double Pi = acos(-1.);
1447  double m12 = 0;
1448  if(v[0] > par_m12[3])
1449  m12 = par_m12[0]/(v[0]-par_m12[3]) + par_m12[1]/(v[0]-par_m12[3])/(v[0]-par_m12[3]) + par_m12[2]; //mu12
1450  double sig12 = 0.1;
1451  if(v[0] > par_sig12[3]) sig12 = par_sig12[0]/(v[0]-par_sig12[3]) + par_sig12[1]/(v[0]-par_sig12[3])/(v[0]-par_sig12[3]) + par_sig12[2];//sig12
1452  if(sig12 <0.0015)sig12 = 0.0015;
1453 //
1454  fitval = -(phi12[0] - m12)*(phi12[0] - m12)/2./sig12/sig12;
1455  fitval = fitval - log(sig12) - 0.5*log(2*Pi) ;
1456 
1457  return fitval; }
1458 double CSCTFPtMethods::Likelihood(double *phi12, double *phi23, double *par_m12, double *par_m23, double *par_sig12, double *par_sig23, double *par_rho, double *v) const
1459  {
1460  double fitval = 0.;
1461  //double Pi = acos(-1.);
1462  double m12 = 0.;
1463  if(v[0] > par_m12[3])
1464  m12 = par_m12[0]/(v[0]-par_m12[3]) + par_m12[1]/(v[0]-par_m12[3])/(v[0]-par_m12[3]) + par_m12[2]; //mu12
1465  double m23 = 0.;
1466  if(v[0] > par_m23[3])
1467  m23 = par_m23[0]/(v[0]-par_m23[3]) + par_m23[1]/(v[0]-par_m23[3])/(v[0]-par_m23[3]) + par_m23[2]; //mu23
1468  double sig12 = 0.1;
1469  if(v[0] > 0.) sig12 = par_sig12[0]/v[0] + par_sig12[1]/v[0]/v[0] + par_sig12[2];//sig12
1470  double sig23 = 0.1;
1471  if(v[0] > 0.) sig23 = par_sig23[0]/v[0] + par_sig23[1]/v[0]/v[0] + par_sig23[2];//sig23
1472 
1473  double rho = (par_rho[0] + par_rho[1]*log(v[0]) + par_rho[2]*log(v[0])*log(v[0]) + par_rho[3]*log(v[0])*log(v[0])*log(v[0]))*exp(-par_rho[4]*log(v[0])); //rho
1474  if(rho > 0.95) rho = 0.95;
1475  if(rho < -0.95) rho = -0.95;
1476 //
1477  fitval = (phi12[0] - m12)*(phi12[0] - m12)/sig12/sig12 + (phi23[0] - m23)*(phi23[0] - m23)/sig23/sig23;
1478  fitval = fitval - 2.*rho*(phi12[0] - m12)*(phi23[0] - m23)/sig12/sig23;
1479  fitval = fitval*(-1./(2.*(1-rho*rho)));
1480  fitval = fitval - log(sig12) - log(sig23) - 0.5*log(1-rho*rho) ;
1481 
1482  return fitval;
1483  }
1484 double CSCTFPtMethods::Likelihood2011(double *phi12, double *phi23, double *par_m12, double *par_m23, double *par_sig12, double *par_sig23, double *par_rho, double *v) const
1485  {
1486  double fitval = 0.;
1487  //double Pi = acos(-1.);
1488  double m12 = 0.;
1489  if(v[0] > par_m12[3])
1490  m12 = par_m12[0]/(v[0]-par_m12[3]) + par_m12[1]/(v[0]-par_m12[3])/(v[0]-par_m12[3]) + par_m12[2]; //mu12
1491  double m23 = 0.;
1492  if(v[0] > par_m23[3])
1493  m23 = par_m23[0]/(v[0]-par_m23[3]) + par_m23[1]/(v[0]-par_m23[3])/(v[0]-par_m23[3]) + par_m23[2]; //mu23
1494  double sig12 = 0.1;
1495  if(v[0] > par_sig12[3]) sig12 = par_sig12[0]/(v[0]-par_sig12[3]) + par_sig12[1]/(v[0]-par_sig12[3])/(v[0]-par_sig12[3]) + par_sig12[2];//sig12
1496  double sig23 = 0.1;
1497  if(v[0] > par_sig23[3]) sig23 = par_sig23[0]/(v[0]-par_sig23[3]) + par_sig23[1]/(v[0]-par_sig23[3])/(v[0]-par_sig23[3]) + par_sig23[2];//sig12
1498  if(sig12 <0.0015)sig12 = 0.0015;
1499  if(sig23 <0.0015)sig23 = 0.0015;
1500 
1501  double rho = (par_rho[0] + par_rho[1]*log(v[0]) + par_rho[2]*log(v[0])*log(v[0]) + par_rho[3]*log(v[0])*log(v[0])*log(v[0]))*exp(-par_rho[4]*log(v[0])); //rho
1502  //if(rho > 0.95) rho = 0.95;
1503  //if(rho < -0.95) rho = -0.95;
1504  if(rho > 0.7) rho = 0.7;
1505  if(rho < -0.7) rho = -0.7;
1506  //rho = 0.4;
1507 //
1508  fitval = (phi12[0] - m12)*(phi12[0] - m12)/sig12/sig12 + (phi23[0] - m23)*(phi23[0] - m23)/sig23/sig23;
1509  fitval = fitval - 2.*rho*(phi12[0] - m12)*(phi23[0] - m23)/sig12/sig23;
1510  fitval = fitval*(-1./(2.*(1-rho*rho)));
1511  fitval = fitval - log(sig12) - log(sig23) - 0.5*log(1-rho*rho) ;
1512 
1513  return fitval;
1514  }
1515 
1516 float CSCTFPtMethods::Pt2Stn2010(int type, float eta, float dphi, int fr, int method) const
1517 {
1518  if(fabs(eta) >= 2.4) eta = 2.35;
1519  double PTsolv = 1.; // for muon plus hypothesis
1520  double PTsolvMinus = 1.;//for muon minus hypothesis
1521  for(int iETA = 0; iETA < 15; iETA++){
1522  if(fabs(eta) >= etabins[iETA] && fabs(eta) < etabins[iETA+1] ){
1523 
1524 // calculate curvers of mean and sigma
1525  // calculate phi12 mean
1526  double par1[4] = {0., 0., 0., 0.};
1527  //double phi12mean = fitf5(v, par1); //mu12
1528  double par_sig1[3] = {0., 0., 0.};
1529  int iETA1 = iETA;
1530  switch (type) // type = mode here
1531  {
1532  case 6 : //1-2
1533  if(fr == 1){
1534  if(iETA1 < 3)iETA1 = 3;
1535  if(iETA1 > 11)iETA1 = 11;
1536  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
1537  par1[0] = A_mu12Front[0][iETA1];
1538  par1[1] = A_mu12Front[1][iETA1];
1539  par1[2] = A_mu12Front[2][iETA1];
1540  par1[3] = A_mu12Front[3][iETA1];
1541  par_sig1[0] = A_sig12Front[0][iETA1];
1542  par_sig1[1] = A_sig12Front[1][iETA1];
1543  par_sig1[2] = A_sig12Front[2][iETA1];
1544  }
1545  if(fr == 0){
1546  if(iETA1 < 1)iETA1 = 1;
1547  if(iETA1 > 11)iETA1 = 11;
1548  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
1549  par1[0] = A_mu12Rare[0][iETA1];
1550  par1[1] = A_mu12Rare[1][iETA1];
1551  par1[2] = A_mu12Rare[2][iETA1];
1552  par1[3] = A_mu12Rare[3][iETA1];
1553  par_sig1[0] = A_sig12Rare[0][iETA1];
1554  par_sig1[1] = A_sig12Rare[1][iETA1];
1555  par_sig1[2] = A_sig12Rare[2][iETA1];
1556  }
1557  break;
1558  case 7 : //1-3
1559  if(fr == 1){
1560  if(iETA1 < 3)iETA1 = 3;
1561  if(iETA1 > 11)iETA1 = 11;
1562  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
1563  par1[0] = A_mu13Front[0][iETA1];
1564  par1[1] = A_mu13Front[1][iETA1];
1565  par1[2] = A_mu13Front[2][iETA1];
1566  par1[3] = A_mu13Front[3][iETA1];
1567  par_sig1[0] = A_sig13Front[0][iETA1];
1568  par_sig1[1] = A_sig13Front[1][iETA1];
1569  par_sig1[2] = A_sig13Front[2][iETA1];
1570  }
1571  if(fr == 0){
1572  if(iETA1 < 2)iETA1 = 2;
1573  if(iETA1 > 11)iETA1 = 11;
1574  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
1575  par1[0] = A_mu13Rare[0][iETA1];
1576  par1[1] = A_mu13Rare[1][iETA1];
1577  par1[2] = A_mu13Rare[2][iETA1];
1578  par1[3] = A_mu13Rare[3][iETA1];
1579  par_sig1[0] = A_sig13Rare[0][iETA1];
1580  par_sig1[1] = A_sig13Rare[1][iETA1];
1581  par_sig1[2] = A_sig13Rare[2][iETA1];
1582  }
1583  break;
1584  case 8 : //2-3
1585  if(iETA1 < 2)iETA1 = 2;
1586  par1[0] = A_mu23[0][iETA1];
1587  par1[1] = A_mu23[1][iETA1];
1588  par1[2] = A_mu23[2][iETA1];
1589  par1[3] = A_mu23[3][iETA1];
1590  par_sig1[0] = A_sig23[0][iETA1];
1591  par_sig1[1] = A_sig23[1][iETA1];
1592  par_sig1[2] = A_sig23[2][iETA1];
1593  break;
1594  case 9 : //2-4
1595  if(iETA1 < 9)iETA1 = 9;
1596  par1[0] = A_mu24[0][iETA1];
1597  par1[1] = A_mu24[1][iETA1];
1598  par1[2] = A_mu24[2][iETA1];
1599  par1[3] = A_mu24[3][iETA1];
1600  par_sig1[0] = A_sig24[0][iETA1];
1601  par_sig1[1] = A_sig24[1][iETA1];
1602  par_sig1[2] = A_sig24[2][iETA1];
1603  break;
1604  case 10 : //3-4
1605  if(iETA1 < 9)iETA1 = 9;
1606  par1[0] = A_mu34[0][iETA1];
1607  par1[1] = A_mu34[1][iETA1];
1608  par1[2] = A_mu34[2][iETA1];
1609  par1[3] = A_mu34[3][iETA1];
1610  par_sig1[0] = A_sig34[0][iETA1];
1611  par_sig1[1] = A_sig34[1][iETA1];
1612  par_sig1[2] = A_sig34[2][iETA1];
1613  break;
1614  case 13 : //1-4
1615  if(iETA1 < 9)iETA1 = 9;
1616  if(iETA1 > 12)iETA1 = 12;
1617  if(fr == 1){
1618  par1[0] = A_mu14Front[0][iETA1];
1619  par1[1] = A_mu14Front[1][iETA1];
1620  par1[2] = A_mu14Front[2][iETA1];
1621  par1[3] = A_mu14Front[3][iETA1];
1622  par_sig1[0] = A_sig14Front[0][iETA1];
1623  par_sig1[1] = A_sig14Front[1][iETA1];
1624  par_sig1[2] = A_sig14Front[2][iETA1];
1625  }
1626  if(fr == 0){
1627  par1[0] = A_mu14Rare[0][iETA1];
1628  par1[1] = A_mu14Rare[1][iETA1];
1629  par1[2] = A_mu14Rare[2][iETA1];
1630  par1[3] = A_mu14Rare[3][iETA1];
1631  par_sig1[0] = A_sig14Rare[0][iETA1];
1632  par_sig1[1] = A_sig14Rare[1][iETA1];
1633  par_sig1[2] = A_sig14Rare[2][iETA1];
1634  }
1635  break;
1636  case 11 : // b1-3
1637  if(iETA1 != 2)iETA1 = 2;
1638  par1[0] = A_mu53[0][iETA1];
1639  par1[1] = A_mu53[1][iETA1];
1640  par1[2] = A_mu53[2][iETA1];
1641  par1[3] = A_mu53[3][iETA1];
1642  par_sig1[0] = A_sig53[0][iETA1];
1643  par_sig1[1] = A_sig53[1][iETA1];
1644  par_sig1[2] = A_sig53[2][iETA1];
1645 
1646  break;
1647  case 12 : //1-2-b1 = 2-b1 for pt_method < 10, for pt_method > 10: b1-2
1648  if(iETA1 < 1)iETA1 = 1;
1649  if(iETA1 > 2)iETA1 = 2;
1650  par1[0] = A_mu52[0][iETA1];
1651  par1[1] = A_mu52[1][iETA1];
1652  par1[2] = A_mu52[2][iETA1];
1653  par1[3] = A_mu52[3][iETA1];
1654  par_sig1[0] = A_sig52[0][iETA1];
1655  par_sig1[1] = A_sig52[1][iETA1];
1656  par_sig1[2] = A_sig52[2][iETA1];
1657  break;
1658  case 14 : //2-b1 for pt_method < 10 and b1-1 for pt_method > 10
1659  if(method < 10){
1660  if(iETA1 < 1)iETA1 = 1;
1661  if(iETA1 > 2)iETA1 = 2;
1662  }
1663  par1[0] = A_mu52[0][iETA1];
1664  par1[1] = A_mu52[1][iETA1];
1665  par1[2] = A_mu52[2][iETA1];
1666  par1[3] = A_mu52[3][iETA1];
1667  par_sig1[0] = A_sig52[0][iETA1];
1668  par_sig1[1] = A_sig52[1][iETA1];
1669  par_sig1[2] = A_sig52[2][iETA1];
1670  if(method > 10){
1671  if(iETA1 > 2)iETA1 = 2;
1672  par1[0] = A_mu51[0][iETA1];
1673  par1[1] = A_mu51[1][iETA1];
1674  par1[2] = A_mu51[2][iETA1];
1675  par1[3] = A_mu51[3][iETA1];
1676  par_sig1[0] = A_sig51[0][iETA1];
1677  par_sig1[1] = A_sig51[1][iETA1];
1678  par_sig1[2] = A_sig51[2][iETA1];
1679  }
1680  break;
1681  //default:
1682  //return 0.0;
1683  }
1684 
1685 //************* solve equation dLog(Likelihood)/dpt = 0 for muon + ;
1686  //if(fabs(dphi) >= 0.002)
1687  //if(fabs(dphi) >= 0.00)
1688  //if(fabs(dphi) >= 0.002 || (fabs(dphi) >= 0.01 && (type == 12 || type == 14)))
1689  //{
1690  double pt = 140;
1691  double dpt = 0.1;
1692  double step = 5.;
1693  while(pt > 2. ){
1694  double par_phi12[1] = {dphi};
1695  double v[1], lpt1_1, lpt1_2, lpt2_1, lpt2_2;
1696  v[0] = 0; lpt1_1 = 1.; lpt1_2 = 2.; lpt2_1 = 1.; lpt2_2 = 2.;
1697  v[0] = pt;
1698  lpt1_1 = Likelihood2(par_phi12, par1, par_sig1, v);
1699  v[0] = pt + dpt;
1700  lpt1_2 = Likelihood2(par_phi12, par1, par_sig1, v);
1701  double lpt1 = (lpt1_2-lpt1_1)/dpt; // derivative at point pt1 = pt
1702  v[0] = pt - step;
1703  lpt2_1 = Likelihood2(par_phi12, par1, par_sig1, v);
1704  v[0] = pt - step + dpt;
1705  lpt2_2 = Likelihood2(par_phi12, par1, par_sig1, v);
1706  double lpt2 = (lpt2_2-lpt2_1)/dpt; // derivative at point pt1 = pt - step
1707  // calculate 2nd derivative at point pt-0.5*step, it should be > 0 if minimum
1708  v[0] = pt - 0.5*step;
1709  double fx = Likelihood2(par_phi12, par1, par_sig1, v);
1710  v[0] = pt - 0.5*step + dpt;
1711  double fxh = Likelihood2(par_phi12, par1, par_sig1, v);
1712  v[0] = pt - 0.5*step + 2*dpt;
1713  double fx2h = Likelihood2(par_phi12, par1, par_sig1, v);
1714 
1715  double lpt2nd = -(fx2h + fx - 2*fxh)/dpt/dpt;
1716  //if(lpt1*lpt2 <= 0 && lpt2nd < 0) std::cout << "lpt2nd < 0 dphi12 = " << dphi <<" PT = " << pt<< " eta =" << fabs(eta) << std::endl;
1717  //lpt2nd = 1.; // don't care about 2nd derivative
1718  if(lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolv = pt - 0.5*step; break;}// lpt = 0 between lpt1 and lpt2 => maximum pt_solv is a solution of the likelihood
1719 /*
1720  if(pt == 140.){
1721  v[0] = 200;
1722  lpt2_1 = Likelihood2(par_phi12, par1, par_sig1, v);
1723  v[0] = 200. + 5.;
1724  lpt2_2 = Likelihood2(par_phi12, par1, par_sig1, v);
1725  lpt2 = (lpt2_2-lpt2_1)/5.;
1726 
1727  v[0] = 170.;
1728  fx = Likelihood2(par_phi12, par1, par_sig1, v);
1729  v[0] = 170.+5.;
1730  fxh = Likelihood2(par_phi12, par1, par_sig1, v);
1731  v[0] = 170.+2*5.;
1732  fx2h = Likelihood2(par_phi12, par1, par_sig1, v);
1733  lpt2nd = -(fx2h + fx - 2*fxh)/5./5.;
1734  }
1735  if(pt == 140. && lpt1*lpt2 <= 0 && lpt2nd > 0 && fabs(dphi) < 0.1 ){PTsolv = 137.5; break;}
1736 */
1737  if(pt > 25) {dpt = 0.1; step = 5.;}
1738  if(pt <= 25) {dpt = 0.01; step = 0.5;}
1739  pt = pt - step;
1740  }// end while
1741 //*********** end solve equation for muon plus
1742 //************* solve equation dLog(Likelihood)/dpt = 0 for muon minus ;
1743 // for one station method we know sing of muon: dphi > 0 for muon minus!!! => dphi = -dphi < 0
1744  dphi = - dphi;
1745  pt = 140;
1746  dpt = 0.1;
1747  step = 5.;
1748  while(pt > 2. ){
1749  double par_phi12[1] = {dphi};
1750  double v[1], lpt1_1, lpt1_2, lpt2_1, lpt2_2;
1751  v[0] = 0; lpt1_1 = 1.; lpt1_2 = 2.; lpt2_1 = 1.; lpt2_2 = 2.;
1752  v[0] = pt;
1753  lpt1_1 = Likelihood2(par_phi12, par1, par_sig1, v);
1754  v[0] = pt + dpt;
1755  lpt1_2 = Likelihood2(par_phi12, par1, par_sig1, v);
1756  double lpt1 = (lpt1_2-lpt1_1)/dpt; // derivative at point pt1 = pt
1757  v[0] = pt - step;
1758  lpt2_1 = Likelihood2(par_phi12, par1, par_sig1, v);
1759  v[0] = pt - step + dpt;
1760  lpt2_2 = Likelihood2(par_phi12, par1, par_sig1, v);
1761  double lpt2 = (lpt2_2-lpt2_1)/dpt; // derivative at point pt1 = pt - step
1762  // calculate 2nd derivative at point pt-0.5*step, it should be > 0 if minimum
1763  v[0] = pt - 0.5*step;
1764  double fx = Likelihood2(par_phi12, par1, par_sig1, v);
1765  v[0] = pt - 0.5*step + dpt;
1766  double fxh = Likelihood2(par_phi12, par1, par_sig1, v);
1767  v[0] = pt - 0.5*step + 2*dpt;
1768  double fx2h = Likelihood2(par_phi12, par1, par_sig1, v);
1769 
1770  double lpt2nd = -(fx2h + fx - 2*fxh)/dpt/dpt;
1771 
1772  if(lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolvMinus = pt - 0.5*step; break;}// lpt = 0 between lpt1 and lpt2 => maximum pt_solv is a solution of the likelihood
1773 /*
1774  if(pt == 140.){
1775  v[0] = 200;
1776  lpt2_1 = Likelihood2(par_phi12, par1, par_sig1, v);
1777  v[0] = 200. + 5.;
1778  lpt2_2 = Likelihood2(par_phi12, par1, par_sig1, v);
1779 
1780  lpt2 = (lpt2_2-lpt2_1)/5.;
1781 
1782  v[0] = 170.;
1783  fx = Likelihood2(par_phi12, par1, par_sig1, v);
1784  v[0] = 170.+5.;
1785  fxh = Likelihood2(par_phi12, par1, par_sig1, v);
1786  v[0] = 170.+2*5.;
1787  fx2h = Likelihood2(par_phi12, par1, par_sig1, v);
1788  lpt2nd = -(fx2h + fx - 2*fxh)/5./5.;
1789  }
1790  if(pt == 140. && lpt1*lpt2 <= 0 && lpt2nd > 0 && fabs(dphi) < 0.1){PTsolvMinus = 137.5; break;}
1791 */
1792  if(pt > 25) {dpt = 0.1; step = 5.;}
1793  if(pt <= 25) {dpt = 0.01; step = 0.5;}
1794  pt = pt - step;
1795  }// end while
1796 // }// if(fabs(dphi) >= 0.002)
1797 // else
1798 // {PTsolv = 137.5;}
1799 
1800 //*********** end solve equation for muon minus
1801  PTsolv = (PTsolv > PTsolvMinus) ? PTsolv: PTsolvMinus; // select Maximum solution from muon plus and moun minus hypotesis
1802  PTsolv = PTsolv*1.2;
1803  if(PTsolv > 137.5) PTsolv = 137.5;
1804  if(fabs(dphi) <= 0.002 && PTsolv < 120.)PTsolv = 140.;
1805  if( fabs(dphi) <= 0.01 && (type == 11 || type == 12 || type == 14) && PTsolv < 120.)PTsolv = 140.;
1806  dphi = - dphi; //return to correct sing dphi
1807 
1808  } //if(fabs(eta_TracMy)
1809  } //end "for by iETA"
1810 
1811  float Pt = PTsolv;
1812  if(Pt > 10 && fabs(dphi) >= 0.1 ) std::cout << "iF = 0 for dphi = " << dphi <<" and Pt = " << Pt << std::endl;
1813 
1814  //if(Pt > 100 && (type == 12 || type == 14) && fabs(eta) <= 1.2 && dphi > 0.015 )std::cout << "dphi = " << dphi << " eta = " << eta << std::endl;
1815  //if(Pt < 10 && (type == 12 || type == 14) && fabs(eta) <= 1.2 && dphi < 0.01)std::cout << "dphi = " << dphi << " eta = " << eta << std::endl;
1816  // return (Pt>0.0) ? Pt : 0.0;
1817 
1818  float Pt_min = trigger_scale->getPtScale()->getLowEdge(1);// 0 GeV
1819  if(method > 10) Pt_min = trigger_scale->getPtScale()->getLowEdge(3);// 2 GeV
1820 
1821  return (Pt > Pt_min) ? Pt : Pt_min;
1822 }
1823 float CSCTFPtMethods::Pt2Stn2011(int type, float eta, float dphi, int fr, int method, int phiSign) const
1824 {
1825 
1826 
1827 
1828  //if(fabs(eta) >= 2.4) eta = 2.35;
1829  if(fabs(eta) >= 2.2) eta = 2.15;
1830  double PTsolv = 1.; // for muon plus hypothesis
1831  double PTsolvMinus = 1.;//for muon minus hypothesis
1832  for(int iETA = 0; iETA < 15; iETA++){
1833  if(fabs(eta) >= etabins[iETA] && fabs(eta) < etabins[iETA+1] ){
1834 
1835 // calculate curvers of mean and sigma
1836  // calculate phi12 mean
1837  double par1[4] = {0., 0., 0., 0.};
1838  //double phi12mean = fitf5(v, par1); //mu12
1839  double par_sig1[4] = {0., 0., 0.,0};
1840  int iETA1 = iETA;
1841  int iETA2 = iETA;
1842 
1843  double (*Amean12FnoME11)[15] = AB_mu12FnoME11;
1844  double (*Asig12FnoME11)[15] = AB_sig12FnoME11;
1845  double (*Amean12RnoME11)[15] = AB_mu12RnoME11;
1846  double (*Asig12RnoME11)[15] = AB_sig12RnoME11;
1847 
1848  double (*Amean13FnoME11)[15] = AB_mu13FnoME11;
1849  double (*Asig13FnoME11)[15] = AB_sig13FnoME11;
1850  double (*Amean13RnoME11)[15] = AB_mu13RnoME11;
1851  double (*Asig13RnoME11)[15] = AB_sig13RnoME11;
1852 
1853  double (*Amean14FnoME11)[15] = AB_mu14FnoME11;
1854  double (*Asig14FnoME11)[15] = AB_sig14FnoME11;
1855  double (*Amean14RnoME11)[15] = AB_mu14RnoME11;
1856  double (*Asig14RnoME11)[15] = AB_sig14RnoME11;
1857  //
1858  double (*Amean12FME11)[15] = AB_mu12FME11;
1859  double (*Asig12FME11)[15] = AB_sig12FME11;
1860  double (*Amean12RME11)[15] = AB_mu12RME11;
1861  double (*Asig12RME11)[15] = AB_sig12RME11;
1862 
1863  double (*Amean13FME11)[15] = AB_mu13FME11;
1864  double (*Asig13FME11)[15] = AB_sig13FME11;
1865  double (*Amean13RME11)[15] = AB_mu13RME11;
1866  double (*Asig13RME11)[15] = AB_sig13RME11;
1867 
1868  double (*Amean14FME11)[15] = AB_mu14FME11;
1869  double (*Asig14FME11)[15] = AB_sig14FME11;
1870  double (*Amean14RME11)[15] = AB_mu14RME11;
1871  double (*Asig14RME11)[15] = AB_sig14RME11;
1872  //
1873  double (*Amean12F)[15] = AB_mu12F;
1874  double (*Asig12F)[15] = AB_sig12F;
1875  double (*Amean12R)[15] = AB_mu12R;
1876  double (*Asig12R)[15] = AB_sig12R;
1877 
1878  double (*Amean13F)[15] = AB_mu13F;
1879  double (*Asig13F)[15] = AB_sig13F;
1880  double (*Amean13R)[15] = AB_mu13R;
1881  double (*Asig13R)[15] = AB_sig13R;
1882 
1883  double (*Amean14F)[15] = AB_mu14F;
1884  double (*Asig14F)[15] = AB_sig14F;
1885  double (*Amean14R)[15] = AB_mu14R;
1886  double (*Asig14R)[15] = AB_sig14R;
1887 
1888  double (*Amean23)[15] = AB_mu23;
1889  double (*Asig23)[15] = AB_sig23;
1890  double (*Amean24)[15] = AB_mu24;
1891  double (*Asig24)[15] = AB_sig24;
1892  double (*Amean34)[15] = AB_mu34;
1893  double (*Asig34)[15] = AB_sig34;
1894 
1895  double (*Amean51)[15] = AB_mu51;
1896  double (*Asig51)[15] = AB_sig51;
1897  double (*Amean52)[15] = AB_mu52;
1898  double (*Asig52)[15] = AB_sig52;
1899  double (*Amean53)[15] = AB_mu53;
1900  double (*Asig53)[15] = AB_sig53;
1901 
1902  switch (type) // type = mode here
1903  {
1904  case 6 : //1-2
1905  if(fr == 1){
1906  if(iETA1 < 3)iETA1 = 3;
1907  //if(iETA1 > 11)iETA1 = 11;
1908  par1[0] = (*(Amean12F+0))[iETA1];
1909  par1[1] = (*(Amean12F+1))[iETA1];
1910  par1[2] = (*(Amean12F+2))[iETA1];
1911  par1[3] = (*(Amean12F+3))[iETA1];
1912  par_sig1[0] = (*(Asig12F+0))[iETA1];
1913  par_sig1[1] = (*(Asig12F+1))[iETA1];
1914  par_sig1[2] = (*(Asig12F+2))[iETA1];
1915  par_sig1[3] = (*(Asig12F+3))[iETA1];
1916  }
1917  if(fr == 0){
1918  if(iETA1 < 1)iETA1 = 1;
1919  //if(iETA1 > 11)iETA1 = 11;
1920  par1[0] = (*(Amean12R+0))[iETA1];
1921  par1[1] = (*(Amean12R+1))[iETA1];
1922  par1[2] = (*(Amean12R+2))[iETA1];
1923  par1[3] = (*(Amean12R+3))[iETA1];
1924  par_sig1[0] = (*(Asig12R+0))[iETA1];
1925  par_sig1[1] = (*(Asig12R+1))[iETA1];
1926  par_sig1[2] = (*(Asig12R+2))[iETA1];
1927  par_sig1[3] = (*(Asig12R+3))[iETA1];
1928  }
1929  if(phiSign == 0){ // track belong to ME11 station
1930  if(fr == 1){
1931  if(iETA2 < 7)iETA2 = 7;
1932  par1[0] = (*(Amean12FME11+0))[iETA2];
1933  par1[1] = (*(Amean12FME11+1))[iETA2];
1934  par1[2] = (*(Amean12FME11+2))[iETA2];
1935  par1[3] = (*(Amean12FME11+3))[iETA2];
1936  par_sig1[0] = (*(Asig12FME11+0))[iETA2];
1937  par_sig1[1] = (*(Asig12FME11+1))[iETA2];
1938  par_sig1[2] = (*(Asig12FME11+2))[iETA2];
1939  par_sig1[3] = (*(Asig12FME11+3))[iETA2];
1940  }
1941  if(fr == 0){
1942  if(iETA2 < 7)iETA2 = 7;
1943  par1[0] = (*(Amean12RME11+0))[iETA2];
1944  par1[1] = (*(Amean12RME11+1))[iETA2];
1945  par1[2] = (*(Amean12RME11+2))[iETA2];
1946  par1[3] = (*(Amean12RME11+3))[iETA2];
1947  par_sig1[0] = (*(Asig12RME11+0))[iETA2];
1948  par_sig1[1] = (*(Asig12RME11+1))[iETA2];
1949  par_sig1[2] = (*(Asig12RME11+2))[iETA2];
1950  par_sig1[3] = (*(Asig12RME11+3))[iETA2];
1951  }
1952  }
1953  if(phiSign == 1){ // track belong to ME1/2 or ME1/3 station
1954  if(fr == 1){
1955  if(iETA2 < 3)iETA2 = 3;
1956  if(iETA2 > 7)iETA2 = 7;
1957  par1[0] = (*(Amean12FnoME11+0))[iETA2];
1958  par1[1] = (*(Amean12FnoME11+1))[iETA2];
1959  par1[2] = (*(Amean12FnoME11+2))[iETA2];
1960  par1[3] = (*(Amean12FnoME11+3))[iETA2];
1961  par_sig1[0] = (*(Asig12FnoME11+0))[iETA2];
1962  par_sig1[1] = (*(Asig12FnoME11+1))[iETA2];
1963  par_sig1[2] = (*(Asig12FnoME11+2))[iETA2];
1964  par_sig1[3] = (*(Asig12FnoME11+3))[iETA2];
1965  }
1966  if(fr == 0){
1967  if(iETA2 < 1)iETA2 = 1;
1968  if(iETA2 > 6)iETA2 = 6;// rare ME1/2 only till 1.6
1969  par1[0] = (*(Amean12RnoME11+0))[iETA2];
1970  par1[1] = (*(Amean12RnoME11+1))[iETA2];
1971  par1[2] = (*(Amean12RnoME11+2))[iETA2];
1972  par1[3] = (*(Amean12RnoME11+3))[iETA2];
1973  par_sig1[0] = (*(Asig12RnoME11+0))[iETA2];
1974  par_sig1[1] = (*(Asig12RnoME11+1))[iETA2];
1975  par_sig1[2] = (*(Asig12RnoME11+2))[iETA2];
1976  par_sig1[3] = (*(Asig12RnoME11+3))[iETA2];
1977  }
1978  }
1979 
1980  break;
1981  case 7 : //1-3
1982  if(fr == 1){
1983  if(iETA1 < 3)iETA1 = 3;
1984  //if(iETA1 > 11)iETA1 = 11;
1985  par1[0] = (*(Amean13F+0))[iETA1];
1986  par1[1] = (*(Amean13F+1))[iETA1];
1987  par1[2] = (*(Amean13F+2))[iETA1];
1988  par1[3] = (*(Amean13F+3))[iETA1];
1989  par_sig1[0] = (*(Asig13F+0))[iETA1];
1990  par_sig1[1] = (*(Asig13F+1))[iETA1];
1991  par_sig1[2] = (*(Asig13F+2))[iETA1];
1992  par_sig1[3] = (*(Asig13F+3))[iETA1];
1993  }
1994  if(fr == 0){
1995  if(iETA1 < 3)iETA1 = 3;
1996  //if(iETA1 > 11)iETA1 = 11;
1997  par1[0] = (*(Amean13R+0))[iETA1];
1998  par1[1] = (*(Amean13R+1))[iETA1];
1999  par1[2] = (*(Amean13R+2))[iETA1];
2000  par1[3] = (*(Amean13R+3))[iETA1];
2001  par_sig1[0] = (*(Asig13R+0))[iETA1];
2002  par_sig1[1] = (*(Asig13R+1))[iETA1];
2003  par_sig1[2] = (*(Asig13R+2))[iETA1];
2004  par_sig1[3] = (*(Asig13R+3))[iETA1];
2005  }
2006  if(phiSign == 0){ // track belong to ME11 station
2007  if(fr == 1){
2008  if(iETA2 < 7)iETA2 = 7;
2009  par1[0] = (*(Amean13FME11+0))[iETA2];
2010  par1[1] = (*(Amean13FME11+1))[iETA2];
2011  par1[2] = (*(Amean13FME11+2))[iETA2];
2012  par1[3] = (*(Amean13FME11+3))[iETA2];
2013  par_sig1[0] = (*(Asig13FME11+0))[iETA2];
2014  par_sig1[1] = (*(Asig13FME11+1))[iETA2];
2015  par_sig1[2] = (*(Asig13FME11+2))[iETA2];
2016  par_sig1[3] = (*(Asig13FME11+3))[iETA2];
2017  }
2018  if(fr == 0){
2019  if(iETA2 < 7)iETA2 = 7;
2020  par1[0] = (*(Amean13RME11+0))[iETA2];
2021  par1[1] = (*(Amean13RME11+1))[iETA2];
2022  par1[2] = (*(Amean13RME11+2))[iETA2];
2023  par1[3] = (*(Amean13RME11+3))[iETA2];
2024  par_sig1[0] = (*(Asig13RME11+0))[iETA2];
2025  par_sig1[1] = (*(Asig13RME11+1))[iETA2];
2026  par_sig1[2] = (*(Asig13RME11+2))[iETA2];
2027  par_sig1[3] = (*(Asig13RME11+3))[iETA2];
2028  }
2029  }
2030  if(phiSign == 1){ // track belong to ME1/2 or ME1/3 station
2031  if(fr == 1){
2032  if(iETA2 < 3)iETA2 = 3;
2033  if(iETA2 > 7)iETA2 = 7;
2034  par1[0] = (*(Amean13FnoME11+0))[iETA2];
2035  par1[1] = (*(Amean13FnoME11+1))[iETA2];
2036  par1[2] = (*(Amean13FnoME11+2))[iETA2];
2037  par1[3] = (*(Amean13FnoME11+3))[iETA2];
2038  par_sig1[0] = (*(Asig13FnoME11+0))[iETA2];
2039  par_sig1[1] = (*(Asig13FnoME11+1))[iETA2];
2040  par_sig1[2] = (*(Asig13FnoME11+2))[iETA2];
2041  par_sig1[3] = (*(Asig13FnoME11+3))[iETA2];
2042  }
2043  if(fr == 0){
2044  if(iETA2 < 3)iETA2 = 3;
2045  if(iETA2 > 6)iETA2 = 6;// rare ME1/2 only till 1.6
2046  par1[0] = (*(Amean13RnoME11+0))[iETA2];
2047  par1[1] = (*(Amean13RnoME11+1))[iETA2];
2048  par1[2] = (*(Amean13RnoME11+2))[iETA2];
2049  par1[3] = (*(Amean13RnoME11+3))[iETA2];
2050  par_sig1[0] = (*(Asig13RnoME11+0))[iETA2];
2051  par_sig1[1] = (*(Asig13RnoME11+1))[iETA2];
2052  par_sig1[2] = (*(Asig13RnoME11+2))[iETA2];
2053  par_sig1[3] = (*(Asig13RnoME11+3))[iETA2];
2054  }
2055  }
2056  break;
2057  case 8 : //2-3
2058  if(iETA1 < 2)iETA1 = 2;
2059  par1[0] = (*(Amean23+0))[iETA1];
2060  par1[1] = (*(Amean23+1))[iETA1];
2061  par1[2] = (*(Amean23+2))[iETA1];
2062  par1[3] = (*(Amean23+3))[iETA1];
2063  par_sig1[0] = (*(Asig23+0))[iETA1];
2064  par_sig1[1] = (*(Asig23+1))[iETA1];
2065  par_sig1[2] = (*(Asig23+2))[iETA1];
2066  par_sig1[3] = (*(Asig23+3))[iETA1];
2067 
2068  break;
2069  case 9 : //2-4
2070  if(iETA1 < 3)iETA1 = 3;
2071  par1[0] = (*(Amean24+0))[iETA1];
2072  par1[1] = (*(Amean24+1))[iETA1];
2073  par1[2] = (*(Amean24+2))[iETA1];
2074  par1[3] = (*(Amean24+3))[iETA1];
2075  par_sig1[0] = (*(Asig24+0))[iETA1];
2076  par_sig1[1] = (*(Asig24+1))[iETA1];
2077  par_sig1[2] = (*(Asig24+2))[iETA1];
2078  par_sig1[3] = (*(Asig24+3))[iETA1];
2079  break;
2080  case 10 : //3-4
2081  if(iETA1 < 3)iETA1 = 3;
2082  par1[0] = (*(Amean34+0))[iETA1];
2083  par1[1] = (*(Amean34+1))[iETA1];
2084  par1[2] = (*(Amean34+2))[iETA1];
2085  par1[3] = (*(Amean34+3))[iETA1];
2086  par_sig1[0] = (*(Asig34+0))[iETA1];
2087  par_sig1[1] = (*(Asig34+1))[iETA1];
2088  par_sig1[2] = (*(Asig34+2))[iETA1];
2089  par_sig1[3] = (*(Asig34+3))[iETA1];
2090  break;
2091  case 13 : //1-4
2092  if(fr == 1){
2093  if(iETA1 < 3)iETA1 = 3;
2094  //if(iETA1 > 11)iETA1 = 11;
2095  par1[0] = (*(Amean14F+0))[iETA1];
2096  par1[1] = (*(Amean14F+1))[iETA1];
2097  par1[2] = (*(Amean14F+2))[iETA1];
2098  par1[3] = (*(Amean14F+3))[iETA1];
2099  par_sig1[0] = (*(Asig14F+0))[iETA1];
2100  par_sig1[1] = (*(Asig14F+1))[iETA1];
2101  par_sig1[2] = (*(Asig14F+2))[iETA1];
2102  par_sig1[3] = (*(Asig14F+3))[iETA1];
2103  }
2104  if(fr == 0){
2105  if(iETA1 < 2)iETA1 = 2;
2106  //if(iETA1 > 11)iETA1 = 11;
2107  par1[0] = (*(Amean14R+0))[iETA1];
2108  par1[1] = (*(Amean14R+1))[iETA1];
2109  par1[2] = (*(Amean14R+2))[iETA1];
2110  par1[3] = (*(Amean14R+3))[iETA1];
2111  par_sig1[0] = (*(Asig14R+0))[iETA1];
2112  par_sig1[1] = (*(Asig14R+1))[iETA1];
2113  par_sig1[2] = (*(Asig14R+2))[iETA1];
2114  par_sig1[3] = (*(Asig14R+3))[iETA1];
2115  }
2116  if(phiSign == 0){ // track belong to ME11 station
2117  if(fr == 1){
2118  if(iETA2 < 9)iETA2 = 9;
2119  par1[0] = (*(Amean14FME11+0))[iETA2];
2120  par1[1] = (*(Amean14FME11+1))[iETA2];
2121  par1[2] = (*(Amean14FME11+2))[iETA2];
2122  par1[3] = (*(Amean14FME11+3))[iETA2];
2123  par_sig1[0] = (*(Asig14FME11+0))[iETA2];
2124  par_sig1[1] = (*(Asig14FME11+1))[iETA2];
2125  par_sig1[2] = (*(Asig14FME11+2))[iETA2];
2126  par_sig1[3] = (*(Asig14FME11+3))[iETA2];
2127  }
2128  if(fr == 0){
2129  if(iETA2 < 9)iETA2 = 9;
2130  par1[0] = (*(Amean14RME11+0))[iETA2];
2131  par1[1] = (*(Amean14RME11+1))[iETA2];
2132  par1[2] = (*(Amean14RME11+2))[iETA2];
2133  par1[3] = (*(Amean14RME11+3))[iETA2];
2134  par_sig1[0] = (*(Asig14RME11+0))[iETA2];
2135  par_sig1[1] = (*(Asig14RME11+1))[iETA2];
2136  par_sig1[2] = (*(Asig14RME11+2))[iETA2];
2137  par_sig1[3] = (*(Asig14RME11+3))[iETA2];
2138  }
2139  }
2140  if(phiSign == 1){ // track belong to ME1/2 or ME1/3 station
2141  if(fr == 1){
2142  if(iETA2 < 4)iETA2 = 4;
2143  if(iETA2 > 7)iETA2 = 7;
2144  par1[0] = (*(Amean14FnoME11+0))[iETA2];
2145  par1[1] = (*(Amean14FnoME11+1))[iETA2];
2146  par1[2] = (*(Amean14FnoME11+2))[iETA2];
2147  par1[3] = (*(Amean14FnoME11+3))[iETA2];
2148  par_sig1[0] = (*(Asig14FnoME11+0))[iETA2];
2149  par_sig1[1] = (*(Asig14FnoME11+1))[iETA2];
2150  par_sig1[2] = (*(Asig14FnoME11+2))[iETA2];
2151  par_sig1[3] = (*(Asig14FnoME11+3))[iETA2];
2152  }
2153  if(fr == 0){
2154  if(iETA2 < 4)iETA2 = 4;
2155  if(iETA2 > 6)iETA2 = 6;// rare ME1/2 only till 1.6
2156  par1[0] = (*(Amean14RnoME11+0))[iETA2];
2157  par1[1] = (*(Amean14RnoME11+1))[iETA2];
2158  par1[2] = (*(Amean14RnoME11+2))[iETA2];
2159  par1[3] = (*(Amean14RnoME11+3))[iETA2];
2160  par_sig1[0] = (*(Asig14RnoME11+0))[iETA2];
2161  par_sig1[1] = (*(Asig14RnoME11+1))[iETA2];
2162  par_sig1[2] = (*(Asig14RnoME11+2))[iETA2];
2163  par_sig1[3] = (*(Asig14RnoME11+3))[iETA2];
2164  }
2165  }
2166 
2167  break;
2168  case 11 : // b1-3 for pt_method > 10 & fr = 0, singles for pt_method < 10
2169  if(iETA1 != 2)iETA1 = 2;
2170  par1[0] = (*(Amean53+0))[iETA1];
2171  par1[1] = (*(Amean53+1))[iETA1];
2172  par1[2] = (*(Amean53+2))[iETA1];
2173  par1[3] = (*(Amean53+3))[iETA1];
2174  par_sig1[0] = (*(Asig53+0))[iETA1];
2175  par_sig1[1] = (*(Asig53+1))[iETA1];
2176  par_sig1[2] = (*(Asig53+2))[iETA1];
2177  par_sig1[3] = (*(Asig53+3))[iETA1];
2178  break;
2179 
2180  case 12 : //1-2-b1 = 2-b1 for pt_method < 10, for pt_method > 10 & fr = 0: b1-2
2181  if(iETA1 < 1)iETA1 = 1;
2182  if(iETA1 > 2)iETA1 = 2;
2183 
2184  par1[0] = (*(Amean52+0))[iETA1];
2185  par1[1] = (*(Amean52+1))[iETA1];
2186  par1[2] = (*(Amean52+2))[iETA1];
2187  par1[3] = (*(Amean52+3))[iETA1];
2188  par_sig1[0] = (*(Asig52+0))[iETA1];
2189  par_sig1[1] = (*(Asig52+1))[iETA1];
2190  par_sig1[2] = (*(Asig52+2))[iETA1];
2191  par_sig1[3] = (*(Asig52+3))[iETA1];
2192 
2193  break;
2194  case 14 : //2-b1 for pt_method < 10 and b1-1 for pt_method > 10 & fr = 0
2195  if(method < 10){
2196  if(iETA1 < 1)iETA1 = 1;
2197  if(iETA1 > 2)iETA1 = 2;
2198  }
2199  par1[0] = (*(Amean52+0))[iETA1];
2200  par1[1] = (*(Amean52+1))[iETA1];
2201  par1[2] = (*(Amean52+2))[iETA1];
2202  par1[3] = (*(Amean52+3))[iETA1];
2203  par_sig1[0] = (*(Asig52+0))[iETA1];
2204  par_sig1[1] = (*(Asig52+1))[iETA1];
2205  par_sig1[2] = (*(Asig52+2))[iETA1];
2206  par_sig1[3] = (*(Asig52+3))[iETA1];
2207 
2208  if(method > 10){
2209  if(iETA1 > 2)iETA1 = 2;
2210  par1[0] = (*(Amean51+0))[iETA1];
2211  par1[1] = (*(Amean51+1))[iETA1];
2212  par1[2] = (*(Amean51+2))[iETA1];
2213  par1[3] = (*(Amean51+3))[iETA1];
2214  par_sig1[0] = (*(Asig51+0))[iETA1];
2215  par_sig1[1] = (*(Asig51+1))[iETA1];
2216  par_sig1[2] = (*(Asig51+2))[iETA1];
2217  par_sig1[3] = (*(Asig51+3))[iETA1];
2218  }
2219  break;
2220  //default:
2221  //return 0.0;
2222  }
2223 
2224 //************* solve equation dLog(Likelihood)/dpt = 0 for muon + ;
2225  //if(fabs(dphi) >= 0.002)
2226  //if(fabs(dphi) >= 0.00)
2227  //if(fabs(dphi) >= 0.002 || (fabs(dphi) >= 0.01 && (type == 12 || type == 14)))
2228  //{
2229  double pt = 140;
2230  double dpt = 0.1;
2231  double step = 5.;
2232  while(pt > 2. ){
2233  double par_phi12[1] = {dphi};
2234  double v[1], lpt1_1, lpt1_2, lpt2_1, lpt2_2;
2235  v[0] = 0; lpt1_1 = 1.; lpt1_2 = 2.; lpt2_1 = 1.; lpt2_2 = 2.;
2236  v[0] = pt;
2237  lpt1_1 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2238  v[0] = pt + dpt;
2239  lpt1_2 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2240  double lpt1 = (lpt1_2-lpt1_1)/dpt; // derivative at point pt1 = pt
2241  v[0] = pt - step;
2242  lpt2_1 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2243  v[0] = pt - step + dpt;
2244  lpt2_2 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2245  double lpt2 = (lpt2_2-lpt2_1)/dpt; // derivative at point pt1 = pt - step
2246  // calculate 2nd derivative at point pt-0.5*step, it should be > 0 if minimum
2247  v[0] = pt - 0.5*step;
2248  double fx = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2249  v[0] = pt - 0.5*step + dpt;
2250  double fxh = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2251  v[0] = pt - 0.5*step + 2*dpt;
2252  double fx2h = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2253 
2254  double lpt2nd = -(fx2h + fx - 2*fxh)/dpt/dpt;
2255  //if(lpt1*lpt2 <= 0 && lpt2nd < 0) std::cout << "lpt2nd < 0 dphi12 = " << dphi <<" PT = " << pt<< " eta =" << fabs(eta) << std::endl;
2256  //lpt2nd = 1.; // don't care about 2nd derivative
2257  if(lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolv = pt - 0.5*step; break;}// lpt = 0 between lpt1 and lpt2 => maximum pt_solv is a solution of the likelihood
2258 /*
2259  if(pt == 140.){
2260  v[0] = 200;
2261  lpt2_1 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2262  v[0] = 200. + 5.;
2263  lpt2_2 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2264  lpt2 = (lpt2_2-lpt2_1)/5.;
2265 
2266  v[0] = 170.;
2267  fx = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2268  v[0] = 170.+5.;
2269  fxh = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2270  v[0] = 170.+2*5.;
2271  fx2h = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2272  lpt2nd = -(fx2h + fx - 2*fxh)/5./5.;
2273  }
2274  if(pt == 140. && lpt1*lpt2 <= 0 && lpt2nd > 0 && fabs(dphi) < 0.1 ){PTsolv = 137.5; break;}
2275 */
2276  if(pt > 25) {dpt = 0.1; step = 5.;}
2277  if(pt <= 25) {dpt = 0.01; step = 0.5;}
2278  pt = pt - step;
2279  }// end while
2280 //*********** end solve equation for muon plus
2281 //************* solve equation dLog(Likelihood)/dpt = 0 for muon minus ;
2282 // for one station method we know sing of muon: dphi > 0 for muon minus!!! => dphi = -dphi < 0
2283  dphi = - dphi;
2284  pt = 140;
2285  dpt = 0.1;
2286  step = 5.;
2287  while(pt > 2. ){
2288  double par_phi12[1] = {dphi};
2289  double v[1], lpt1_1, lpt1_2, lpt2_1, lpt2_2;
2290  v[0] = 0; lpt1_1 = 1.; lpt1_2 = 2.; lpt2_1 = 1.; lpt2_2 = 2.;
2291  v[0] = pt;
2292  lpt1_1 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2293  v[0] = pt + dpt;
2294  lpt1_2 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2295  double lpt1 = (lpt1_2-lpt1_1)/dpt; // derivative at point pt1 = pt
2296  v[0] = pt - step;
2297  lpt2_1 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2298  v[0] = pt - step + dpt;
2299  lpt2_2 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2300  double lpt2 = (lpt2_2-lpt2_1)/dpt; // derivative at point pt1 = pt - step
2301  // calculate 2nd derivative at point pt-0.5*step, it should be > 0 if minimum
2302  v[0] = pt - 0.5*step;
2303  double fx = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2304  v[0] = pt - 0.5*step + dpt;
2305  double fxh = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2306  v[0] = pt - 0.5*step + 2*dpt;
2307  double fx2h = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2308 
2309  double lpt2nd = -(fx2h + fx - 2*fxh)/dpt/dpt;
2310 
2311  if(lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolvMinus = pt - 0.5*step; break;}// lpt = 0 between lpt1 and lpt2 => maximum pt_solv is a solution of the likelihood
2312 /*
2313  if(pt == 140.){
2314  v[0] = 200;
2315  lpt2_1 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2316  v[0] = 200. + 5.;
2317  lpt2_2 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2318 
2319  lpt2 = (lpt2_2-lpt2_1)/5.;
2320 
2321  v[0] = 170.;
2322  fx = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2323  v[0] = 170.+5.;
2324  fxh = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2325  v[0] = 170.+2*5.;
2326  fx2h = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2327  lpt2nd = -(fx2h + fx - 2*fxh)/5./5.;
2328  }
2329  if(pt == 140. && lpt1*lpt2 <= 0 && lpt2nd > 0 && fabs(dphi) < 0.1){PTsolvMinus = 137.5; break;}
2330 */
2331  if(pt > 25) {dpt = 0.1; step = 5.;}
2332  if(pt <= 25) {dpt = 0.01; step = 0.5;}
2333  pt = pt - step;
2334  }// end while
2335 // }// if(fabs(dphi) >= 0.002)
2336 // else
2337 // {PTsolv = 137.5;}
2338 
2339 //*********** end solve equation for muon minus
2340  PTsolv = (PTsolv > PTsolvMinus) ? PTsolv: PTsolvMinus; // select Maximum solution from muon plus and moun minus hypotesis
2341  PTsolv = PTsolv*1.2;
2342  if(PTsolv > 137.5) PTsolv = 137.5;
2343  if(fabs(dphi) <= 0.002 && PTsolv < 120.)PTsolv = 140.;
2344  //if( fabs(dphi) <= 0.01 && (type == 11 || type == 12 || type == 14) && PTsolv < 120.)PTsolv = 140.;
2345  dphi = - dphi; //return to correct sing dphi
2346 
2347  } //if(fabs(eta_TracMy)
2348  } //end "for by iETA"
2349 
2350  float Pt = PTsolv;
2351 
2352  //float Pt_min = trigger_scale->getPtScale()->getLowEdge(1);// 0 GeV
2353  //if(method > 10) Pt_min = trigger_scale->getPtScale()->getLowEdge(3);// 2 GeV
2354  float Pt_min = 2;// 0 GeV
2355 
2356  return (Pt > Pt_min) ? Pt : Pt_min;
2357 }
2358 float CSCTFPtMethods::Pt3Stn2010(int type, float eta, float dphi1, float dphi2, int fr, int method) const
2359 {
2360 
2361  if(fabs(eta) >= 2.4)eta = 2.35;
2362  float Pt = 0.;
2363  double PTsolv = 1.; // for muon plus hypothesis
2364  double PTsolvMinus = 1.;//for muon minus hypothesis
2365  for(int iETA = 0; iETA < 15; iETA++){
2366  if(fabs(eta) >= etabins[iETA] && fabs(eta) < etabins[iETA+1] ){
2367 
2368 // calculate curvers of mean and sigma
2369  // calculate phi12 mean
2370  double par1[4] = {0., 0., 0., 0.};
2371  //double phi12mean = fitf5(v, par1); //mu12
2372  double par_sig1[3] = {0., 0., 0.};
2373  // calculate phi23 mean
2374  double par2[4] = {0., 0., 0., 0.};
2375  // calculate phi23 sig
2376  double par_sig2[3] = {0., 0., 0.};
2377  // calculate correlation rho
2378  double par_rho[5] = {0., 0., 0., 0., 0.};
2379  int iETA1 = iETA;
2380  int iETA2 = iETA;
2381  switch (type) // type = mode here
2382  {
2383  case 2 : //1-2-3
2384  if(fr == 1){
2385  if(iETA1 < 3)iETA1 = 3;
2386  if(iETA1 > 11)iETA1 = 11;
2387  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
2388  par1[0] = A_mu12Front[0][iETA1];
2389  par1[1] = A_mu12Front[1][iETA1];
2390  par1[2] = A_mu12Front[2][iETA1];
2391  par1[3] = A_mu12Front[3][iETA1];
2392  par_sig1[0] = A_sig12Front[0][iETA1];
2393  par_sig1[1] = A_sig12Front[1][iETA1];
2394  par_sig1[2] = A_sig12Front[2][iETA1];
2395  par_rho[0] = A_rho123FrontCSCTF[0][iETA1];
2396  par_rho[1] = A_rho123FrontCSCTF[1][iETA1];
2397  par_rho[2] = A_rho123FrontCSCTF[2][iETA1];
2398  par_rho[3] = A_rho123FrontCSCTF[3][iETA1];
2399  par_rho[4] = A_rho123FrontCSCTF[4][iETA1];
2400  }
2401  if(fr == 0){
2402  if(iETA1 < 1)iETA1 = 1;
2403  if(iETA1 > 11)iETA1 = 11;
2404  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
2405  par1[0] = A_mu12Rare[0][iETA1];
2406  par1[1] = A_mu12Rare[1][iETA1];
2407  par1[2] = A_mu12Rare[2][iETA1];
2408  par1[3] = A_mu12Rare[3][iETA1];
2409  par_sig1[0] = A_sig12Rare[0][iETA1];
2410  par_sig1[1] = A_sig12Rare[1][iETA1];
2411  par_sig1[2] = A_sig12Rare[2][iETA1];
2412  par_rho[0] = A_rho123RareCSCTF[0][iETA1];
2413  par_rho[1] = A_rho123RareCSCTF[1][iETA1];
2414  par_rho[2] = A_rho123RareCSCTF[2][iETA1];
2415  par_rho[3] = A_rho123RareCSCTF[3][iETA1];
2416  par_rho[4] = A_rho123RareCSCTF[4][iETA1];
2417  }
2418  if(iETA2 < 2)iETA2 = 2;
2419  par2[0] = A_mu23[0][iETA2];
2420  par2[1] = A_mu23[1][iETA2];
2421  par2[2] = A_mu23[2][iETA2];
2422  par2[3] = A_mu23[3][iETA2];
2423  par_sig2[0] = A_sig23[0][iETA2];
2424  par_sig2[1] = A_sig23[1][iETA2];
2425  par_sig2[2] = A_sig23[2][iETA2];
2426 
2427  break;
2428  case 3 : //1-2-4
2429  if(fr == 1){
2430  if(iETA1 < 3)iETA1 = 3;
2431  if(iETA1 > 11)iETA1 = 11;
2432  par1[0] = A_mu12Front[0][iETA1];
2433  par1[1] = A_mu12Front[1][iETA1];
2434  par1[2] = A_mu12Front[2][iETA1];
2435  par1[3] = A_mu12Front[3][iETA1];
2436  par_sig1[0] = A_sig12Front[0][iETA1];
2437  par_sig1[1] = A_sig12Front[1][iETA1];
2438  par_sig1[2] = A_sig12Front[2][iETA1];
2439  par_rho[0] = A_rho124FrontCSCTF[0][iETA1];
2440  par_rho[1] = A_rho124FrontCSCTF[1][iETA1];
2441  par_rho[2] = A_rho124FrontCSCTF[2][iETA1];
2442  par_rho[3] = A_rho124FrontCSCTF[3][iETA1];
2443  par_rho[4] = A_rho124FrontCSCTF[4][iETA1];
2444  }
2445  if(fr == 0){
2446  if(iETA1 < 1)iETA1 = 1;
2447  if(iETA1 > 11)iETA1 = 11;
2448  par1[0] = A_mu12Rare[0][iETA1];
2449  par1[1] = A_mu12Rare[1][iETA1];
2450  par1[2] = A_mu12Rare[2][iETA1];
2451  par1[3] = A_mu12Rare[3][iETA1];
2452  par_sig1[0] = A_sig12Rare[0][iETA1];
2453  par_sig1[1] = A_sig12Rare[1][iETA1];
2454  par_sig1[2] = A_sig12Rare[2][iETA1];
2455  par_rho[0] = A_rho124RareCSCTF[0][iETA1];
2456  par_rho[1] = A_rho124RareCSCTF[1][iETA1];
2457  par_rho[2] = A_rho124RareCSCTF[2][iETA1];
2458  par_rho[3] = A_rho124RareCSCTF[3][iETA1];
2459  par_rho[4] = A_rho124RareCSCTF[4][iETA1];
2460  }
2461  if(iETA2 < 9)iETA2 = 9;
2462  par2[0] = A_mu24[0][iETA2];
2463  par2[1] = A_mu24[1][iETA2];
2464  par2[2] = A_mu24[2][iETA2];
2465  par2[3] = A_mu24[3][iETA2];
2466  par_sig2[0] = A_sig24[0][iETA2];
2467  par_sig2[1] = A_sig24[1][iETA2];
2468  par_sig2[2] = A_sig24[2][iETA2];
2469  break;
2470  case 4 : //1-3-4
2471  if(fr == 1){
2472  if(iETA1 < 3)iETA1 = 3;
2473  if(iETA1 > 11)iETA1 = 11;
2474  par1[0] = A_mu13Front[0][iETA1];
2475  par1[1] = A_mu13Front[1][iETA1];
2476  par1[2] = A_mu13Front[2][iETA1];
2477  par1[3] = A_mu13Front[3][iETA1];
2478  par_sig1[0] = A_sig13Front[0][iETA1];
2479  par_sig1[1] = A_sig13Front[1][iETA1];
2480  par_sig1[2] = A_sig13Front[2][iETA1];
2481  par_rho[0] = A_rho134FrontCSCTF[0][iETA1];
2482  par_rho[1] = A_rho134FrontCSCTF[1][iETA1];
2483  par_rho[2] = A_rho134FrontCSCTF[2][iETA1];
2484  par_rho[3] = A_rho134FrontCSCTF[3][iETA1];
2485  par_rho[4] = A_rho134FrontCSCTF[4][iETA1];
2486  }
2487  if(fr == 0){
2488  if(iETA1 < 2)iETA1 = 2;
2489  if(iETA1 > 11)iETA1 = 11;
2490  par1[0] = A_mu13Rare[0][iETA1];
2491  par1[1] = A_mu13Rare[1][iETA1];
2492  par1[2] = A_mu13Rare[2][iETA1];
2493  par1[3] = A_mu13Rare[3][iETA1];
2494  par_sig1[0] = A_sig13Rare[0][iETA1];
2495  par_sig1[1] = A_sig13Rare[1][iETA1];
2496  par_sig1[2] = A_sig13Rare[2][iETA1];
2497  par_rho[0] = A_rho134RareCSCTF[0][iETA1];
2498  par_rho[1] = A_rho134RareCSCTF[1][iETA1];
2499  par_rho[2] = A_rho134RareCSCTF[2][iETA1];
2500  par_rho[3] = A_rho134RareCSCTF[3][iETA1];
2501  par_rho[4] = A_rho134RareCSCTF[4][iETA1];
2502  }
2503  if(iETA2 < 9)iETA2 = 9;
2504  par2[0] = A_mu34[0][iETA2];
2505  par2[1] = A_mu34[1][iETA2];
2506  par2[2] = A_mu34[2][iETA2];
2507  par2[3] = A_mu34[3][iETA2];
2508  par_sig2[0] = A_sig34[0][iETA2];
2509  par_sig2[1] = A_sig34[1][iETA2];
2510  par_sig2[2] = A_sig34[2][iETA2];
2511  break;
2512  case 5 ://2-3-4
2513  if(iETA1 < 9)iETA1 = 9;
2514  par1[0] = A_mu23[0][iETA1];
2515  par1[1] = A_mu23[1][iETA1];
2516  par1[2] = A_mu23[2][iETA1];
2517  par1[3] = A_mu23[3][iETA1];
2518  par_sig1[0] = A_sig23[0][iETA1];
2519  par_sig1[1] = A_sig23[1][iETA1];
2520  par_sig1[2] = A_sig23[2][iETA1];
2521  par_rho[0] = A_rho234CSCTF[0][iETA1];
2522  par_rho[1] = A_rho234CSCTF[1][iETA1];
2523  par_rho[2] = A_rho234CSCTF[2][iETA1];
2524  par_rho[3] = A_rho234CSCTF[3][iETA1];
2525  par_rho[4] = A_rho234CSCTF[4][iETA1];
2526 
2527  par2[0] = A_mu34[0][iETA1];
2528  par2[1] = A_mu34[1][iETA1];
2529  par2[2] = A_mu34[2][iETA1];
2530  par2[3] = A_mu34[3][iETA1];
2531  par_sig2[0] = A_sig34[0][iETA1];
2532  par_sig2[1] = A_sig34[1][iETA1];
2533  par_sig2[2] = A_sig34[2][iETA1];
2534  break;
2535  case 11 : // b1-1-3
2536  if(iETA1 != 2)iETA1 = 2;
2537  par1[0] = A_mu51[0][iETA1];
2538  par1[1] = A_mu51[1][iETA1];
2539  par1[2] = A_mu51[2][iETA1];
2540  par1[3] = A_mu51[3][iETA1];
2541  par_sig1[0] = A_sig51[0][iETA1];
2542  par_sig1[1] = A_sig51[1][iETA1];
2543  par_sig1[2] = A_sig51[2][iETA1];
2544  par_rho[0] = A_rho513[0][iETA1];
2545  par_rho[1] = A_rho513[0][iETA1];
2546  par_rho[2] = A_rho513[0][iETA1];
2547  par_rho[3] = A_rho513[0][iETA1];
2548  par_rho[4] = A_rho513[0][iETA1];
2549 
2550  par2[0] = A_mu13Rare[0][iETA1];
2551  par2[1] = A_mu13Rare[1][iETA1];
2552  par2[2] = A_mu13Rare[2][iETA1];
2553  par2[3] = A_mu13Rare[3][iETA1];
2554  par_sig2[0] = A_sig13Rare[0][iETA1];
2555  par_sig2[1] = A_sig13Rare[1][iETA1];
2556  par_sig2[2] = A_sig13Rare[2][iETA1];
2557  break;
2558  case 12 : // b1-2-3
2559  if(iETA1 != 2)iETA1 = 2;
2560  par1[0] = A_mu52[0][iETA1];
2561  par1[1] = A_mu52[1][iETA1];
2562  par1[2] = A_mu52[2][iETA1];
2563  par1[3] = A_mu52[3][iETA1];
2564  par_sig1[0] = A_sig52[0][iETA1];
2565  par_sig1[1] = A_sig52[1][iETA1];
2566  par_sig1[2] = A_sig52[2][iETA1];
2567  par_rho[0] = A_rho523[0][iETA1];
2568  par_rho[1] = A_rho523[0][iETA1];
2569  par_rho[2] = A_rho523[0][iETA1];
2570  par_rho[3] = A_rho523[0][iETA1];
2571  par_rho[4] = A_rho523[0][iETA1];
2572 
2573  par2[0] = A_mu23[0][iETA1];
2574  par2[1] = A_mu23[1][iETA1];
2575  par2[2] = A_mu23[2][iETA1];
2576  par2[3] = A_mu23[3][iETA1];
2577  par_sig2[0] = A_sig23[0][iETA1];
2578  par_sig2[1] = A_sig23[1][iETA1];
2579  par_sig2[2] = A_sig23[2][iETA1];
2580  break;
2581  case 14 : // b1-1-2-(3)
2582  if(iETA1 < 1)iETA1 = 1;
2583  if(iETA1 > 2)iETA1 = 2;
2584  par1[0] = A_mu51[0][iETA1];
2585  par1[1] = A_mu51[1][iETA1];
2586  par1[2] = A_mu51[2][iETA1];
2587  par1[3] = A_mu51[3][iETA1];
2588  par_sig1[0] = A_sig51[0][iETA1];
2589  par_sig1[1] = A_sig51[1][iETA1];
2590  par_sig1[2] = A_sig51[2][iETA1];
2591  par_rho[0] = A_rho512[0][iETA1];
2592  par_rho[1] = A_rho512[0][iETA1];
2593  par_rho[2] = A_rho512[0][iETA1];
2594  par_rho[3] = A_rho512[0][iETA1];
2595  par_rho[4] = A_rho512[0][iETA1];
2596 
2597  par2[0] = A_mu12Rare[0][iETA1];
2598  par2[1] = A_mu12Rare[1][iETA1];
2599  par2[2] = A_mu12Rare[2][iETA1];
2600  par2[3] = A_mu12Rare[3][iETA1];
2601  par_sig2[0] = A_sig12Rare[0][iETA1];
2602  par_sig2[1] = A_sig12Rare[1][iETA1];
2603  par_sig2[2] = A_sig12Rare[2][iETA1];
2604  break;
2605  //default:
2606  //return 0.0;
2607  }
2608 
2609  // Switch to 2-Station measurement if dphi is too small
2610  // box cut around Pt of 10 GeV
2611  if ( fabs(static_cast<double>(dphi2))<0.004 )
2612  {
2613  if(type == 2 || type == 3) type = 6; // 1-2-3(or 4) -> 1-2
2614  if(type == 4) type = 7; // 1-3-4 -> 1-3
2615  if(type == 5) type = 8; // 2-3-4 -> 2-3
2616  if(type == 11) type = 14; // b1-1-3 -> b1-1 for pt_method > 10
2617  Pt = Pt2Stn2010(type, eta, dphi1, fr, method);
2618  }
2619  else
2620  {
2621 //************* solve equation dLog(Likelihood)/dpt = 0 for muon + ;
2622  double pt = 140;
2623  double dpt = 0.1;
2624  double step = 5.;
2625  while(pt > 2. ){
2626  double par_phi12[1] = {dphi1};
2627  double par_phi23[1] = {dphi2};
2628  double v[1], lpt1_1, lpt1_2, lpt2_1, lpt2_2;
2629  v[0] = 0; lpt1_1 = 1.; lpt1_2 = 2.; lpt2_1 = 1.; lpt2_2 = 2.;
2630  v[0] = pt;
2631  lpt1_1 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2632  v[0] = pt + dpt;
2633  lpt1_2 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2634  double lpt1 = (lpt1_2-lpt1_1)/dpt; // derivative at point pt1 = pt
2635  v[0] = pt - step;
2636  lpt2_1 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2637  v[0] = pt - step + dpt;
2638  lpt2_2 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2639  double lpt2 = (lpt2_2-lpt2_1)/dpt; // derivative at point pt1 = pt - step
2640  // calculate 2nd derivative at point pt-0.5*step, it should be > 0 if minimum
2641  v[0] = pt - 0.5*step;
2642  double fx = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2643  v[0] = pt - 0.5*step + dpt;
2644  double fxh = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2645  v[0] = pt - 0.5*step + 2*dpt;
2646  double fx2h = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2647 
2648  double lpt2nd = -(fx2h + fx - 2*fxh)/dpt/dpt;
2649 
2650  if(lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolv = pt - 0.5*step; break;}// lpt = 0 between lpt1 and lpt2 => maximum pt_solv is a solution of the likelihood
2651 /*
2652  if(pt == 140.){
2653  v[0] = 200.;
2654  lpt2_1 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2655  v[0] = 200.+ 5.;
2656  lpt2_2 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2657  lpt2 = (lpt2_2-lpt2_1)/5.;
2658  v[0] = 170.;
2659  fx = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2660  v[0] = 170.+5.;
2661  fxh = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2662  v[0] = 170.+2*5.;
2663  fx2h = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2664  lpt2nd = -(fx2h + fx - 2*fxh)/5./5.;
2665  }
2666 
2667  if(pt == 140. && lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolv = 137.5; break;}
2668 */
2669  //double rho = fitfrho(v, par_rho); //rho
2670  if(pt > 25) {dpt = 0.1; step = 5.;}
2671  if(pt <= 25) {dpt = 0.01; step = 0.5;}
2672  pt = pt - step;
2673  }// end while
2674 //*********** end solve equation for muon plus
2675 //************* solve equation dLog(Likelihood)/dpt = 0 for muon minus ;
2676 // for one station method we know sing of muon: dphi1 > 0 for muon minus!!! => dphi1 = -dphi1 < 0
2677  dphi1 = - dphi1;
2678  dphi2 = - dphi2;
2679  pt = 140;
2680  dpt = 0.1;
2681  step = 5.;
2682  while(pt > 2. ){
2683  double par_phi12[1] = {dphi1};
2684  double par_phi23[1] = {dphi2};
2685  double v[1], lpt1_1, lpt1_2, lpt2_1, lpt2_2;
2686  v[0] = 0; lpt1_1 = 1.; lpt1_2 = 2.; lpt2_1 = 1.; lpt2_2 = 2.;
2687  v[0] = pt;
2688  lpt1_1 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2689  v[0] = pt + dpt;
2690  lpt1_2 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2691  double lpt1 = (lpt1_2-lpt1_1)/dpt; // derivative at point pt1 = pt
2692  v[0] = pt - step;
2693  lpt2_1 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2694  v[0] = pt - step + dpt;
2695  lpt2_2 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2696  double lpt2 = (lpt2_2-lpt2_1)/dpt; // derivative at point pt1 = pt - step
2697  // calculate 2nd derivative at point pt-0.5*step, it should be > 0 if minimum
2698  v[0] = pt - 0.5*step;
2699  double fx = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2700  v[0] = pt - 0.5*step + dpt;
2701  double fxh = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2702  v[0] = pt - 0.5*step + 2*dpt;
2703  double fx2h = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2704 
2705  double lpt2nd = -(fx2h + fx - 2*fxh)/dpt/dpt;
2706 
2707  if(lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolvMinus = pt - 0.5*step; break;}// lpt = 0 between lpt1 and lpt2 => maximum pt_solv is a solution of the likelihood
2708  //if(iETA == 3 && v[0] < 4 && v[0] > 3) cout << "m12 = " << fitf5(v, par1) << " sig12 = " << fitf2(v, par_sig1) << endl;
2710 /*
2711  if(pt == 140.){
2712  v[0] = 200.;
2713  lpt2_1 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2714  v[0] = 200.+ 5.;
2715  lpt2_2 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2716  lpt2 = (lpt2_2-lpt2_1)/5.;
2717  v[0] = 170.;
2718  fx = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2719  v[0] = 170.+5.;
2720  fxh = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2721  v[0] = 170.+2*5.;
2722  fx2h = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2723  lpt2nd = -(fx2h + fx - 2*fxh)/5./5.;
2724  }
2725  if(pt == 140. && lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolvMinus = 137.5; break;}
2726 */
2727  //double rho = fitfrho(v, par_rho); //rho
2728  if(pt > 25) {dpt = 0.1; step = 5.;}
2729  if(pt <= 25) {dpt = 0.01; step = 0.5;}
2730  pt = pt - step;
2731  }// end while
2732 //*********** end solve equation for muon minus
2733  PTsolv = (PTsolv > PTsolvMinus) ? PTsolv: PTsolvMinus; // select Maximum solution from muon plus and moun minus hypotesis
2734  PTsolv = PTsolv*1.2; // correction to have 90% efficiency for trigger cuts
2735  if(PTsolv > 137.5) PTsolv = 137.5;
2736  //if(fabs(dphi1) < 0.002 && fabs(dphi2) <= CutPhi23){PTsolv = 140;}
2737  dphi1 = - dphi1; //return to correct sing dphi
2738  dphi2 = - dphi2; //return to correct sing dphi
2739  Pt = PTsolv;
2740  } // end 2 or 3 station method
2741  }}
2742  // if ( fabs(static_cast<double>(dphi2))>0.004 ) std::cout << "Pt = " << Pt << " Mode = " << type << " dphi1 = " << dphi1 << " dphi2 = " << dphi2 << std::endl;
2743 
2744  float Pt_min = trigger_scale->getPtScale()->getLowEdge(1);// 0 GeV
2745  if(method > 10) Pt_min = trigger_scale->getPtScale()->getLowEdge(3);// 2 GeV
2746 
2747  return (Pt > Pt_min) ? Pt : Pt_min;
2748 }
2749 float CSCTFPtMethods::Pt3Stn2011(int type, float eta, float dphi1, float dphi2, int fr, int method) const
2750 {
2751 
2752  //if(fabs(eta) >= 2.4)eta = 2.35;
2753  if(fabs(eta) >= 2.2) eta = 2.15;
2754  float Pt = 0.;
2755  double PTsolv = 1.; // for muon plus hypothesis
2756  double PTsolvMinus = 1.;//for muon minus hypothesis
2757  for(int iETA = 0; iETA < 15; iETA++){
2758  if(fabs(eta) >= etabins[iETA] && fabs(eta) < etabins[iETA+1] ){
2759 
2760 // calculate curvers of mean and sigma
2761  // calculate phi12 mean
2762  double par1[4] = {0., 0., 0., 0.};
2763  //double phi12mean = fitf5(v, par1); //mu12
2764  double par_sig1[4] = {0., 0., 0., 0};
2765  // calculate phi23 mean
2766  double par2[4] = {0., 0., 0., 0.};
2767  // calculate phi23 sig
2768  double par_sig2[4] = {0., 0., 0., 0.};
2769  // calculate correlation rho
2770  double par_rho[5] = {0., 0., 0., 0., 0.};
2771  int iETA1 = iETA;
2772  int iETA2 = iETA;
2773 
2774 // defind which parameters will be use
2775  double (*Amean12F)[15] = AB_mu12F;
2776  double (*Asig12F)[15] = AB_sig12F;
2777  double (*Amean12R)[15] = AB_mu12R;
2778  double (*Asig12R)[15] = AB_sig12R;
2779 
2780  double (*Amean13F)[15] = AB_mu13F;
2781  double (*Asig13F)[15] = AB_sig13F;
2782  double (*Amean13R)[15] = AB_mu13R;
2783  double (*Asig13R)[15] = AB_sig13R;
2784 
2785  //double (*Amean14F)[15] = AB_mu14F;
2786  //double (*Asig14F)[15] = AB_sig14F;
2787  //double (*Amean14R)[15] = AB_mu14R;
2788  //double (*Asig14R)[15] = AB_sig14R;
2789 
2790  double (*Amean23)[15] = AB_mu23;
2791  double (*Asig23)[15] = AB_sig23;
2792  double (*Amean24)[15] = AB_mu24;
2793  double (*Asig24)[15] = AB_sig24;
2794  double (*Amean34)[15] = AB_mu34;
2795  double (*Asig34)[15] = AB_sig34;
2796 
2797  double (*Amean5)[15] = AB_mu5;
2798  double (*Asig5)[15] = AB_sig5;
2799  double (*Amean51)[15] = AB_mu51;
2800  double (*Asig51)[15] = AB_sig51;
2801  double (*Amean52)[15] = AB_mu52;
2802  double (*Asig52)[15] = AB_sig52;
2803  double (*Amean53)[15] = AB_mu53;
2804  double (*Asig53)[15] = AB_sig53;
2805 
2806  double (*Arho123F)[15] = AB_rho123F;
2807  double (*Arho123R)[15] = AB_rho123R;
2808  double (*Arho124F)[15] = AB_rho124F;
2809  double (*Arho124R)[15] = AB_rho124R;
2810  double (*Arho134F)[15] = AB_rho134F;
2811  double (*Arho134R)[15] = AB_rho134R;
2812  double (*Arho234)[15] = AB_rho234;
2813 
2814  double (*Arho51B)[15] = AB_rho51B;
2815  double (*Arho52B)[15] = AB_rho52B;
2816  double (*Arho53B)[15] = AB_rho53B;
2817  double (*Arho512)[15] = AB_rho512;
2818  double (*Arho513)[15] = AB_rho513;
2819  double (*Arho523)[15] = AB_rho523;
2820 
2821  //cout << "iETA = " << iETA
2822  // << " AB_mu51[0][iETA] = " << AB_mu51[0][iETA] << " pointer = " << (*(Amean51+0))[iETA]
2823  // << " AB_mu51[3][iETA] = " << AB_mu51[3][iETA] << " pointer = " << (*(Amean51+3))[iETA]
2824  // << endl;
2825 
2826  switch (type) // type = mode here
2827  {
2828  case 2 : //1-2-3
2829  if(iETA < 2)iETA2 = 2;
2830  if(fr == 1){
2831  if(iETA < 3)iETA1 = 3;
2832  par1[0] = (*(Amean12F+0))[iETA1];
2833  par1[1] = (*(Amean12F+1))[iETA1];
2834  par1[2] = (*(Amean12F+2))[iETA1];
2835  par1[3] = (*(Amean12F+3))[iETA1];
2836  par_sig1[0] = (*(Asig12F+0))[iETA1];
2837  par_sig1[1] = (*(Asig12F+1))[iETA1];
2838  par_sig1[2] = (*(Asig12F+2))[iETA1];
2839  par_sig1[3] = (*(Asig12F+3))[iETA1];
2840  par_rho[0] = (*(Arho123F+0))[iETA2];
2841  par_rho[1] = (*(Arho123F+1))[iETA2];
2842  par_rho[2] = (*(Arho123F+2))[iETA2];
2843  par_rho[3] = (*(Arho123F+3))[iETA2];
2844  par_rho[4] = (*(Arho123F+4))[iETA2];
2845 
2846  }
2847  if(fr == 0){
2848  if(iETA < 1)iETA1 = 1;
2849  par1[0] = (*(Amean12R+0))[iETA1];
2850  par1[1] = (*(Amean12R+1))[iETA1];
2851  par1[2] = (*(Amean12R+2))[iETA1];
2852  par1[3] = (*(Amean12R+3))[iETA1];
2853  par_sig1[0] = (*(Asig12R+0))[iETA1];
2854  par_sig1[1] = (*(Asig12R+1))[iETA1];
2855  par_sig1[2] = (*(Asig12R+2))[iETA1];
2856  par_sig1[3] = (*(Asig12R+3))[iETA1];
2857  par_rho[0] = (*(Arho123R+0))[iETA2];
2858  par_rho[1] = (*(Arho123R+1))[iETA2];
2859  par_rho[2] = (*(Arho123R+2))[iETA2];
2860  par_rho[3] = (*(Arho123R+3))[iETA2];
2861  par_rho[4] = (*(Arho123R+4))[iETA2];
2862  }
2863  par2[0] = (*(Amean23+0))[iETA2];
2864  par2[1] = (*(Amean23+1))[iETA2];
2865  par2[2] = (*(Amean23+2))[iETA2];
2866  par2[3] = (*(Amean23+3))[iETA2];
2867  par_sig2[0] = (*(Asig23+0))[iETA2];
2868  par_sig2[1] = (*(Asig23+1))[iETA2];
2869  par_sig2[2] = (*(Asig23+2))[iETA2];
2870  par_sig2[3] = (*(Asig23+3))[iETA2];
2871 
2872  break;
2873  case 3 : //1-2-4
2874  if(iETA < 3)iETA2 = 3;
2875  if(fr == 1){
2876  if(iETA < 3)iETA1 = 3;
2877  par1[0] = (*(Amean12F+0))[iETA1];
2878  par1[1] = (*(Amean12F+1))[iETA1];
2879  par1[2] = (*(Amean12F+2))[iETA1];
2880  par1[3] = (*(Amean12F+3))[iETA1];
2881  par_sig1[0] = (*(Asig12F+0))[iETA1];
2882  par_sig1[1] = (*(Asig12F+1))[iETA1];
2883  par_sig1[2] = (*(Asig12F+2))[iETA1];
2884  par_sig1[3] = (*(Asig12F+3))[iETA1];
2885  par_rho[0] = (*(Arho124F+0))[iETA2];
2886  par_rho[1] = (*(Arho124F+1))[iETA2];
2887  par_rho[2] = (*(Arho124F+2))[iETA2];
2888  par_rho[3] = (*(Arho124F+3))[iETA2];
2889  par_rho[4] = (*(Arho124F+4))[iETA2];
2890 
2891  }
2892  if(fr == 0){
2893  if(iETA < 1)iETA1 = 1;
2894  par1[0] = (*(Amean12R+0))[iETA1];
2895  par1[1] = (*(Amean12R+1))[iETA1];
2896  par1[2] = (*(Amean12R+2))[iETA1];
2897  par1[3] = (*(Amean12R+3))[iETA1];
2898  par_sig1[0] = (*(Asig12R+0))[iETA1];
2899  par_sig1[1] = (*(Asig12R+1))[iETA1];
2900  par_sig1[2] = (*(Asig12R+2))[iETA1];
2901  par_sig1[3] = (*(Asig12R+3))[iETA1];
2902  par_rho[0] = (*(Arho124R+0))[iETA2];
2903  par_rho[1] = (*(Arho124R+1))[iETA2];
2904  par_rho[2] = (*(Arho124R+2))[iETA2];
2905  par_rho[3] = (*(Arho124R+3))[iETA2];
2906  par_rho[4] = (*(Arho124R+4))[iETA2];
2907  }
2908  par2[0] = (*(Amean24+0))[iETA2];
2909  par2[1] = (*(Amean24+1))[iETA2];
2910  par2[2] = (*(Amean24+2))[iETA2];
2911  par2[3] = (*(Amean24+3))[iETA2];
2912  par_sig2[0] = (*(Asig24+0))[iETA2];
2913  par_sig2[1] = (*(Asig24+1))[iETA2];
2914  par_sig2[2] = (*(Asig24+2))[iETA2];
2915  par_sig2[3] = (*(Asig24+3))[iETA2];
2916  break;
2917  case 4 : //1-3-4
2918  if(iETA < 3)iETA2 = 3;
2919  if(fr == 1){
2920  if(iETA < 3)iETA1 = 3;
2921  par1[0] = (*(Amean13F+0))[iETA1];
2922  par1[1] = (*(Amean13F+1))[iETA1];
2923  par1[2] = (*(Amean13F+2))[iETA1];
2924  par1[3] = (*(Amean13F+3))[iETA1];
2925  par_sig1[0] = (*(Asig13F+0))[iETA1];
2926  par_sig1[1] = (*(Asig13F+1))[iETA1];
2927  par_sig1[2] = (*(Asig13F+2))[iETA1];
2928  par_sig1[3] = (*(Asig13F+3))[iETA1];
2929  par_rho[0] = (*(Arho134F+0))[iETA2];
2930  par_rho[1] = (*(Arho134F+1))[iETA2];
2931  par_rho[2] = (*(Arho134F+2))[iETA2];
2932  par_rho[3] = (*(Arho134F+3))[iETA2];
2933  par_rho[4] = (*(Arho134F+4))[iETA2];
2934 
2935  }
2936  if(fr == 0){
2937  if(iETA < 3)iETA1 = 3;
2938  par1[0] = (*(Amean13R+0))[iETA1];
2939  par1[1] = (*(Amean13R+1))[iETA1];
2940  par1[2] = (*(Amean13R+2))[iETA1];
2941  par1[3] = (*(Amean13R+3))[iETA1];
2942  par_sig1[0] = (*(Asig13R+0))[iETA1];
2943  par_sig1[1] = (*(Asig13R+1))[iETA1];
2944  par_sig1[2] = (*(Asig13R+2))[iETA1];
2945  par_sig1[3] = (*(Asig13R+3))[iETA1];
2946  par_rho[0] = (*(Arho134R+0))[iETA2];
2947  par_rho[1] = (*(Arho134R+1))[iETA2];
2948  par_rho[2] = (*(Arho134R+2))[iETA2];
2949  par_rho[3] = (*(Arho134R+3))[iETA2];
2950  par_rho[4] = (*(Arho134R+4))[iETA2];
2951  }
2952  par2[0] = (*(Amean34+0))[iETA2];
2953  par2[1] = (*(Amean34+1))[iETA2];
2954  par2[2] = (*(Amean34+2))[iETA2];
2955  par2[3] = (*(Amean34+3))[iETA2];
2956  par_sig2[0] = (*(Asig34+0))[iETA2];
2957  par_sig2[1] = (*(Asig34+1))[iETA2];
2958  par_sig2[2] = (*(Asig34+2))[iETA2];
2959  par_sig2[3] = (*(Asig34+3))[iETA2];
2960  break;
2961  case 5 ://2-3-4
2962  if(iETA < 2)iETA1 = 2;
2963  if(iETA < 3)iETA2 = 3;
2964  par1[0] = (*(Amean23+0))[iETA1];
2965  par1[1] = (*(Amean23+1))[iETA1];
2966  par1[2] = (*(Amean23+2))[iETA1];
2967  par1[3] = (*(Amean23+3))[iETA1];
2968  par_sig1[0] = (*(Asig23+0))[iETA1];
2969  par_sig1[1] = (*(Asig23+1))[iETA1];
2970  par_sig1[2] = (*(Asig23+2))[iETA1];
2971  par_sig1[3] = (*(Asig23+3))[iETA1];
2972  par_rho[0] = (*(Arho234+0))[iETA2];
2973  par_rho[1] = (*(Arho234+1))[iETA2];
2974  par_rho[2] = (*(Arho234+2))[iETA2];
2975  par_rho[3] = (*(Arho234+3))[iETA2];
2976  par_rho[4] = (*(Arho234+4))[iETA2];
2977 
2978  par2[0] = (*(Amean34+0))[iETA2];
2979  par2[1] = (*(Amean34+1))[iETA2];
2980  par2[2] = (*(Amean34+2))[iETA2];
2981  par2[3] = (*(Amean34+3))[iETA2];
2982  par_sig2[0] = (*(Asig34+0))[iETA2];
2983  par_sig2[1] = (*(Asig34+1))[iETA2];
2984  par_sig2[2] = (*(Asig34+2))[iETA2];
2985  par_sig2[3] = (*(Asig34+3))[iETA2];
2986  break;
2987  case 11 : // singles for method < 10, for method > 10: fr = 1 -> b1-1-3, fr = 0 -> b1-3-phiBend
2988  if(iETA != 2)iETA1 = 2;
2989  par1[0] = (*(Amean53+0))[iETA1];
2990  par1[1] = (*(Amean53+1))[iETA1];
2991  par1[2] = (*(Amean53+2))[iETA1];
2992  par1[3] = (*(Amean53+3))[iETA1];
2993  par_sig1[0] = (*(Asig53+0))[iETA1];
2994  par_sig1[1] = (*(Asig53+1))[iETA1];
2995  par_sig1[2] = (*(Asig53+2))[iETA1];
2996  par_sig1[3] = (*(Asig53+3))[iETA1];
2997  par_rho[0] = (*(Arho53B+0))[iETA1];
2998  par_rho[1] = (*(Arho53B+1))[iETA1];
2999  par_rho[2] = (*(Arho53B+2))[iETA1];
3000  par_rho[3] = (*(Arho53B+3))[iETA1];
3001  par_rho[4] = (*(Arho53B+4))[iETA1];
3002 
3003  par2[0] = (*(Amean5+0))[iETA1];
3004  par2[1] = (*(Amean5+1))[iETA1];
3005  par2[2] = (*(Amean5+2))[iETA1];
3006  par2[3] = (*(Amean5+3))[iETA1];
3007  par_sig2[0] = (*(Asig5+0))[iETA1];
3008  par_sig2[1] = (*(Asig5+1))[iETA1];
3009  par_sig2[2] = (*(Asig5+2))[iETA1];
3010  par_sig2[3] = (*(Asig5+3))[iETA1];
3011 
3012  if(fr == 1){
3013  par1[0] = (*(Amean51+0))[iETA1];
3014  par1[1] = (*(Amean51+1))[iETA1];
3015  par1[2] = (*(Amean51+2))[iETA1];
3016  par1[3] = (*(Amean51+3))[iETA1];
3017  par_sig1[0] = (*(Asig51+0))[iETA1];
3018  par_sig1[1] = (*(Asig51+1))[iETA1];
3019  par_sig1[2] = (*(Asig51+2))[iETA1];
3020  par_sig1[3] = (*(Asig51+3))[iETA1];
3021  par_rho[0] = (*(Arho513+0))[iETA1];
3022  par_rho[1] = (*(Arho513+1))[iETA1];
3023  par_rho[2] = (*(Arho513+2))[iETA1];
3024  par_rho[3] = (*(Arho513+3))[iETA1];
3025  par_rho[4] = (*(Arho513+4))[iETA1];
3026 
3027  par2[0] = (*(Amean13R+0))[iETA1];
3028  par2[1] = (*(Amean13R+1))[iETA1];
3029  par2[2] = (*(Amean13R+2))[iETA1];
3030  par2[3] = (*(Amean13R+3))[iETA1];
3031  par_sig2[0] = (*(Asig13R+0))[iETA1];
3032  par_sig2[1] = (*(Asig13R+1))[iETA1];
3033  par_sig2[2] = (*(Asig13R+2))[iETA1];
3034  par_sig2[3] = (*(Asig13R+3))[iETA1];
3035  }
3036  break;
3037  case 12 : // b1-1-2 for method < 10; for method > 10: fr = 1 -> b1-2-3, fr = 0 -> b1-2-phiBend
3038  if(iETA < 1)iETA1 = 1;
3039  if(iETA > 2)iETA1 = 2;
3040  par1[0] = (*(Amean52+0))[iETA1];
3041  par1[1] = (*(Amean52+1))[iETA1];
3042  par1[2] = (*(Amean52+2))[iETA1];
3043  par1[3] = (*(Amean52+3))[iETA1];
3044  par_sig1[0] = (*(Asig52+0))[iETA1];
3045  par_sig1[1] = (*(Asig52+1))[iETA1];
3046  par_sig1[2] = (*(Asig52+2))[iETA1];
3047  par_sig1[3] = (*(Asig52+3))[iETA1];
3048  par_rho[0] = (*(Arho52B+0))[iETA1];
3049  par_rho[1] = (*(Arho52B+1))[iETA1];
3050  par_rho[2] = (*(Arho52B+2))[iETA1];
3051  par_rho[3] = (*(Arho52B+3))[iETA1];
3052  par_rho[4] = (*(Arho52B+4))[iETA1];
3053 
3054  par2[0] = (*(Amean5+0))[iETA1];
3055  par2[1] = (*(Amean5+1))[iETA1];
3056  par2[2] = (*(Amean5+2))[iETA1];
3057  par2[3] = (*(Amean5+3))[iETA1];
3058  par_sig2[0] = (*(Asig5+0))[iETA1];
3059  par_sig2[1] = (*(Asig5+1))[iETA1];
3060  par_sig2[2] = (*(Asig5+2))[iETA1];
3061  par_sig2[3] = (*(Asig5+3))[iETA1];
3062 
3063  if(fr == 1){
3064  if(iETA != 2)iETA1 = 2;
3065  par1[0] = (*(Amean52+0))[iETA1];
3066  par1[1] = (*(Amean52+1))[iETA1];
3067  par1[2] = (*(Amean52+2))[iETA1];
3068  par1[3] = (*(Amean52+3))[iETA1];
3069  par_sig1[0] = (*(Asig52+0))[iETA1];
3070  par_sig1[1] = (*(Asig52+1))[iETA1];
3071  par_sig1[2] = (*(Asig52+2))[iETA1];
3072  par_sig1[3] = (*(Asig52+3))[iETA1];
3073  par_rho[0] = (*(Arho523+0))[iETA1];
3074  par_rho[1] = (*(Arho523+1))[iETA1];
3075  par_rho[2] = (*(Arho523+2))[iETA1];
3076  par_rho[3] = (*(Arho523+3))[iETA1];
3077  par_rho[4] = (*(Arho523+4))[iETA1];
3078 
3079  par2[0] = (*(Amean23+0))[iETA1];
3080  par2[1] = (*(Amean23+1))[iETA1];
3081  par2[2] = (*(Amean23+2))[iETA1];
3082  par2[3] = (*(Amean23+3))[iETA1];
3083  par_sig2[0] = (*(Asig23+0))[iETA1];
3084  par_sig2[1] = (*(Asig23+1))[iETA1];
3085  par_sig2[2] = (*(Asig23+2))[iETA1];
3086  par_sig2[3] = (*(Asig23+3))[iETA1];
3087  }
3088  break;
3089  case 14 : // b1-2 for method < 10; for method > 10: fr = 1 -> b1-1-2-(3), fr = 0 -> b1-1-phiBend
3090  if(iETA > 2)iETA1 = 2;
3091  par1[0] = (*(Amean51+0))[iETA1];
3092  par1[1] = (*(Amean51+1))[iETA1];
3093  par1[2] = (*(Amean51+2))[iETA1];
3094  par1[3] = (*(Amean51+3))[iETA1];
3095  par_sig1[0] = (*(Asig51+0))[iETA1];
3096  par_sig1[1] = (*(Asig51+1))[iETA1];
3097  par_sig1[2] = (*(Asig51+2))[iETA1];
3098  par_sig1[3] = (*(Asig51+3))[iETA1];
3099  par_rho[0] = (*(Arho51B+0))[iETA1];
3100  par_rho[1] = (*(Arho51B+1))[iETA1];
3101  par_rho[2] = (*(Arho51B+2))[iETA1];
3102  par_rho[3] = (*(Arho51B+3))[iETA1];
3103  par_rho[4] = (*(Arho51B+4))[iETA1];
3104 
3105  par2[0] = (*(Amean5+0))[iETA1];
3106  par2[1] = (*(Amean5+1))[iETA1];
3107  par2[2] = (*(Amean5+2))[iETA1];
3108  par2[3] = (*(Amean5+3))[iETA1];
3109  par_sig2[0] = (*(Asig5+0))[iETA1];
3110  par_sig2[1] = (*(Asig5+1))[iETA1];
3111  par_sig2[2] = (*(Asig5+2))[iETA1];
3112  par_sig2[3] = (*(Asig5+3))[iETA1];
3113 
3114  if(fr == 1){
3115  if(iETA < 1)iETA1 = 1;
3116  if(iETA > 2)iETA1 = 2;
3117  par1[0] = (*(Amean51+0))[iETA1];
3118  par1[1] = (*(Amean51+1))[iETA1];
3119  par1[2] = (*(Amean51+2))[iETA1];
3120  par1[3] = (*(Amean51+3))[iETA1];
3121  par_sig1[0] = (*(Asig51+0))[iETA1];
3122  par_sig1[1] = (*(Asig51+1))[iETA1];
3123  par_sig1[2] = (*(Asig51+2))[iETA1];
3124  par_sig1[3] = (*(Asig51+3))[iETA1];
3125  par_rho[0] = (*(Arho512+0))[iETA1];
3126  par_rho[1] = (*(Arho512+1))[iETA1];
3127  par_rho[2] = (*(Arho512+2))[iETA1];
3128  par_rho[3] = (*(Arho512+3))[iETA1];
3129  par_rho[4] = (*(Arho512+4))[iETA1];
3130 
3131  par2[0] = (*(Amean12R+0))[iETA1];
3132  par2[1] = (*(Amean12R+1))[iETA1];
3133  par2[2] = (*(Amean12R+2))[iETA1];
3134  par2[3] = (*(Amean12R+3))[iETA1];
3135  par_sig2[0] = (*(Asig12R+0))[iETA1];
3136  par_sig2[1] = (*(Asig12R+1))[iETA1];
3137  par_sig2[2] = (*(Asig12R+2))[iETA1];
3138  par_sig2[3] = (*(Asig12R+3))[iETA1];
3139  }
3140  break;
3141  //default:
3142  //return 0.0;
3143  }
3144 
3145  // Switch to 2-Station measurement if dphi is too small
3146  // box cut around Pt of 10 GeV
3147  if ( (fabs(static_cast<double>(dphi2))<0.004 && type != 12 && method < 25)||
3148  (fabs(static_cast<double>(dphi2))<0.004 && type != 12 && type != 14 && type != 11 && method >= 25) )
3149  {
3150  //if(type == 12 || type == 14 || type == 11) std::cout << "mode = " << type << " dphi23 = " << dphi2 << " method = " << method << std::endl; //test
3151  if(type == 2 || type == 3) type = 6; // 1-2-3(or 4) -> 1-2
3152  if(type == 4) type = 7; // 1-3-4 -> 1-3
3153  if(type == 5) type = 8; // 2-3-4 -> 2-3
3154  if(type == 11) type = 14; // b1-1-3 -> b1-1 for pt_method > 10
3155  //if(type == 14) type = 11;
3156  //phiSign
3157  Pt = Pt2Stn2011(type, eta, dphi1, fr, method,int(2));//in 3 station track there is no information to which ME1/1 or ME1/2 track belong
3158  }
3159  else
3160  {
3161 //************* solve equation dLog(Likelihood)/dpt = 0 for muon + ;
3162  double pt = 140;
3163  double dpt = 0.1;
3164  double step = 5.;
3165  while(pt > 2. ){
3166  double par_phi12[1] = {dphi1};
3167  double par_phi23[1] = {dphi2};
3168  double v[1], lpt1_1, lpt1_2, lpt2_1, lpt2_2;
3169  v[0] = 0; lpt1_1 = 1.; lpt1_2 = 2.; lpt2_1 = 1.; lpt2_2 = 2.;
3170  v[0] = pt;
3171  lpt1_1 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3172  v[0] = pt + dpt;
3173  lpt1_2 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3174  double lpt1 = (lpt1_2-lpt1_1)/dpt; // derivative at point pt1 = pt
3175  v[0] = pt - step;
3176  lpt2_1 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3177  v[0] = pt - step + dpt;
3178  lpt2_2 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3179  double lpt2 = (lpt2_2-lpt2_1)/dpt; // derivative at point pt1 = pt - step
3180  // calculate 2nd derivative at point pt-0.5*step, it should be > 0 if minimum
3181  v[0] = pt - 0.5*step;
3182  double fx = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3183  v[0] = pt - 0.5*step + dpt;
3184  double fxh = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3185  v[0] = pt - 0.5*step + 2*dpt;
3186  double fx2h = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3187 
3188  double lpt2nd = -(fx2h + fx - 2*fxh)/dpt/dpt;
3189 
3190  if(lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolv = pt - 0.5*step; break;}// lpt = 0 between lpt1 and lpt2 => maximum pt_solv is a solution of the likelihood
3191  //double rho = fitfrho(v, par_rho); //rho
3192  if(pt > 25) {dpt = 0.1; step = 5.;}
3193  if(pt <= 25) {dpt = 0.01; step = 0.5;}
3194  pt = pt - step;
3195  }// end while
3196 //*********** end solve equation for muon plus
3197 //************* solve equation dLog(Likelihood)/dpt = 0 for muon minus ;
3198 // for one station method we know sing of muon: dphi1 > 0 for muon minus!!! => dphi1 = -dphi1 < 0
3199  dphi1 = - dphi1;
3200  dphi2 = - dphi2;
3201  pt = 140;
3202  dpt = 0.1;
3203  step = 5.;
3204  while(pt > 2. ){
3205  double par_phi12[1] = {dphi1};
3206  double par_phi23[1] = {dphi2};
3207  double v[1], lpt1_1, lpt1_2, lpt2_1, lpt2_2;
3208  v[0] = 0; lpt1_1 = 1.; lpt1_2 = 2.; lpt2_1 = 1.; lpt2_2 = 2.;
3209  v[0] = pt;
3210  lpt1_1 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3211  v[0] = pt + dpt;
3212  lpt1_2 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3213  double lpt1 = (lpt1_2-lpt1_1)/dpt; // derivative at point pt1 = pt
3214  v[0] = pt - step;
3215  lpt2_1 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3216  v[0] = pt - step + dpt;
3217  lpt2_2 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3218  double lpt2 = (lpt2_2-lpt2_1)/dpt; // derivative at point pt1 = pt - step
3219  // calculate 2nd derivative at point pt-0.5*step, it should be > 0 if minimum
3220  v[0] = pt - 0.5*step;
3221  double fx = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3222  v[0] = pt - 0.5*step + dpt;
3223  double fxh = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3224  v[0] = pt - 0.5*step + 2*dpt;
3225  double fx2h = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3226 
3227  double lpt2nd = -(fx2h + fx - 2*fxh)/dpt/dpt;
3228 
3229  if(lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolvMinus = pt - 0.5*step; break;}// lpt = 0 between lpt1 and lpt2 => maximum pt_solv is a solution of the likelihood
3230  //double rho = fitfrho(v, par_rho); //rho
3231  if(pt > 25) {dpt = 0.1; step = 5.;}
3232  if(pt <= 25) {dpt = 0.01; step = 0.5;}
3233  pt = pt - step;
3234  }// end while
3235 //*********** end solve equation for muon minus
3236  PTsolv = (PTsolv > PTsolvMinus) ? PTsolv: PTsolvMinus; // select Maximum solution from muon plus and moun minus hypotesis
3237  PTsolv = PTsolv*1.2; // correction to have 90% efficiency for trigger cuts
3238  if(PTsolv > 137.5) PTsolv = 137.5;
3239  //if(fabs(dphi1) < 0.002 && fabs(dphi2) <= CutPhi23){PTsolv = 140;}
3240  dphi1 = - dphi1; //return to correct sing dphi
3241  dphi2 = - dphi2; //return to correct sing dphi
3242  Pt = PTsolv;
3243  } // end 2 or 3 station method
3244  }}
3245  // fix overlap region high pt:
3246  if(method >= 25 && (type == 12 || type == 14 || type == 11) && fabs(dphi1)<0.003 && fabs(dphi2) <2) Pt = 140.;
3247  // if ( fabs(static_cast<double>(dphi2))>0.004 ) std::cout << "Pt = " << Pt << " Mode = " << type << " dphi1 = " << dphi1 << " dphi2 = " << dphi2 << std::endl;
3248 
3249  //float Pt_min = trigger_scale->getPtScale()->getLowEdge(1);// 0 GeV
3250  //if(method > 10) Pt_min = trigger_scale->getPtScale()->getLowEdge(3);// 2 GeV
3251  float Pt_min = 2;// 2 GeV
3252 
3253  return (Pt > Pt_min) ? Pt : Pt_min;
3254 }
3255 
3256 // These arrays contain mean dphi values for each pt and eta bin.
3257 // They are split into fr=0 and fr=1.
3258 
3259 const float CSCTFPtMethods::dphifr0[4][15][28] =
3260  {
3261  {
3262  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3263  {-1, -1, 1253.47, -174.543, -90.845, -36.8835, -13.2793, 3.28278, 11.1568, 12.9352, 12.8576, 12.322, 11.7342, 10.5244, 10.0687, 8.32785, 7.13888, 6.20492, 5.85733, 4.75137, 4.77209, 4.02553, 3.69785, 3.28493, 2.99132, 2.55496, 2.22965, 1.98868},
3264  {-1, -1, -158.232, -135.974, -59.1458, -5.19565, 12.8464, 23.5714, 24.0722, 24.6097, 21.0736, 19.6627, 17.2412, 15.6857, 14.308, 12.6231, 10.4509, 9.9933, 8.24835, 6.92309, 6.57742, 5.69463, 4.74087, 3.78364, 4.21154, 3.27273, 3.10333, 2.60822},
3265  {-1, -1, -187.544, -42.1843, 40.6221, 54.483, 56.7803, 53.5989, 48.8252, 41.8441, 35.5835, 30.7605, 26.9772, 24.2051, 21.5163, 18.7697, 15.6471, 12.8676, 10.9852, 9.93952, 9.17785, 7.91962, 6.87614, 5.85018, 5.10393, 4.67222, 4.02645, 3.547},
3266  {-1, -93.4379, -64.9443, 70.5053, 85.4571, 85.2642, 77.1782, 67.8264, 59.6792, 50.1799, 41.1682, 35.1241, 30.6299, 27.1403, 24.6307, 20.6204, 17.277, 14.4064, 12.6264, 11.5938, 10.0659, 8.76273, 7.54754, 6.535, 5.69304, 5.44025, 4.61045, 3.87704},
3267  {-1, 65.2747, 120.239, 129.902, 115.172, 108.511, 92.9557, 77.3499, 66.5613, 56.856, 45.7164, 39.0012, 33.7201, 30.13, 26.8649, 22.9335, 18.2273, 16.5989, 13.9109, 12.3409, 10.9531, 9.90102, 8.25129, 7.1479, 6.71622, 5.77461, 5.05741, 4.38687},
3268  {1292.54, 139.196, 169.261, 134.554, 129.417, 118.125, 97.2182, 80.5974, 70.3365, 58.7809, 48.6667, 40.7918, 34.917, 30.8781, 28.1953, 23.2852, 19.1667, 14.6401, 14.0676, 12.5932, 11.4459, 9.67685, 8.55686, 7.49359, 6.3961, 6.02812, 5.26887, 4.55128},
3269  {396.903, 408.642, 331.11, 291.154, 244.6, 225.93, 191.418, 159.273, 137.156, 113.559, 92.3122, 77.8488, 67.4872, 57.885, 53.6376, 45.4894, 37.1931, 30.9091, 26.9629, 22.8523, 20.6881, 17.8588, 16.0515, 14.2847, 11.9988, 10.9918, 9.58895, 8.28621},
3270  {634.157, 376.909, 303.487, 269.928, 237.553, 221.337, 183.49, 151.95, 128.961, 108.078, 88.4642, 74.0832, 64.4987, 56.8622, 51.0964, 43.2635, 34.8376, 30.0291, 25.2508, 22.9892, 20.3061, 17.1065, 15.08, 13.1487, 11.3403, 9.8765, 8.67395, 7.70727},
3271  {370.029, 334.631, 284.161, 247.876, 220.082, 190.31, 160.042, 139.043, 119.323, 96.8377, 79.0452, 67.6644, 58.5129, 51.8932, 46.4433, 38.2747, 32.5855, 28.1408, 23.2895, 20.8651, 18.3079, 16.0197, 13.33, 10.7823, 10.5876, 9.3446, 8.18957, 7.13109},
3272  {336.807, 315.636, 263.106, 227.678, 196.301, 172.476, 144.296, 122.167, 107.034, 88.4252, 71.6369, 61.0729, 53.1695, 47.213, 42.3058, 36.058, 27.7351, 25.8168, 21.0509, 19.0587, 16.2367, 14.7198, 12.368, 10.5611, 9.43783, 8.64059, 7.30456, 6.50177},
3273  {562.84, 281.367, 231.744, 197.26, 175.838, 154, 132.991, 112.797, 97.7521, 80.0722, 66.1777, 53.8695, 47.5855, 42.4901, 36.5583, 31.8172, 24.5935, 22.6, 19.9488, 17.8189, 15.1107, 13.2519, 10.8772, 10.1643, 8.80709, 8.00448, 6.02758, 5.14123},
3274  {289.896, 258.601, 215.353, 187.786, 154.972, 143.654, 120.207, 106.698, 88.6531, 75.9, 59.003, 52.4794, 41.7089, 38.3974, 35.4884, 28.7295, 17.5001, 31.3222, 18.7727, 15.4322, 11.8692, 10.5938, 8.97935, 9.22087, 9.05559, 6.60579, 6.4547, 2.855},
3275  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3276  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}
3277  },
3278  {
3279  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3280  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3281  {-1, -1, -1, -158, -149.043, -92.0094, -28.6132, 27.8399, 27.5444, 27.5802, 37.07, 24.0291, 24.9195, 20.9748, 18.7762, 22.7466, 14.5682, 28.4577, 11.0263, 29.5137, 7.04546, 7.38512, 7.724, 6.71233, 27.4036, 4.52113, 4.33911, 4.07762},
3282  {-1, -1, -265.6, -144.969, -56.137, -4.4, 30.8879, 44.1075, 45.163, 42.5274, 38.7436, 34.8538, 31.1479, 28.8793, 25.3394, 22.5102, 19.0281, 15.6608, 13.3702, 12.0331, 11.1189, 10.2568, 8.57414, 7.45946, 6.29798, 6.15319, 5.30089, 4.56149},
3283  {-1, -79.5241, -105.242, -29.2478, 33.9726, 60.1505, 67.6247, 67.8742, 63.3538, 55.8014, 47.6468, 41.3991, 36.6279, 32.9551, 29.9351, 25.5988, 21.3793, 17.7866, 15.8878, 14.6346, 12.5951, 11.084, 9.73607, 8.64701, 7.50803, 6.97295, 5.98046, 5.18782},
3284  {-1, -40.3713, 42.1945, 92.9089, 114.43, 113.72, 100.286, 89.219, 77.4508, 66.7699, 55.0464, 47.6297, 41.3828, 36.4328, 33.2834, 28.5722, 23.0725, 21.5406, 18.1268, 16.2328, 13.9065, 12.2744, 10.5509, 9.47753, 8.48564, 7.63124, 6.41131, 5.79205},
3285  {-34.9, 73.3963, 142.631, 145.951, 142.318, 129.656, 111.93, 94.6978, 85.5312, 71.8926, 60.7711, 50.9572, 44.9347, 39.6302, 36.0288, 30.04, 24.3307, 21.7811, 18.3903, 16.2716, 14.7719, 12.8338, 11.2943, 9.72188, 8.62582, 7.73165, 6.73526, 5.93205},
3286  {7368.83, 502.793, 291.618, 282.933, 244.114, 233.502, 201.302, 172.276, 148.921, 125.128, 102.477, 86.3142, 75.3546, 64.468, 60.2395, 50.8744, 42.101, 35.6805, 30.7703, 26.6287, 23.2273, 20.6701, 17.2109, 15.2909, 13.682, 12.3394, 11.0076, 9.19048},
3287  {82.7323, 379.23, 270.613, 264.088, 246.284, 233.18, 190.228, 162.832, 141.282, 119.001, 96.1594, 81.5045, 71.5023, 63.5261, 57.4827, 48.7483, 38.0439, 34.4778, 29.625, 25.2903, 23.1887, 20.6185, 17.7059, 14.7975, 12.9311, 11.9939, 11.016, 9.50148},
3288  {185.843, 294.953, 268.259, 250.028, 232.276, 209.138, 174.647, 153.029, 132.233, 109.333, 91.0324, 76.9822, 67.8374, 59.8954, 53.4497, 43.553, 37.6139, 32.7444, 27.023, 23.9679, 20.9309, 19.1485, 16.0294, 13.8003, 12.3176, 11.3441, 9.55937, 8.54497},
3289  {348.282, 310.699, 268.381, 243.254, 217.179, 187.212, 162.957, 136.969, 124.132, 101.48, 81.8314, 71.5882, 61.3147, 54.9158, 49.5517, 42.7537, 33.5, 29.7412, 26.1131, 23.1024, 19.7197, 17.708, 14.0364, 12.8054, 11.8375, 10.4924, 9.04095, 8.33528},
3290  {324.513, 290.628, 251.147, 216.936, 198.177, 176.297, 151.909, 129.606, 113.817, 94.3377, 76.6785, 64.382, 56.4567, 51.125, 43.4356, 37.6896, 30.338, 26.5577, 23.1858, 20.4549, 18.0182, 16.0098, 13.1211, 11.8445, 11.3616, 9.25812, 8.4992, 7.35148},
3291  {244.009, 279.89, 230.644, 231.457, 172.803, 163.804, 140.071, 126.029, 107.683, 91.6615, 72.0354, 64.4556, 50.6761, 46.5068, 41.6472, 35.4661, 21.2969, 38.4268, 19.632, 18.4574, 12.839, 14.213, 12.4018, 12.0424, 9.6145, 8.22918, 9.88007, 6.12946},
3292  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3293  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}
3294  },
3295  {
3296  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3297  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3298  {-1, -1, -251.167, -157.188, -100.839, -70.7716, -31.9278, -14.7414, -6.46332, -1.43471, 1.10161, 1.95823, 2.6771, 2.52718, 2.67548, 2.75908, 2.87331, 2.61814, 1.92056, 2.16773, 1.70225, 1.70877, 1.55219, 1.43065, 1.53014, 1.69851, 1.40267, 1.46639},
3299  {-1, -1, -243.237, -145.933, -87.2068, -48.5578, -21.9141, -7.68402, -2.83933, 1.21596, 2.94545, 4.083, 3.97067, 4.12142, 3.78849, 3.83645, 3.07738, 2.90695, 2.53516, 2.51623, 2.31173, 2.2246, 1.85357, 1.78656, 1.65385, 1.57375, 1.40617, 1.35693},
3300  {-1, -110, -141.651, -118.596, -52.606, -23.472, -8.09735, 0.683589, 3.57165, 5.25367, 5.8348, 5.67137, 5.26599, 5.1816, 4.84428, 4.6964, 4.06178, 3.27554, 3, 2.92343, 2.56487, 2.47989, 2.32236, 1.83586, 1.84201, 1.97658, 1.64081, 1.56958},
3301  {-1, -106.053, -87.5398, -49.1882, -11.1091, -0.606904, 6.08278, 8.18373, 9.14269, 8.82061, 8.39517, 7.5095, 6.66552, 6.06293, 5.79917, 5.11953, 4.08928, 3.87, 3.71985, 3.4277, 2.925, 2.47762, 2.49134, 2.1793, 2.11341, 1.8709, 1.68674, 1.69234},
3302  {-116.854, -103.914, -48.6067, -7.80512, 4.11674, 8.14952, 11.6643, 11.178, 11.3862, 10.0188, 9.46565, 8.32955, 7.58777, 6.63929, 6.08499, 5.66225, 4.70548, 4.09773, 4.0294, 3.23529, 2.62532, 2.89612, 2.52651, 2.27649, 1.99773, 1.96176, 2.06313, 2.12814},
3303  {-146.18, -59.7282, -12.5, 3.08192, 8.34909, 11.1753, 15.2845, 14.8204, 14.3607, 12.9987, 11.1043, 9.964, 8.90504, 8.31783, 7.36251, 6.6915, 6.24035, 4.98582, 4.03066, 5.83789, 3.10856, 2.96333, 3.06171, 2.23047, 2.32792, 2.18535, 2.38165, 2.42884},
3304  {-233.643, -96.4333, -30.9536, -2.51866, 5.30801, 7.45312, 14.238, 12.5321, 12.7695, 11.741, 10.4656, 8.62541, 7.93922, 7.51216, 6.53463, 5.50929, 4.6268, 4.64697, 4.30481, 3.52426, 3.45212, 3.73824, 4.07812, 2.33724, 2.51972, 2.21704, 3.41317, 2.55682},
3305  {-211.848, -67.9261, -9.6179, 2.65525, 11.0301, 16.4831, 16.0704, 15.4027, 15.1086, 13.5929, 11.7898, 9.90025, 9.13345, 8.25683, 7.21617, 6.25572, 5.43346, 4.54866, 3.83221, 3.4237, 3.65898, 3.65808, 3.18498, 2.75829, 2.37531, 2.88444, 1.95099, 1.89066},
3306  {-143.833, -12.2832, 7.8963, 16.4622, 19.9538, 17.4053, 18.3962, 16.7577, 15.9486, 14.1232, 11.1662, 10.5826, 9.11908, 8.38156, 7.65503, 6.84281, 5.95331, 4.69263, 4.88752, 3.84843, 3.79038, 3.24503, 2.73708, 2.6645, 2.5017, 2.13435, 1.87916, 2.1749},
3307  {-37.4431, 11.3047, 18.5, 23.1562, 22.8984, 22.1124, 20.1964, 19.4342, 17.2078, 15.1252, 12.2962, 10.5784, 9.23938, 8.73254, 7.106, 6.7301, 5.53248, 4.62478, 3.82739, 3.07251, 2.79682, 2.8214, 2.92242, 2.47091, 2.63102, 1.94484, 2.30322, 2.64068},
3308  {4.24623, 23.1041, 27.5407, 28, 23.0684, 24.1685, 21.3723, 19.4634, 16.9631, 14.3876, 12.3701, 10.1272, 9.12229, 7.9875, 7.06019, 5.96169, 5.53393, 4.32105, 3.66794, 3.70074, 3.20382, 3.47729, 3.06609, 2.26191, 2.48768, 2.01323, 2.73772, 2.66561},
3309  {33.3344, 32.716, 30.0851, 30.6933, 29.2431, 25.6295, 21.674, 19.3741, 17.7184, 14.8413, 12.1543, 10.4758, 9.33113, 7.79187, 7.39106, 5.8376, 6.08377, 4.85748, 4.16908, 3.88557, 3.14086, 3.11306, 2.98297, 3.33859, 2.04182, 2.32861, 2.75164, 2.29621},
3310  {46.1357, 38.8426, 36.6976, 32.0038, 29.6956, 23.4889, 22.725, 19.779, 17.5173, 14.7043, 11.9171, 10.7871, 9.06671, 8.23658, 7.41977, 6.46988, 4.93792, 4.55465, 4.20588, 3.82236, 3.62993, 2.83949, 2.95902, 1.99063, 2.37545, 2.28563, 2.49407, 2.52411}
3311  },
3312  {
3313  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3314  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3315  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3316  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3317  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3318  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3319  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3320  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3321  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3322  {-417.629, -218.804, -63.1122, -34.5828, -10.68, 2.75084, 8.65719, 11.6155, 13.6253, 12.1802, 12.5535, 10.8028, 9.48349, 9.38468, 7.83699, 6.99092, 5.30562, 4.20316, 4.41177, 4.52123, 3.31882, 3.91104, 3.77374, 4.04567, 2.35974, 2.35145, 2.96747, 1.98381},
3323  {-311.688, -93.8205, -32.57, -6.85071, 6.45113, 7.97528, 13.5012, 15.2368, 16.5485, 14.4764, 12.181, 11.4092, 10.3418, 9.29414, 9.04287, 7.72862, 7.46558, 5.20657, 5.19399, 5.61358, 3.9523, 3.20885, 3.29034, 2.82267, 2.91734, 2.38053, 2.44655, 2.36229},
3324  {-161.948, -37.0248, -4.60393, 8.56983, 13.4828, 19.0043, 18.3378, 20.0726, 18.3394, 16.8149, 14.4702, 12.2298, 10.8159, 10.422, 8.29546, 7.70715, 6.26524, 5.70706, 5.26374, 4.44881, 4.80797, 3.24519, 3.09801, 2.73461, 3.34774, 2.88844, 2.34626, 2.76387},
3325  {-72.1648, -12.5057, 16.9112, 23.5819, 20.6731, 21.814, 22.9407, 19.6563, 19.1021, 16.9339, 15.2842, 12.4743, 11.0013, 10.0748, 8.91402, 7.27224, 6.15542, 5.23092, 4.49629, 4.25791, 3.79059, 3.70681, 3.31756, 2.62265, 3.45895, 2.19926, 2.15639, 2.7466},
3326  {2.3118, 20.9883, 24.9015, 32.366, 32.2839, 29.3505, 24.8013, 23.3821, 21.1815, 18.3139, 15.0436, 13.3637, 11.4887, 9.84427, 9.51972, 8.22026, 6.8517, 5.85862, 4.95269, 4.5885, 3.45462, 4.03355, 3.70984, 4.04694, 2.46266, 2.50179, 3.23813, 2.46999},
3327  {30.7084, 40.046, 40.956, 39.7092, 36.4134, 28.415, 28.5543, 24.9346, 23.1865, 19.4968, 15.3536, 14.0231, 12.0163, 10.7639, 9.82125, 8.36598, 6.4058, 5.88361, 5.13249, 4.51457, 4.9171, 3.87165, 3.58904, 2.85879, 2.53645, 2.81466, 2.72057, 3.18122}
3328  }
3329  };
3330 
3331 const float CSCTFPtMethods::dphifr1[4][15][28] =
3332  {
3333  {
3334  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3335  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3336  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3337  {-1, -1, -174.092, -53.9867, 10.2441, 27.4286, 36.9822, 37.5167, 34.3051, 31.8195, 27.8286, 24.1206, 21.161, 19.0382, 17.1718, 14.6208, 12.2432, 10.7876, 9.69835, 8.08848, 7.13485, 6.60187, 5.18874, 5.13839, 4.41612, 4.14069, 3.58335, 3.01529},
3338  {-1, 1138.05, -49.183, 2.6568, 58.5809, 57.9481, 56.8007, 51.1911, 44.5243, 37.806, 32.1175, 27.5585, 24.3955, 21.7533, 19.3667, 17.0463, 13.9365, 11.8102, 10.2398, 9.1678, 8.26393, 7.18307, 6.13392, 5.533, 4.8865, 4.11951, 3.87238, 3.48248},
3339  {-1, 9.64577, 56.9057, 81.944, 82.4872, 78.3198, 68.8015, 60.7978, 52.6542, 44.3584, 37.3611, 31.2648, 27.235, 24.5, 22.04, 18.5, 15.75, 12.9557, 11.2655, 10.2491, 9.21672, 8.30474, 6.64511, 6.13513, 5.34219, 4.95, 4.23425, 3.6963},
3340  {97.5, 87.4578, 120.684, 105.38, 98.3177, 87.4048, 75.9, 65.9142, 56.1879, 47.6314, 39.6183, 33.2005, 28.7316, 25.4495, 22.9327, 19.4612, 15.7254, 13.8618, 11.9249, 10.0859, 9.444, 8.11458, 6.95662, 6.25641, 5.44159, 5.19583, 4.35396, 3.83333},
3341  {693.205, 454.942, 655.428, 360.329, 323.261, 275.945, 234.843, 196.055, 167.247, 139.873, 113.932, 95.6506, 82.789, 72.2128, 64.9871, 53.997, 43.4461, 39.0238, 33.6322, 28.8622, 25.6006, 21.9322, 18.5028, 16.0912, 14.2918, 12.4941, 10.5138, 9.05925},
3342  {9146.66, 471.958, 387.082, 340.914, 286.893, 262.777, 224.112, 184.982, 155.447, 133.684, 107.642, 91.5521, 78.135, 69.0562, 61.4634, 52.4394, 42.1881, 36.5169, 30.0318, 27.9321, 24.4145, 21.0881, 17.9552, 14.6189, 13.2301, 12.9111, 10.8691, 8.35492},
3343  {540.281, 410.901, 354.276, 301.779, 253.803, 238.881, 199.465, 167.136, 145.674, 119.585, 97.0842, 82.3805, 70.6386, 62.154, 55.8136, 46.3101, 37.2817, 33.507, 28.8241, 25.774, 22.4889, 19.8697, 16.1007, 13.3432, 12.4647, 11.9955, 9.6895, 8.46321},
3344  {419.005, 377.428, 314.861, 270.658, 240.487, 213.074, 182.994, 151.52, 129.287, 108.487, 87.9791, 74.8889, 64.8147, 56.7597, 50.5058, 42.6958, 35.6277, 29.9064, 26.1033, 22.5358, 20.6119, 17.9656, 15.3201, 13.1018, 11.7756, 10.129, 8.86099, 7.58348},
3345  {2783.23, 334.238, 275.818, 240.947, 205.026, 186.945, 163.992, 138.569, 117.64, 100.381, 81.1057, 68.0913, 58.8849, 52.6374, 45.2179, 38.059, 32.6702, 26.3298, 23.0484, 18.3201, 18.1814, 16.0936, 12.7571, 12.2673, 9.95479, 8.37502, 7.42398, 6.72237},
3346  {-1, -1, -1, -1, -1, 143.654, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 9.23717, 9.05559, -1, -1, 338.089},
3347  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3348  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}
3349  },
3350  {
3351  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3352  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3353  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3354  {-1, -1, -293.3, -150.312, -41.3547, -4.93182, 20.0224, 31.2313, 31.0566, 33.3205, 30.2863, 27.2634, 24.2872, 22.0512, 19.596, 17.3902, 14.2112, 12.6609, 11.407, 10.2093, 8.85659, 7.85742, 6.4135, 6.23362, 5.41945, 4.95306, 4.41755, 3.82303},
3355  {-1, -143.627, -143.826, -62.3445, 23.7381, 51.7379, 55.9747, 54.5144, 47.9348, 42.2055, 37.0868, 31.9699, 28.8453, 26.0344, 23.1051, 20.5071, 17.1946, 14.1772, 12.4708, 11.3144, 9.88063, 8.86923, 7.67165, 6.4322, 5.96624, 5.18282, 4.81762, 4.28301},
3356  {-1, -13.3855, 5.16716, 64.1898, 72.3294, 76.3905, 73.7962, 67.3364, 59.9099, 51.4343, 43.5279, 37.1873, 31.7994, 29.0358, 26.5368, 22.0615, 19.1543, 15.4385, 14.2599, 12.3375, 10.9493, 9.73496, 8.26995, 7.45197, 6.60214, 6.08206, 5.15337, 4.66445},
3357  {-42.7682, 47.3889, 103.482, 107.735, 107.75, 94.9291, 87.763, 75.9543, 65.4694, 56.7377, 47.3143, 39.9327, 34.7819, 31.2361, 27.8932, 24.1076, 19.6767, 17.1081, 15.427, 12.8984, 11.4228, 10.0318, 8.49021, 7.90816, 6.72917, 6.39571, 5.45637, 4.61281},
3358  {541.234, 465.806, 429.209, 372.183, 331.067, 285.903, 258.37, 216.269, 181.991, 154.204, 125.987, 107.564, 91.8176, 81.5452, 73.1247, 59.1412, 51, 43.3898, 37.9118, 33.2887, 28.8381, 25.3079, 21.6463, 17.6858, 16.9908, 14.841, 11.8149, 10.9434},
3359  {255.594, 371.519, 358.173, 343.459, 285.798, 262.664, 238.913, 194.777, 163.618, 142.465, 116.934, 98.3012, 84.7328, 73.9315, 66.1496, 57.1145, 45.7455, 39.2169, 33.571, 28.7347, 27.0902, 22.7753, 19.8191, 16.4045, 15.2075, 14.0935, 12.3427, 9.36143},
3360  {275.796, 423.747, 347.249, 303.803, 270.357, 254.279, 217.372, 182.151, 161.833, 132.635, 108.221, 91.6597, 79.5534, 69.683, 62.6926, 52.9109, 42.95, 36.9714, 31.6704, 28.9253, 25.7569, 22.4706, 18.5914, 16.0164, 14.43, 14.6449, 11.4458, 9.78841},
3361  {378.542, 349.351, 319.333, 285.503, 261.452, 233.428, 201.215, 165.997, 145.442, 121.289, 98.8432, 84.1681, 72.9111, 64.2952, 58.4893, 48.2012, 41.2393, 34.1303, 29.9633, 26.1572, 23.1371, 20.5019, 17.2906, 15.0458, 14.0115, 11.7586, 10.045, 9.31029},
3362  {557.927, 338.049, 301.204, 265.456, 232.807, 212.31, 185.76, 158.503, 132.332, 113.382, 91.8123, 76.8816, 67.1968, 60.2717, 52.0559, 44.363, 36.5282, 29.777, 25.6156, 22.1842, 20.2098, 18.3932, 15.1911, 14.1691, 12.6889, 10.8789, 10.4976, 7.84804},
3363  {-1, -1, -1, -1, -1, 2154.03, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 12.2722, 8.95391, -1, -1, 337.608},
3364  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3365  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}
3366  },
3367  {
3368  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3369  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3370  {-1, -1, -251.167, -157.188, -100.839, -70.7716, -31.9278, -14.7414, -6.46332, -1.43471, 1.10161, 1.95823, 2.6771, 2.52718, 2.67548, 2.75908, 2.87331, 2.61814, 1.92056, 2.16773, 1.70225, 1.70877, 1.55219, 1.43065, 1.53014, 1.69851, 1.40267, 1.46639},
3371  {-1, -1, -243.237, -145.933, -87.2068, -48.5578, -21.9141, -7.68402, -2.83933, 1.21596, 2.94545, 4.083, 3.97067, 4.12142, 3.78849, 3.83645, 3.07738, 2.90695, 2.53516, 2.51623, 2.31173, 2.2246, 1.85357, 1.78656, 1.65385, 1.57375, 1.40617, 1.35693},
3372  {-1, -110, -141.651, -118.596, -52.606, -23.472, -8.09735, 0.683589, 3.57165, 5.25367, 5.8348, 5.67137, 5.26599, 5.1816, 4.84428, 4.6964, 4.06178, 3.27554, 3, 2.92343, 2.56487, 2.47989, 2.32236, 1.83586, 1.84201, 1.97658, 1.64081, 1.56958},
3373  {-1, -106.053, -87.5398, -49.1882, -11.1091, -0.606904, 6.08278, 8.18373, 9.14269, 8.82061, 8.39517, 7.5095, 6.66552, 6.06293, 5.79917, 5.11953, 4.08928, 3.87, 3.71985, 3.4277, 2.925, 2.47762, 2.49134, 2.1793, 2.11341, 1.8709, 1.68674, 1.69234},
3374  {-116.854, -103.914, -48.6067, -7.80512, 4.11674, 8.14952, 11.6643, 11.178, 11.3862, 10.0188, 9.46565, 8.32955, 7.58777, 6.63929, 6.08499, 5.66225, 4.70548, 4.09773, 4.0294, 3.23529, 2.62532, 2.89612, 2.52651, 2.27649, 1.99773, 1.96176, 2.06313, 2.12814},
3375  {-146.18, -59.7282, -12.5, 3.08192, 8.34909, 11.1753, 15.2845, 14.8204, 14.3607, 12.9987, 11.1043, 9.964, 8.90504, 8.31783, 7.36251, 6.6915, 6.24035, 4.98582, 4.03066, 5.83789, 3.10856, 2.96333, 3.06171, 2.23047, 2.32792, 2.18535, 2.38165, 2.42884},
3376  {-233.643, -96.4333, -30.9536, -2.51866, 5.30801, 7.45312, 14.238, 12.5321, 12.7695, 11.741, 10.4656, 8.62541, 7.93922, 7.51216, 6.53463, 5.50929, 4.6268, 4.64697, 4.30481, 3.52426, 3.45212, 3.73824, 4.07812, 2.33724, 2.51972, 2.21704, 3.41317, 2.55682},
3377  {-211.848, -67.9261, -9.6179, 2.65525, 11.0301, 16.4831, 16.0704, 15.4027, 15.1086, 13.5929, 11.7898, 9.90025, 9.13345, 8.25683, 7.21617, 6.25572, 5.43346, 4.54866, 3.83221, 3.4237, 3.65898, 3.65808, 3.18498, 2.75829, 2.37531, 2.88444, 1.95099, 1.89066},
3378  {-143.833, -12.2832, 7.8963, 16.4622, 19.9538, 17.4053, 18.3962, 16.7577, 15.9486, 14.1232, 11.1662, 10.5826, 9.11908, 8.38156, 7.65503, 6.84281, 5.95331, 4.69263, 4.88752, 3.84843, 3.79038, 3.24503, 2.73708, 2.6645, 2.5017, 2.13435, 1.87916, 2.1749},
3379  {-37.4431, 11.3047, 18.5, 23.1562, 22.8984, 22.1124, 20.1964, 19.4342, 17.2078, 15.1252, 12.2962, 10.5784, 9.23938, 8.73254, 7.106, 6.7301, 5.53248, 4.62478, 3.82739, 3.07251, 2.79682, 2.8214, 2.92242, 2.47091, 2.63102, 1.94484, 2.30322, 2.64068},
3380  {4.24623, 23.1041, 27.5407, 28, 23.0684, 24.1685, 21.3723, 19.4634, 16.9631, 14.3876, 12.3701, 10.1272, 9.12229, 7.9875, 7.06019, 5.96169, 5.53393, 4.32105, 3.66794, 3.70074, 3.20382, 3.47729, 3.06609, 2.26191, 2.48768, 2.01323, 2.73772, 2.66561},
3381  {33.3344, 32.716, 30.0851, 30.6933, 29.2431, 25.6295, 21.674, 19.3741, 17.7184, 14.8413, 12.1543, 10.4758, 9.33113, 7.79187, 7.39106, 5.8376, 6.08377, 4.85748, 4.16908, 3.88557, 3.14086, 3.11306, 2.98297, 3.33859, 2.04182, 2.32861, 2.75164, 2.29621},
3382  {46.1357, 38.8426, 36.6976, 32.0038, 29.6956, 23.4889, 22.725, 19.779, 17.5173, 14.7043, 11.9171, 10.7871, 9.06671, 8.23658, 7.41977, 6.46988, 4.93792, 4.55465, 4.20588, 3.82236, 3.62993, 2.83949, 2.95902, 1.99063, 2.37545, 2.28563, 2.49407, 2.52411}
3383  },
3384  {
3385  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3386  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3387  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3388  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3389  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3390  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3391  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3392  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3393  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
3394  {-417.629, -218.804, -63.1122, -34.5828, -10.68, 2.75084, 8.65719, 11.6155, 13.6253, 12.1802, 12.5535, 10.8028, 9.48349, 9.38468, 7.83699, 6.99092, 5.30562, 4.20316, 4.41177, 4.52123, 3.31882, 3.91104, 3.77374, 4.04567, 2.35974, 2.35145, 2.96747, 1.98381},
3395  {-311.688, -93.8205, -32.57, -6.85071, 6.45113, 7.97528, 13.5012, 15.2368, 16.5485, 14.4764, 12.181, 11.4092, 10.3418, 9.29414, 9.04287, 7.72862, 7.46558, 5.20657, 5.19399, 5.61358, 3.9523, 3.20885, 3.29034, 2.82267, 2.91734, 2.38053, 2.44655, 2.36229},
3396  {-161.948, -37.0248, -4.60393, 8.56983, 13.4828, 19.0043, 18.3378, 20.0726, 18.3394, 16.8149, 14.4702, 12.2298, 10.8159, 10.422, 8.29546, 7.70715, 6.26524, 5.70706, 5.26374, 4.44881, 4.80797, 3.24519, 3.09801, 2.73461, 3.34774, 2.88844, 2.34626, 2.76387},
3397  {-72.1648, -12.5057, 16.9112, 23.5819, 20.6731, 21.814, 22.9407, 19.6563, 19.1021, 16.9339, 15.2842, 12.4743, 11.0013, 10.0748, 8.91402, 7.27224, 6.15542, 5.23092, 4.49629, 4.25791, 3.79059, 3.70681, 3.31756, 2.62265, 3.45895, 2.19926, 2.15639, 2.7466},
3398  {2.3118, 20.9883, 24.9015, 32.366, 32.2839, 29.3505, 24.8013, 23.3821, 21.1815, 18.3139, 15.0436, 13.3637, 11.4887, 9.84427, 9.51972, 8.22026, 6.8517, 5.85862, 4.95269, 4.5885, 3.45462, 4.03355, 3.70984, 4.04694, 2.46266, 2.50179, 3.23813, 2.46999},
3399  {30.7084, 40.046, 40.956, 39.7092, 36.4134, 28.415, 28.5543, 24.9346, 23.1865, 19.4968, 15.3536, 14.0231, 12.0163, 10.7639, 9.82125, 8.36598, 6.4058, 5.88361, 5.13249, 4.51457, 4.9171, 3.87165, 3.58904, 2.85879, 2.53645, 2.81466, 2.72057, 3.18122}
3400  }
3401  };
3402 
3403 
3404 const float CSCTFPtMethods::sigmafr0[4][15][28] =
3405  {
3406  {
3407  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3408  {1, 1, 68.1251, 119.334, 71.9663, 47.2033, 34.4095, 24.1757, 16.9244, 14.21, 10.0848, 8.28308, 7.49682, 7.5252, 5.7771, 5.67435, 5.05335, 4.03134, 3.38787, 3.49897, 3.27399, 4.38102, 3.45241, 3.57641, 2.74292, 2.58754, 2.82597, 3.02336},
3409  {1, 1, 11.2171, 180.376, 95.0863, 45.7334, 36.6456, 24.597, 16.4907, 15.2826, 12.8201, 10.0379, 9.45291, 8.26339, 6.8289, 6.16693, 4.85849, 12.1669, 4.04481, 3.76596, 3.33028, 3.0602, 2.82333, 6.10153, 3.8862, 4.83151, 2.99154, 2.87868},
3410  {1, 1, 214.489, 145.179, 39.8377, 32.3612, 24.983, 17.3205, 14.5435, 11.4038, 8.99103, 7.65653, 7.03634, 6.16057, 5.35274, 6.44559, 4.63289, 3.48617, 3.32857, 3.25099, 3.28055, 3.0714, 2.58432, 2.61066, 2.99103, 2.85844, 3.29465, 3.06768},
3411  {1, 2.17804, 246.204, 73.5985, 34.3397, 27.9956, 21.2206, 15.6835, 13.173, 11.1528, 9.00959, 7.51184, 6.55643, 5.56576, 5.47, 5.43772, 4.62926, 3.37312, 3.33237, 3.59496, 2.67392, 2.79043, 3.0637, 2.60009, 3.12616, 3.22084, 3.22784, 3.62183},
3412  {1, 178.428, 54.0668, 50.639, 30.0806, 26.6723, 18.1088, 16.2946, 12.3097, 11.9197, 9.76022, 7.47657, 6.44478, 6.32831, 5.64725, 4.21032, 3.63872, 4.3096, 3.11977, 3.49313, 2.69508, 3.80622, 2.76555, 2.70835, 3.1522, 2.74832, 2.77429, 2.80946},
3413  {33.7724, 127.162, 36.813, 83.7352, 41.0058, 28.8809, 20.1964, 14.9477, 14.2195, 11.9145, 11.2838, 7.30775, 8.05355, 7.12897, 7.13998, 4.44287, 3.82913, 15.6533, 3.1924, 3.68782, 2.97145, 3.00122, 2.60565, 2.86444, 2.25535, 2.47471, 2.46453, 2.92709},
3414  {63.4126, 78.9729, 63.6832, 49.5751, 46.9535, 42.779, 36.3592, 31.1099, 23.5997, 21.204, 16.8426, 16.7998, 13.9811, 12.5411, 10.5253, 13.362, 8.63362, 6.77557, 6.6511, 14.3978, 8.47154, 10.8782, 7.15581, 5.88536, 8.01652, 12.0409, 6.80079, 9.92202},
3415  {323.587, 130.398, 76.2136, 54.71, 44.2662, 43.958, 40.2353, 30.8886, 26.9603, 24.2783, 17.5786, 15.1457, 15.3706, 13.0387, 11.2397, 11.2636, 7.87718, 10.9021, 7.53715, 8.17749, 6.93261, 17.4198, 4.87206, 5.71908, 6.3438, 9.25595, 11.7572, 6.81276},
3416  {125.501, 86.1114, 78.0846, 56.6407, 42.2517, 43.9773, 35.4223, 31.0062, 26.3755, 22.5857, 20.9842, 17.2539, 14.0029, 12.3455, 11.3132, 13.3154, 8.60381, 8.35366, 6.2164, 6.76689, 6.09496, 5.59811, 8.17196, 13.4268, 6.02764, 5.67951, 6.71677, 8.7109},
3417  {95.8611, 75.3004, 65.2466, 53.2109, 47.9975, 40.0404, 31.958, 30.4257, 27.7305, 25.0529, 17.6693, 15.6535, 14.5663, 11.3021, 11.7363, 9.1677, 11.1228, 7.84579, 6.95689, 7.39175, 8.02251, 6.36251, 6.64162, 7.60716, 5.71819, 8.15284, 6.63158, 6.81248},
3418  {274.776, 85.1791, 62.5779, 52.2624, 45.0418, 38.0133, 33.6947, 28.865, 27.5922, 23.043, 19.7818, 17.272, 15.9374, 13.4469, 11.8057, 11.5461, 10.9067, 11.0404, 8.0732, 10.2156, 10.7966, 8.75473, 8.18003, 20.2431, 14.1253, 10.6056, 14.0389, 18.7348},
3419  {81.1599, 81.4479, 69.629, 57.8942, 56.9895, 32.849, 30.7188, 31.1175, 24.4425, 21.2399, 15.3807, 20.083, 15.6961, 11.7551, 15.4998, 10.336, 95.0491, 69.3807, 9.18389, 8.17367, 17.986, 10.1523, 12.8713, 12.5117, 13.3384, 6.82039, 12.7359, 26.3342},
3420  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3421  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
3422  },
3423  {
3424  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3425  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3426  {1, 1, 1, 0.213802, 110.043, 85.1732, 83.1862, 87.3043, 33.7737, 23.0747, 63.8276, 15.2175, 27.868, 12.6669, 17.1469, 50.731, 9.70449, 64.2886, 5.70197, 81.6955, 9.51219, 7.0649, 8.84973, 5.99795, 83.4597, 4.3645, 5.86517, 5.28726},
3427  {1, 1, 89.5159, 113.68, 91.6962, 77.6377, 52.0035, 33.9964, 28.4368, 21.664, 16.7158, 14.0169, 11.7753, 10.7078, 10.2129, 8.69455, 6.96017, 5.68121, 5.38927, 4.89401, 4.95697, 4.9322, 3.65117, 3.25201, 3.55802, 4.72346, 3.40616, 3.19724},
3428  {1, 3.65071, 167.809, 118.577, 79.2131, 62.7322, 46.6568, 31.0416, 24.7606, 20.1139, 16.3567, 13.9311, 12.4083, 10.2061, 9.70802, 8.58308, 7.39169, 5.60975, 6.81223, 4.72617, 4.29868, 4.44951, 4.15795, 3.71309, 3.85244, 3.71955, 3.6068, 4.61138},
3429  {1, 143.017, 114.974, 80.9475, 65.7978, 58.7383, 33.663, 40.7059, 22.9966, 20.6734, 16.5455, 13.8755, 12.3398, 12.2325, 10.2504, 7.705, 7.19971, 9.05019, 6.72006, 5.09801, 5.65375, 4.89251, 3.85383, 5.25096, 3.76551, 3.68784, 3.63877, 3.53497},
3430  {70.5084, 123.26, 74.5829, 51.9644, 47.7945, 42.5259, 34.1665, 27.4405, 24.5782, 19.7956, 16.2276, 12.4019, 11.9461, 10.1038, 9.26924, 8.81221, 6.45554, 6.13044, 6.01564, 5.92054, 5.00283, 3.79784, 4.43493, 3.38759, 3.06995, 3.1821, 3.37826, 3.39659},
3431  {1217.05, 201.975, 85.5261, 68.5927, 66.6012, 60.9998, 53.6427, 48.6075, 31.7341, 27.728, 24.6024, 22.4018, 15.7743, 17.3198, 13.7922, 11.3731, 10.1716, 9.0544, 8.50262, 14.2347, 6.81764, 8.60334, 9.55753, 7.02884, 6.94412, 5.80156, 7.08978, 8.2179},
3432  {236.657, 244.966, 112.373, 78.8199, 67.8974, 66.5142, 55.7426, 43.4698, 42.7562, 31.9949, 26.366, 19.1138, 19.3944, 20.4525, 14.6857, 12.3677, 10.7261, 12.6794, 8.76137, 12.16, 6.75415, 10.3045, 7.91157, 7.42901, 6.80211, 6.86062, 12.349, 10.4941},
3433  {256.896, 159.681, 100.055, 84.1373, 62.7979, 61.6566, 48.3574, 40.4226, 36.0741, 31.4883, 25.5559, 23.7784, 17.1684, 15.61, 16.1722, 15.1145, 10.1943, 10.9007, 10.3402, 7.54424, 7.313, 7.46722, 7.17864, 7.46414, 6.75702, 5.89486, 6.40948, 8.48163},
3434  {257.504, 109.282, 103.033, 75.7751, 76.7721, 58.9241, 48.3108, 41.4407, 39.4679, 33.6439, 24.8537, 21.3699, 18.0898, 16.9161, 15.6342, 14.1586, 12.3244, 9.18785, 10.0318, 9.4986, 8.91357, 11.6174, 18.6761, 9.52487, 6.88319, 13.6627, 9.81258, 14.6774},
3435  {169.185, 113.197, 93.9858, 75.5571, 65.2782, 52.2785, 48.0109, 40.0461, 36.6626, 30.353, 25.1063, 20.7361, 18.792, 16.958, 14.6701, 13.3799, 13.4912, 9.98326, 9.89502, 12.4285, 10.494, 11.2434, 8.54232, 16.3106, 14.0824, 8.59128, 9.7086, 12.0069},
3436  {101.76, 119.944, 74.5477, 78.6374, 68.0419, 54.84, 40.7916, 44.7959, 40.9335, 33.4932, 22.5979, 24.5248, 18.5872, 15.2081, 15.6492, 10.4524, 103.653, 66.9111, 17.5435, 8.81236, 15.4697, 9.49944, 13.4211, 9.33341, 11.9129, 8.46251, 14.9693, 10.4711},
3437  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3438  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
3439  },
3440  {
3441  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3442  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3443  {1, 1, 0.0011042, 86.9352, 75.2624, 52.2464, 32.6091, 20.4476, 13.4983, 11.2587, 8.80378, 7.11921, 7.0583, 5.68815, 6.20848, 4.34774, 5.45062, 5.4936, 3.43077, 3.33174, 3.04659, 3.8793, 3.11545, 2.97137, 3.92529, 4.57437, 3.88033, 3.82278},
3444  {1, 1, 94.2962, 87.2608, 63.6413, 44.4619, 27.8601, 17.1249, 14.5496, 10.6136, 8.1779, 7.43897, 6.44223, 6.07491, 5.71576, 5.80677, 4.30508, 3.71754, 3.50651, 3.11441, 4.01509, 3.70184, 3.27363, 3.07401, 3.82936, 3.74439, 2.99869, 3.56942},
3445  {1, 0.263982, 119.77, 91.7619, 57.8566, 34.9019, 22.023, 15.941, 12.22, 10.1212, 8.34203, 7.32761, 6.13686, 5.47659, 5.31636, 4.7639, 4.16051, 3.54105, 4.07639, 3.09476, 3.04313, 3.29353, 3.70995, 2.79947, 3.94107, 3.99605, 3.96949, 4.88657},
3446  {1, 113.045, 93.6573, 70.568, 31.0566, 20.7173, 16.8019, 14.8641, 11.9429, 9.96161, 7.87523, 6.7396, 6.18326, 6.16374, 5.35523, 3.95939, 4.04783, 4.28055, 3.89598, 3.4252, 3.42753, 3.48459, 3.23155, 3.19143, 4.02432, 3.06929, 3.42948, 4.04161},
3447  {0.447397, 105.302, 76.6619, 31.9851, 22.4774, 19.276, 17.7676, 14.1965, 10.8272, 10.1416, 7.62459, 6.60822, 7.21393, 6.00029, 5.10027, 4.89418, 4.42892, 3.707, 6.06502, 3.37472, 3.49089, 3.46185, 6.33915, 3.3654, 3.30022, 3.36655, 4.87842, 8.07411},
3448  {152.08, 112.801, 47.3659, 30.5674, 29.0316, 22.3914, 19.0157, 16.3471, 15.5554, 12.4982, 10.4935, 8.23282, 7.40488, 9.06651, 6.97499, 9.66855, 8.35921, 5.45921, 5.68328, 10.6461, 4.65396, 7.5477, 7.11417, 6.02132, 6.79497, 8.21492, 10.5221, 11.7369},
3449  {177.146, 109.73, 53.3379, 32.4922, 30.5016, 25.9712, 22.9064, 19.6453, 17.4685, 14.9279, 10.9822, 10.9065, 9.22264, 9.52341, 9.23665, 6.50148, 6.20737, 8.19635, 7.38019, 9.07186, 9.22787, 11.9975, 15.4328, 12.1685, 11.2679, 11.0456, 16.8556, 15.203},
3450  {175.465, 100.985, 56.7871, 37.5513, 26.3367, 23.6775, 19.3572, 17.3464, 16.3425, 14.2809, 11.4196, 10.1502, 9.45509, 8.55837, 7.929, 7.75422, 6.25516, 6.98075, 7.95726, 5.58602, 8.52811, 8.94976, 8.61675, 7.52203, 5.86654, 9.30841, 7.95983, 9.16498},
3451  {161.557, 60.9083, 42.7418, 32.6681, 28.4483, 23.0831, 20.1852, 16.6503, 14.3982, 12.9469, 10.4914, 10.6759, 9.05724, 8.21126, 8.46837, 9.92698, 7.71569, 6.7965, 8.87549, 6.0765, 7.88892, 7.22201, 8.13346, 8.88474, 11.2008, 10.4921, 8.34342, 10.0337},
3452  {91.718, 50.2739, 37.883, 32.7472, 24.9764, 23.3509, 19.3552, 17.9669, 15.5899, 13.3535, 11.3664, 9.74592, 9.19961, 7.76436, 7.74193, 7.18929, 6.40388, 8.6005, 6.88462, 10.8404, 8.72774, 7.46032, 9.74493, 9.06091, 8.81877, 8.50823, 11.0295, 15.2753},
3453  {72.4631, 47.222, 36.2746, 28.8782, 23.553, 24.7348, 18.7544, 18.437, 15.7064, 12.729, 11.0992, 10.1026, 8.40556, 7.96116, 8.09745, 6.41375, 6.51981, 6.63771, 8.47843, 7.66306, 8.95359, 10.2608, 8.83699, 8.72077, 10.7087, 7.27377, 13.6, 14.2494},
3454  {60.2763, 42.7498, 34.6623, 26.385, 25.4651, 21.7019, 19.0647, 15.8816, 14.2646, 12.5554, 10.8672, 9.43677, 8.44181, 7.59876, 7.81844, 6.11722, 8.516, 8.94197, 6.97098, 7.17371, 6.68615, 7.24368, 6.23672, 11.2857, 8.77067, 8.43604, 11.2313, 10.0775},
3455  {57.866, 41.2832, 33.3179, 27.3557, 23.8832, 20.5696, 17.8125, 15.5961, 14.4456, 12.0961, 9.76464, 9.34033, 7.73885, 7.76005, 7.44823, 7.55132, 7.13281, 5.57387, 6.08408, 6.99443, 6.28186, 6.48654, 6.99549, 5.28173, 7.53539, 6.92374, 8.62903, 12.2492}
3456  },
3457  {
3458  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3459  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3460  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3461  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3462  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3463  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3464  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3465  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3466  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3467  {269.647, 190.711, 88.8938, 70.894, 47.3717, 44.6289, 33.3552, 28.7616, 25.0309, 21.272, 17.9555, 14.7229, 14.5419, 11.7788, 13.5958, 10.8726, 7.98782, 10.1873, 8.92189, 9.84992, 7.93519, 10.66, 9.14665, 13.8959, 8.38381, 7.987, 15.2538, 11.2857},
3468  {235.853, 115.945, 85.6699, 62.6811, 48.3218, 46.3742, 32.8133, 27.8045, 23.4159, 20.5056, 16.0387, 15.324, 13.2206, 11.3368, 10.4307, 9.27748, 11.3733, 8.87551, 8.35207, 11.7778, 8.82057, 8.90268, 8.28021, 8.06991, 12.7847, 7.80538, 8.15497, 8.97099},
3469  {181.416, 96.6442, 73.0719, 54.7106, 42.9821, 37.438, 32.203, 27.5413, 22.6414, 19.4503, 17.7779, 14.5369, 13.0979, 13.7771, 10.4079, 9.45385, 13.0227, 8.50182, 7.17865, 10.9919, 15.7864, 8.76431, 8.51823, 5.92961, 9.18247, 10.5971, 9.3721, 15.4988},
3470  {139.491, 86.7362, 64.8339, 51.7932, 40.4078, 39.1071, 30.9617, 26.4873, 25.263, 20.3243, 16.5092, 14.4393, 12.175, 11.956, 10.8174, 9.08607, 7.18855, 10.0054, 11.1779, 7.12204, 9.47445, 6.93119, 8.93181, 8.61144, 11.0501, 6.27241, 9.95825, 14.4856},
3471  {106.141, 75.9413, 58.0517, 48.534, 42.3919, 33.3155, 31.0908, 25.4912, 22.6406, 19.3109, 16.0106, 14.2606, 12.5963, 11.0191, 11.1065, 9.09784, 9.07922, 8.92264, 7.34917, 7.71939, 7.41573, 8.73107, 6.43358, 17.2136, 9.26347, 8.55656, 10.9458, 12.6821},
3472  {100.082, 76.8702, 55.0846, 48.6279, 40.6142, 34.3238, 29.3724, 26.3273, 25.1794, 19.6749, 16.3483, 14.3196, 12.3469, 11.8695, 11.738, 9.54169, 10.3128, 8.97389, 7.22238, 8.43618, 9.03957, 7.8851, 9.20503, 8.0428, 8.81155, 10.3738, 10.7343, 18.0864}
3473  }
3474  };
3475 
3476 const float CSCTFPtMethods::sigmafr1[4][15][28] =
3477  {
3478  {
3479  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3480  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3481  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3482  {1, 1, 146.093, 91.0022, 59.1524, 33.1605, 28.0477, 17.4744, 15.5721, 11.7519, 9.35168, 7.7485, 7.04861, 6.47423, 5.73763, 5.09473, 4.08489, 3.39595, 4.04544, 2.96401, 3.63584, 3.1557, 3.00004, 3.18668, 3.41738, 2.71614, 2.82526, 3.70189},
3483  {1, 218.776, 145.244, 104.935, 64.8144, 29.6568, 23.4613, 19.0926, 14.8407, 10.6044, 9.43501, 7.74741, 6.91137, 6.22613, 5.72544, 5.2123, 4.24476, 3.74203, 3.31965, 3.40162, 3.74122, 2.96814, 3.12356, 2.69131, 3.2702, 3.08497, 3.38834, 2.81568},
3484  {1, 216.291, 89.0598, 61.8382, 26.9505, 21.5635, 19.7094, 17.3911, 12.8349, 12.6624, 9.67599, 7.38235, 6.67213, 6.85975, 5.63519, 4.96333, 5.1828, 3.76683, 3.47407, 3.5603, 4.18003, 2.75393, 3.24872, 2.69483, 3.18626, 3.0917, 2.9064, 3.49336},
3485  {74.8743, 114.685, 34.9506, 32.6917, 21.6367, 20.6803, 22.2436, 14.6578, 12.8293, 10.8414, 8.62706, 7.16602, 6.62353, 6.20931, 5.41574, 4.63619, 4.12341, 3.53772, 5.40106, 3.54274, 3.04711, 2.82168, 2.97043, 2.56215, 2.63581, 2.72855, 3.475, 2.40102},
3486  {171.647, 40.3668, 170.531, 57.8944, 49.7425, 45.0042, 40.4664, 35.8242, 31.2455, 28.1189, 21.2241, 17.9434, 14.4424, 15.5375, 14.4543, 11.4451, 11.2267, 9.18004, 8.39402, 12.0792, 5.76609, 6.72775, 8.85565, 8.75935, 6.70541, 6.8381, 9.55174, 8.56415},
3487  {1303.1, 108.27, 69.3932, 63.777, 57.8401, 52.0202, 42.5951, 33.2084, 28.6304, 27.9733, 20.1268, 18.8158, 17.0162, 13.475, 12.6629, 12.7418, 8.99252, 8.94672, 7.8758, 8.3772, 10.6977, 8.00381, 8.8381, 14.3496, 11.113, 8.4152, 9.00849, 13.7466},
3488  {160.859, 94.3386, 65.0202, 60.3475, 75.2043, 44.8816, 41.5634, 37.5275, 27.7923, 26.4016, 21.5374, 15.8813, 15.8779, 13.9959, 13.7772, 19.727, 11.742, 8.67518, 9.28799, 8.13627, 7.15515, 8.97133, 6.80429, 10.5999, 5.91254, 9.1128, 10.6201, 10.5506},
3489  {107.553, 88.8958, 66.3069, 65.4056, 48.5765, 45.1286, 40.6105, 32.3372, 26.121, 24.6533, 21.1985, 17.5026, 16.0065, 14.2815, 14.0509, 11.6923, 10.0067, 10.5004, 9.65113, 8.2566, 9.49279, 7.25941, 9.84551, 9.10625, 13.5828, 7.42791, 9.7761, 13.2592},
3490  {621.575, 81.157, 78.9902, 50.6043, 51.6995, 55.1314, 40.8115, 35.0876, 26.3547, 27.1407, 22.0774, 18.4421, 15.9584, 16.8535, 14.1161, 12.7641, 15.5263, 11.1729, 9.03555, 12.459, 19.0917, 9.49799, 18.3356, 11.5246, 14.7979, 11.849, 14.7263, 17.7757},
3491  {1, 1, 1, 1, 1, 32.849, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.0542444, 13.3384, 1, 1, 0.248621},
3492  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3493  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
3494  },
3495  {
3496  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3497  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3498  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3499  {1, 1, 0.296438, 118.62, 89.405, 52.2476, 45.2939, 28.7616, 25.5548, 18.0656, 13.6928, 11.9697, 10.3611, 10.2854, 7.90347, 6.39297, 5.44473, 5.61793, 5.27675, 4.76144, 3.86958, 3.78657, 3.56005, 3.94048, 3.79113, 3.08763, 3.15283, 3.15847},
3500  {1, 0.14452, 190.349, 154.279, 86.5965, 82.5413, 34.8556, 31.0941, 21.5582, 16.6576, 14.6587, 11.7976, 10.7251, 8.74257, 8.03431, 6.05178, 6.15984, 5.17494, 4.89723, 4.20602, 4.38072, 3.50678, 3.58872, 3.36111, 4.08605, 3.61866, 3.4662, 3.78235},
3501  {1, 152.929, 136.244, 73.4085, 45.9132, 36.7447, 30.241, 27.8179, 20.674, 19.6962, 14.1128, 12.5882, 9.73802, 10.7205, 7.71969, 7.51919, 7.77108, 5.55116, 5.33028, 4.40788, 4.93005, 3.668, 3.55749, 3.69614, 3.82949, 5.04436, 3.26159, 4.26046},
3502  {140.472, 85.4204, 71.8176, 59.7741, 41.1711, 31.8045, 29.5324, 23.9129, 19.9144, 18.3415, 13.8572, 10.9475, 10.3783, 8.29955, 7.48321, 7.171, 7.00912, 5.36884, 6.52747, 3.98305, 4.04028, 3.61817, 3.21717, 3.59865, 3.14602, 3.12143, 3.07281, 2.69386},
3503  {237.788, 96.2055, 102.507, 72.5626, 75.5721, 55.7517, 51.4652, 44.584, 37.268, 33.9088, 25.8814, 21.9077, 17.3586, 14.6234, 14.7653, 11.7539, 12.3716, 11.6726, 8.48135, 6.99178, 7.1455, 8.09071, 7.52601, 8.58121, 6.96213, 7.95596, 6.81041, 5.66795},
3504  {294.913, 161.347, 102.319, 90.1594, 81.3222, 70.8996, 53.4479, 45.6466, 42.2802, 37.0224, 24.8388, 24.4679, 21.1667, 17.9857, 17.5664, 18.9734, 11.9997, 12.9781, 8.93737, 8.43556, 9.32775, 10.8702, 8.67542, 7.73195, 8.2574, 8.75741, 7.36091, 13.6306},
3505  {180.057, 184.24, 82.2473, 86.6705, 77.8282, 62.6743, 52.5831, 46.0168, 37.4869, 33.5461, 26.8174, 20.3363, 20.252, 18.0727, 15.3164, 12.4784, 11.096, 9.67415, 10.3632, 9.03916, 9.16117, 10.5277, 8.66486, 7.16234, 6.57559, 10.5885, 9.67653, 10.1513},
3506  {251.671, 111.919, 94.9753, 90.3654, 68.4575, 62.0251, 55.3331, 45.2581, 34.2676, 33.7628, 26.9416, 23.3815, 19.7758, 18.5239, 19.3473, 18.9695, 12.0358, 12.3383, 10.8987, 8.83571, 10.1066, 9.69945, 10.316, 9.06576, 11.4875, 9.98941, 9.84754, 11.6985},
3507  {232.68, 109.947, 100.398, 74.9348, 66.4849, 60.1203, 51.4264, 44.3605, 37.0279, 34.0509, 27.488, 23.3947, 20.7529, 19.3877, 17.5345, 14.8416, 13.6832, 16.4535, 10.019, 13.0386, 10.8694, 9.31296, 10.1387, 9.91914, 10.8276, 8.53285, 12.0437, 13.6714},
3508  {1, 1, 1, 1, 1, 54.84, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.0233561, 0.0280901, 1, 1, 0.226361},
3509  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3510  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
3511  },
3512  {
3513  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3514  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3515  {1, 1, 0.0011042, 86.9352, 75.2624, 52.2464, 32.6091, 20.4476, 13.4983, 11.2587, 8.80378, 7.11921, 7.0583, 5.68815, 6.20848, 4.34774, 5.45062, 5.4936, 3.43077, 3.33174, 3.04659, 3.8793, 3.11545, 2.97137, 3.92529, 4.57437, 3.88033, 3.82278},
3516  {1, 1, 94.2962, 87.2608, 63.6413, 44.4619, 27.8601, 17.1249, 14.5496, 10.6136, 8.1779, 7.43897, 6.44223, 6.07491, 5.71576, 5.80677, 4.30508, 3.71754, 3.50651, 3.11441, 4.01509, 3.70184, 3.27363, 3.07401, 3.82936, 3.74439, 2.99869, 3.56942},
3517  {1, 0.263982, 119.77, 91.7619, 57.8566, 34.9019, 22.023, 15.941, 12.22, 10.1212, 8.34203, 7.32761, 6.13686, 5.47659, 5.31636, 4.7639, 4.16051, 3.54105, 4.07639, 3.09476, 3.04313, 3.29353, 3.70995, 2.79947, 3.94107, 3.99605, 3.96949, 4.88657},
3518  {1, 113.045, 93.6573, 70.568, 31.0566, 20.7173, 16.8019, 14.8641, 11.9429, 9.96161, 7.87523, 6.7396, 6.18326, 6.16374, 5.35523, 3.95939, 4.04783, 4.28055, 3.89598, 3.4252, 3.42753, 3.48459, 3.23155, 3.19143, 4.02432, 3.06929, 3.42948, 4.04161},
3519  {0.447397, 105.302, 76.6619, 31.9851, 22.4774, 19.276, 17.7676, 14.1965, 10.8272, 10.1416, 7.62459, 6.60822, 7.21393, 6.00029, 5.10027, 4.89418, 4.42892, 3.707, 6.06502, 3.37472, 3.49089, 3.46185, 6.33915, 3.3654, 3.30022, 3.36655, 4.87842, 8.07411},
3520  {152.08, 112.801, 47.3659, 30.5674, 29.0316, 22.3914, 19.0157, 16.3471, 15.5554, 12.4982, 10.4935, 8.23282, 7.40488, 9.06651, 6.97499, 9.66855, 8.35921, 5.45921, 5.68328, 10.6461, 4.65396, 7.5477, 7.11417, 6.02132, 6.79497, 8.21492, 10.5221, 11.7369},
3521  {177.146, 109.73, 53.3379, 32.4922, 30.5016, 25.9712, 22.9064, 19.6453, 17.4685, 14.9279, 10.9822, 10.9065, 9.22264, 9.52341, 9.23665, 6.50148, 6.20737, 8.19635, 7.38019, 9.07186, 9.22787, 11.9975, 15.4328, 12.1685, 11.2679, 11.0456, 16.8556, 15.203},
3522  {175.465, 100.985, 56.7871, 37.5513, 26.3367, 23.6775, 19.3572, 17.3464, 16.3425, 14.2809, 11.4196, 10.1502, 9.45509, 8.55837, 7.929, 7.75422, 6.25516, 6.98075, 7.95726, 5.58602, 8.52811, 8.94976, 8.61675, 7.52203, 5.86654, 9.30841, 7.95983, 9.16498},
3523  {161.557, 60.9083, 42.7418, 32.6681, 28.4483, 23.0831, 20.1852, 16.6503, 14.3982, 12.9469, 10.4914, 10.6759, 9.05724, 8.21126, 8.46837, 9.92698, 7.71569, 6.7965, 8.87549, 6.0765, 7.88892, 7.22201, 8.13346, 8.88474, 11.2008, 10.4921, 8.34342, 10.0337},
3524  {91.718, 50.2739, 37.883, 32.7472, 24.9764, 23.3509, 19.3552, 17.9669, 15.5899, 13.3535, 11.3664, 9.74592, 9.19961, 7.76436, 7.74193, 7.18929, 6.40388, 8.6005, 6.88462, 10.8404, 8.72774, 7.46032, 9.74493, 9.06091, 8.81877, 8.50823, 11.0295, 15.2753},
3525  {72.4631, 47.222, 36.2746, 28.8782, 23.553, 24.7348, 18.7544, 18.437, 15.7064, 12.729, 11.0992, 10.1026, 8.40556, 7.96116, 8.09745, 6.41375, 6.51981, 6.63771, 8.47843, 7.66306, 8.95359, 10.2608, 8.83699, 8.72077, 10.7087, 7.27377, 13.6, 14.2494},
3526  {60.2763, 42.7498, 34.6623, 26.385, 25.4651, 21.7019, 19.0647, 15.8816, 14.2646, 12.5554, 10.8672, 9.43677, 8.44181, 7.59876, 7.81844, 6.11722, 8.516, 8.94197, 6.97098, 7.17371, 6.68615, 7.24368, 6.23672, 11.2857, 8.77067, 8.43604, 11.2313, 10.0775},
3527  {57.866, 41.2832, 33.3179, 27.3557, 23.8832, 20.5696, 17.8125, 15.5961, 14.4456, 12.0961, 9.76464, 9.34033, 7.73885, 7.76005, 7.44823, 7.55132, 7.13281, 5.57387, 6.08408, 6.99443, 6.28186, 6.48654, 6.99549, 5.28173, 7.53539, 6.92374, 8.62903, 12.2492}
3528  },
3529  {
3530  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3531  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3532  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3533  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3534  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3535  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3536  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3537  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3538  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
3539  {269.647, 190.711, 88.8938, 70.894, 47.3717, 44.6289, 33.3552, 28.7616, 25.0309, 21.272, 17.9555, 14.7229, 14.5419, 11.7788, 13.5958, 10.8726, 7.98782, 10.1873, 8.92189, 9.84992, 7.93519, 10.66, 9.14665, 13.8959, 8.38381, 7.987, 15.2538, 11.2857},
3540  {235.853, 115.945, 85.6699, 62.6811, 48.3218, 46.3742, 32.8133, 27.8045, 23.4159, 20.5056, 16.0387, 15.324, 13.2206, 11.3368, 10.4307, 9.27748, 11.3733, 8.87551, 8.35207, 11.7778, 8.82057, 8.90268, 8.28021, 8.06991, 12.7847, 7.80538, 8.15497, 8.97099},
3541  {181.416, 96.6442, 73.0719, 54.7106, 42.9821, 37.438, 32.203, 27.5413, 22.6414, 19.4503, 17.7779, 14.5369, 13.0979, 13.7771, 10.4079, 9.45385, 13.0227, 8.50182, 7.17865, 10.9919, 15.7864, 8.76431, 8.51823, 5.92961, 9.18247, 10.5971, 9.3721, 15.4988},
3542  {139.491, 86.7362, 64.8339, 51.7932, 40.4078, 39.1071, 30.9617, 26.4873, 25.263, 20.3243, 16.5092, 14.4393, 12.175, 11.956, 10.8174, 9.08607, 7.18855, 10.0054, 11.1779, 7.12204, 9.47445, 6.93119, 8.93181, 8.61144, 11.0501, 6.27241, 9.95825, 14.4856},
3543  {106.141, 75.9413, 58.0517, 48.534, 42.3919, 33.3155, 31.0908, 25.4912, 22.6406, 19.3109, 16.0106, 14.2606, 12.5963, 11.0191, 11.1065, 9.09784, 9.07922, 8.92264, 7.34917, 7.71939, 7.41573, 8.73107, 6.43358, 17.2136, 9.26347, 8.55656, 10.9458, 12.6821},
3544  {100.082, 76.8702, 55.0846, 48.6279, 40.6142, 34.3238, 29.3724, 26.3273, 25.1794, 19.6749, 16.3483, 14.3196, 12.3469, 11.8695, 11.738, 9.54169, 10.3128, 8.97389, 7.22238, 8.43618, 9.03957, 7.8851, 9.20503, 8.0428, 8.81155, 10.3738, 10.7343, 18.0864}
3545  }
3546  };
3547 
3548 float CSCTFPtMethods::Pt2StnChiSq(int type, float eta, int dphi, int fr) const
3549 {
3550 
3551  float diff, min, ptmin, ptmax;
3552  float mypt = 0.0;
3553 
3554  int dphicopy = dphi;
3555 
3556  if (type<0 || type>3)
3557  {
3558 // std::cout << "CSCTFPtMethods: illegal track type for Chi-square method" << std::endl;
3559  edm::LogError("CSCTFPtMethods::Pt2StnChiSq()")<<"Illegal track type for Chi-square method";
3560  return 0.;
3561  }
3562 
3563  // flip sign
3564  //dphi = -dphi;
3565 
3566  // force positive
3567  eta = fabs(eta);
3568 
3569  //determine which eta bin muon falls into
3570  int i = 0;
3571  for(i = 0; i < 15; i++)
3572  {
3573  if (eta >= etabins[i] && eta < etabins[i+1]) break;
3574  }
3575  if ( i == 15 )
3576  {
3577 // std::cout<<" CSCTFPtMethods: muon not within any eta range"<< std::endl;
3578  edm::LogWarning("CSCTFPtMethods::Pt2StnChiSq()")<<"Muon not within any eta range";
3579  if (eta<etabins[0])
3580  {
3581  eta = etabins[0];
3582  i = 0;
3583  }
3584  else if (eta>=etabins[15])
3585  {
3586  eta = etabins[15];
3587  i = 15;
3588  }
3589  else
3590  exit(0);
3591  }
3592 
3593  bool bCallOldMethod = false;
3594 
3595  if (fr == 0)
3596  {
3597  //advance past bins in array w/ default values
3598  //default is: dphifr0[x][y][z] = -1, sigmafr0[x][y][z] = 1
3599  int j = 0; //start from 1st column, j=0
3600  while (dphifr0[type][i][j] == -1 && sigmafr0[type][i][j] == 1 && j != 28) j++;
3601  if ( j == 28 )
3602  {
3603 // std::cout <<" CSCTFPtMethods: every entry in row is default"<< std::endl;
3604  edm::LogInfo("CSCTFPtMethods::Pt2StnChiSq()")<<"Every entry in row is default";
3605  // exit(0); //normal termination
3606  bCallOldMethod = true;
3607  }
3608 
3609  if (!bCallOldMethod)
3610  {
3611  //set min, ptmin, ptmax to first bin
3612  //in row that is not default
3613  min = fabs(dphi - dphifr0[type][i][j]) / sigmafr0[type][i][j];
3614  ptmin = ptbins[j];
3615  ptmax = ptbins[j+1];
3616 
3617  //loop through all pt bins. assign pt of bin w/ least diff
3618  //do not include default bins in calculation
3619  for ( int k = j; k < 28; k++ )
3620  {
3621  if(dphifr0[type][i][k] != -1 || sigmafr0[type][i][k] != 1)
3622  {
3623  diff = fabs(dphi - dphifr0[type][i][k]) / sigmafr0[type][i][k];
3624  if (diff < min)
3625  {
3626  min = diff;
3627  ptmin = ptbins[k];
3628  ptmax = ptbins[k+1];
3629  }
3630  }
3631  }
3632  mypt = (ptmin + ptmax)/2;
3633  }
3634  }
3635 
3636  if (fr == 1)
3637  {
3638  //advance past bins in array w/ default values
3639  //default is: dphifr1[x][y][z] = -1, sigmafr1[x][y][z] = 1
3640  int j = 0; //start from 1st column, j=0
3641 
3642  while (dphifr1[type][i][j] == -1 && sigmafr1[type][i][j] == 1 && j != 28) j++;
3643 
3644  if ( j == 28 )
3645  {
3646 // std::cout <<" CSCTFPtMethods: every entry in row is default"<< std::endl;
3647  edm::LogInfo("CSCTFPtMethods::Pt2StnChiSq()")<<"Every entry in row is default";
3648  // exit(0); //normal termination
3649  bCallOldMethod = true;
3650  }
3651 
3652  if (!bCallOldMethod)
3653  {
3654  //set min, ptmin, ptmax to first bin
3655  //in row that is not default
3656  min = fabs(dphi - dphifr1[type][i][j]) / sigmafr1[type][i][j];
3657  ptmin = ptbins[j];
3658  ptmax = ptbins[j+1];
3659 
3660  //loop through all pt bins. assign pt of bin w/ least diff
3661  //do not include default bins in calculation
3662  for ( int k = j; k < 28; k++ )
3663  {
3664  if(dphifr1[type][i][k] != -1 || sigmafr1[type][i][k] != 1)
3665  {
3666  diff = fabs(dphi - dphifr1[type][i][k]) / sigmafr1[type][i][k];
3667  if (diff < min)
3668  {
3669  min = diff;
3670  ptmin = ptbins[k];
3671  ptmax = ptbins[k+1];
3672  }
3673  }
3674  }
3675  mypt = (ptmin + ptmax)/2;
3676  }
3677  }
3678 
3679  // hybrid approach:
3680  if (bCallOldMethod)
3681  {
3682  float dphiR = static_cast<float>(dphicopy) / static_cast<float>(1<<12) * CSCTFConstants::SECTOR_RAD;
3683  // must change type definition, just add one
3684  mypt = Pt2Stn(type+1, eta, dphiR, fr);
3685  }
3686 
3687  return mypt;
3688 }
3689 
3690 
3691 float CSCTFPtMethods::Pt3StnChiSq(int type, float eta, int dphi1, int dphi2, int fr) const
3692 {
3693 
3694  float diff, min, ptmin, ptmax;
3695  float mypt = 0.0;
3696 
3697  int dphi1copy = dphi1, dphi2copy = dphi2;
3698 
3699  if (type<4 || type>5)
3700  {
3701 // std::cout << "PtParams: illegal track type for Chi-square method" << std::endl;
3702  edm::LogError("CSCTFPtMethods::Pt3StnChiSq()")<<"Illegal track type for Chi-square method";
3703  return 0.;
3704  }
3705 
3706  // flip sign
3707  //dphi1 = -dphi1;
3708  //dphi2 = -dphi2;
3709 
3710 
3711  //determine which eta bin muon falls into
3712  int i = 0;
3713  for( i = 0; i < 15; i++ )
3714  {
3715  if ( eta >= etabins[i] && eta < etabins[i + 1] ) break;
3716  }
3717  if ( i == 15 )
3718  {
3719  //std::cout<<"muon not within any eta range";
3720  edm::LogWarning("CSCTFPtMethods::Pt3StnChiSq()")<<"Muon not within any eta range";
3721  if (eta<etabins[0])
3722  {
3723  eta = etabins[0];
3724  i = 0;
3725  }
3726  else if (eta>=etabins[15])
3727  {
3728  eta = etabins[15];
3729  i = 15;
3730  }
3731  else
3732  exit(0);
3733  }
3734 
3735  bool bCallOldMethod = false;
3736 
3737  if(abs(dphi2) < 32) dphi2 = 0; //dphi2=dphi23 or dphi24
3738 
3739  //sta1-2-3, dphi1=dphi12, dphi2=dphi23
3740  if (type == 4)
3741  {
3742  if (fr == 0)
3743  {
3744  //advance past bins in array w/ default values
3745  //default is: dphifr0[x][y][z] = -1, sigmafr0[x][y][z] = 1
3746  int j = 0; //start from 1st column, j = 0
3747  while ( ((dphifr0[0][i][j] == -1 && sigmafr0[0][i][j] == 1) || (dphifr0[2][i][j] == -1 && sigmafr0[2][i][j] == 1)) && j != 28 ) j++;
3748  if ( j == 28 )
3749  {
3750 // std::cout<<" L1MuCSCPtParams: every entry in row is default"<<std::endl;
3751  edm::LogInfo("CSCTFPtMethods::Pt3StnChiSq()")<<"Every entry in row is default";
3752  // exit(0); //normal termination
3753  bCallOldMethod = true;
3754  }
3755 
3756  if (!bCallOldMethod)
3757  {
3758  //set min, ptmin, ptmax to first bin
3759  //in row that is not default
3760  min = 1.5625 * ( (pow((dphi1 - dphifr0[0][i][j]),2) / pow(sigmafr0[0][i][j],2)) + (pow((dphi2 - dphifr0[2][i][j]),2) / pow(sigmafr0[2][i][j],2)) - (1.2 * (dphi1 - dphifr0[0][i][j]) * (dphi2 - dphifr0[2][i][j]) / (sigmafr0[0][i][j] * sigmafr0[2][i][j])) ); //calculate chi square
3761  ptmin = ptbins[j];
3762  ptmax = ptbins[j + 1];
3763 
3764  //loop through all pt bins. assign pt of bin w/ least diff
3765  //do not include default bins in calculation
3766  for ( int k = j; k < 28; k++ )
3767  {
3768  if( (dphifr0[0][i][k] != -1 || sigmafr0[0][i][k] != 1) && (dphifr0[2][i][k] != -1 || sigmafr0[2][i][k] != 1) )
3769  {
3770  diff = 1.5625 * ( (pow((dphi1 - dphifr0[0][i][k]),2) / pow(sigmafr0[0][i][k],2)) + (pow((dphi2 - dphifr0[2][i][k]),2) / pow(sigmafr0[2][i][k],2)) - (1.2 * (dphi1 - dphifr0[0][i][k]) * (dphi2 - dphifr0[2][i][k]) / (sigmafr0[0][i][k] * sigmafr0[2][i][k])) );
3771  if (diff < min)
3772  {
3773  min = diff;
3774  ptmin = ptbins[k];
3775  ptmax = ptbins[k + 1];
3776  }
3777  }
3778  }
3779  mypt = (ptmin + ptmax) / 2;
3780  }
3781  }
3782 
3783  if (fr == 1)
3784  {
3785  //advance past bins in array w/ default values
3786  //default is: dphifr1[x][y][z] = -1, sigmafr1[x][y][z] = 1
3787  int j = 0; //start from 1st column, j = 0
3788  while ( ((dphifr1[0][i][j] == -1 && sigmafr1[0][i][j] == 1) || (dphifr1[2][i][j] == -1 && sigmafr1[2][i][j] == 1)) && j != 28 ) j++;
3789  if ( j == 28 )
3790  {
3791 // std::cout<<" L1MuCSCPtParams: every entry in row is default"<<std::endl;
3792  edm::LogInfo("CSCTFPtMethods::Pt3StnChiSq()")<<"Every entry in row is default";
3793  // exit(0); //normal termination
3794  bCallOldMethod = true;
3795  }
3796 
3797  if (!bCallOldMethod)
3798  {
3799  //set min, ptmin, ptmax to first bin
3800  //in row that is not default
3801  min = 1.5625 * ( (pow((dphi1 - dphifr1[0][i][j]),2) / pow(sigmafr1[0][i][j],2)) + (pow((dphi2 - dphifr1[2][i][j]),2) / pow(sigmafr1[2][i][j],2)) - (1.2 * (dphi1 - dphifr1[0][i][j]) * (dphi2 - dphifr1[2][i][j]) / (sigmafr1[0][i][j] * sigmafr1[2][i][j])) ); //calculate chi square
3802  ptmin = ptbins[j];
3803  ptmax = ptbins[j + 1];
3804 
3805  //loop through all pt bins. assign pt of bin w/ least diff
3806  //do not include default bins in calculation
3807  for ( int k = j; k < 28; k++ )
3808  {
3809  if( (dphifr1[0][i][k] != -1 || sigmafr1[0][i][k] != 1) && (dphifr1[2][i][k] != -1 || sigmafr1[2][i][k] != 1) )
3810  {
3811  diff = 1.5625 * ( (pow((dphi1 - dphifr1[0][i][k]),2) / pow(sigmafr1[0][i][k],2)) + (pow((dphi2 - dphifr1[2][i][k]),2) / pow(sigmafr1[2][i][k],2)) - (1.2 * (dphi1 - dphifr1[0][i][k]) * (dphi2 - dphifr1[2][i][k]) / (sigmafr1[0][i][k] * sigmafr1[2][i][k])) );
3812  if (diff < min)
3813  {
3814  min = diff;
3815  ptmin = ptbins[k];
3816  ptmax = ptbins[k + 1];
3817  }
3818  }
3819  mypt = (ptmin + ptmax) / 2;
3820  }
3821  }
3822  }
3823  }
3824 
3825  //sta1-2-4, dphi1=dphi12, dphi2=dphi24
3826  if (type == 5)
3827  {
3828 
3829  if (fr == 0)
3830  {
3831  //advance past bins in array w/ default values
3832  //default is: dphifr0[x][y][z] = -1, sigmafr0[x][y][z] = 1
3833  int j = 0; //start from 1st column, j = 0
3834  while ( ((dphifr0[0][i][j] == -1 && sigmafr0[0][i][j] == 1) || (dphifr0[3][i][j] == -1 && sigmafr0[3][i][j] == 1)) && j != 28 ) j++;
3835  if ( j == 28 )
3836  {
3837 // std::cout<<" L1MuCSCPtParams: every entry in row is default"<<std::endl;
3838  edm::LogInfo("CSCTFPtMethods::Pt3StnChiSq()")<<"Every entry in row is default";
3839  // exit(0); //normal termination
3840  bCallOldMethod = true;
3841  }
3842 
3843  if (!bCallOldMethod)
3844  {
3845  //set min, ptmin, ptmax to first bin
3846  //in row that is not default
3847  min = 1.5625 * ( (pow((dphi1 - dphifr0[0][i][j]),2) / pow(sigmafr0[0][i][j],2)) + (pow((dphi2 - dphifr0[3][i][j]),2) / pow(sigmafr0[3][i][j],2)) - (1.2 * (dphi1 - dphifr0[0][i][j]) * (dphi2 - dphifr0[3][i][j]) / (sigmafr0[0][i][j] * sigmafr0[3][i][j])) ); //calculate chi square
3848  ptmin = ptbins[j];
3849  ptmax = ptbins[j + 1];
3850 
3851  //loop through all pt bins. assign pt of bin w/ least diff
3852  //do not include default bins in calculation
3853  for ( int k = j; k < 28; k++ )
3854  {
3855  if( (dphifr0[0][i][k] != -1 || sigmafr0[0][i][k] != 1) && (dphifr0[3][i][k] != -1 || sigmafr0[3][i][k] != 1) )
3856  {
3857  diff = 1.5625 * ( (pow((dphi1 - dphifr0[0][i][k]),2) / pow(sigmafr0[0][i][k],2)) + (pow((dphi2 - dphifr0[3][i][k]),2) / pow(sigmafr0[3][i][k],2)) - (1.2 * (dphi1 - dphifr0[0][i][k]) * (dphi2 - dphifr0[3][i][k]) / (sigmafr0[0][i][k] * sigmafr0[3][i][k])) );
3858  if (diff < min)
3859  {
3860  min = diff;
3861  ptmin = ptbins[k];
3862  ptmax = ptbins[k + 1];
3863  }
3864  }
3865  }
3866  mypt = (ptmin + ptmax) / 2;
3867  }
3868  }
3869 
3870  if (fr == 1)
3871  {
3872  //advance past bins in array w/ default values
3873  //default is: dphifr1[x][y][z] = -1, sigmafr1[x][y][z] = 1
3874  int j = 0; //start from 1st column, j = 0
3875  while ( ((dphifr1[0][i][j] == -1 && sigmafr1[0][i][j] == 1) || (dphifr1[3][i][j] == -1 && sigmafr1[3][i][j] == 1)) && j != 28 ) j++;
3876  if ( j == 28 )
3877  {
3878 // std::cout<<" L1MuCSCPtParams: every entry in row is default"<<std::endl;
3879  edm::LogInfo("CSCTFPtMethods::Pt3StnChiSq()")<<"Every entry in row is default";
3880  // exit(0); //normal termination
3881  bCallOldMethod = true;
3882  }
3883 
3884  if (!bCallOldMethod)
3885  {
3886  //set min, ptmin, ptmax to first bin
3887  //in row that is not default
3888  min = 1.5625 * ( (pow((dphi1 - dphifr1[0][i][j]),2) / pow(sigmafr1[0][i][j],2)) + (pow((dphi2 - dphifr1[3][i][j]),2) / pow(sigmafr1[3][i][j],2)) - (1.2 * (dphi1 - dphifr1[0][i][j]) * (dphi2 - dphifr1[3][i][j]) / (sigmafr1[0][i][j] * sigmafr1[3][i][j])) ); //calculate chi square
3889  ptmin = ptbins[j];
3890  ptmax = ptbins[j + 1];
3891 
3892  //loop through all pt bins. assign pt of bin w/ least diff
3893  //do not include default bins in calculation
3894  for ( int k = j; k < 28; k++ )
3895  {
3896  if( (dphifr1[0][i][k] != -1 || sigmafr1[0][i][k] != 1) && (dphifr1[3][i][k] != -1 || sigmafr1[3][i][k] != 1) )
3897  {
3898  diff = 1.5625 * ( (pow((dphi1 - dphifr1[0][i][k]),2) / pow(sigmafr1[0][i][k],2)) + (pow((dphi2 - dphifr1[3][i][k]),2) / pow(sigmafr1[3][i][k],2)) - (1.2 * (dphi1 - dphifr1[0][i][k]) * (dphi2 - dphifr1[3][i][k]) / (sigmafr1[0][i][k] * sigmafr1[3][i][k])) );
3899  if (diff < min)
3900  {
3901  min = diff;
3902  ptmin = ptbins[k];
3903  ptmax = ptbins[k + 1];
3904  }
3905  }
3906  }
3907  mypt = (ptmin + ptmax) / 2;
3908  }
3909  }
3910  }
3911 
3912  if (bCallOldMethod)
3913  {
3914  float dphi12R = (static_cast<float>(dphi1copy)) / static_cast<float>(1<<12) * CSCTFConstants::SECTOR_RAD;
3915  float dphi23R = (static_cast<float>(dphi2copy)) / static_cast<float>(1<<12) * CSCTFConstants::SECTOR_RAD;
3916  // change defintion of track type to old method
3917  mypt = Pt3Stn(type-3, eta, dphi12R, dphi23R, fr);
3918  }
3919  return mypt;
3920 
3921 }
3922 
3923 float CSCTFPtMethods::Pt2StnHybrid(int type, float eta, int dphi, int fr) const
3924 {
3925  float mypt = 0.0;
3926 
3927  mypt = Pt2StnChiSq(type, eta, dphi, fr);
3928  if(mypt >= 8.0)
3929  {
3930  float dphiR = static_cast<float>(dphi) / static_cast<float>(1<<12) * CSCTFConstants::SECTOR_RAD;
3931  mypt = Pt2Stn(type+1, eta, dphiR, fr);
3932  }
3933 
3934  return mypt;
3935 }
3936 
3937 float CSCTFPtMethods::Pt3StnHybrid(int type, float eta, int dphi1, int dphi2, int fr) const
3938 {
3939  float mypt = 0.0;
3940 
3941  mypt = Pt3StnChiSq(type, eta, dphi1, dphi2, fr);
3942  if(mypt >= 8.0)
3943  {
3944  float dphi12R = (static_cast<float>(dphi1)) / static_cast<float>(1<<12) * CSCTFConstants::SECTOR_RAD;
3945  float dphi23R = (static_cast<float>(dphi2)) / static_cast<float>(1<<12) * CSCTFConstants::SECTOR_RAD;
3946  // change defintion of track type to old method
3947  mypt = Pt3Stn(type-3, eta, dphi12R, dphi23R, fr);
3948  }
3949 
3950  return mypt;
3951 }
3952 
3953 bool CSCTFPtMethods::chargeValid(unsigned pT, unsigned quality, unsigned eta, unsigned method) const
3954 {
3955  bool result = false;
3956 
3957  switch(method)
3958  {
3959  case 1:
3960  break;
3961  case 2:
3962  break;
3963  case 3:
3964  if(quality != 1)
3965  {
3966  if(pT <= 19)
3967  {
3968  if(eta >=4 && eta <=9)
3969  result = true;
3970  }
3971  if(pT <= 18 && pT >= 10)
3972  {
3973  if(eta > 0 && eta < 4)
3974  result = true;
3975  }
3976  }
3977  };
3978 
3979  return result;
3980 }
3981 
3982 float CSCTFPtMethods::PtEff90(float pt, float eta, int mode) const
3983 {
3984  // set pT resolution
3985  float c;
3986  switch (mode)
3987  {
3988  // 3-stn with ME1
3989  case 2:
3990  case 3:
3991  case 4:
3992  // leave as 2 Stn for now:
3993  // if (eta < 2.0)
3994  // c = 0.2;
3995  // else
3996  // c = 0.2 + (eta-2.0)*0.5;
3997  // break;
3998  // 2-stn with ME1
3999  case 6:
4000  case 7:
4001  // c=(-.2999 * (eta*eta*eta) + 2.030 * (eta*eta) - 4.235 * eta + 3.024)+0.02;
4002  // Try just fixed value from fits to Pt turn-on curves
4003  c=0.3;
4004  break;
4005  // 2 or 3 stn without ME1
4006  case 5:
4007  case 8:
4008  case 9:
4009  c=(-2.484 * (eta*eta*eta) + 14.43 * (eta*eta) - 27.66 * eta + 18.47)*.72;
4010  break;
4011  case 10:
4012  c=2.0;
4013  break;
4014  // MB1 tracks
4015  case 11:
4016  case 12:
4017  case 13:
4018  case 14:
4019  case 15:
4020  c=0.3;
4021  break;
4022  default:
4023  c = 0.0;
4024  };
4025  // Calculation of 90% threshold from 50% one, assuming Gaussian resolution
4026  // 90% of Gaussian area extends to 1.28*sigma
4027  if (c>0.78) c = 0.78;
4028  // return pt/(1.0 - 1.28*c);
4029  // Let's go back to old empirical method:
4030  return pt*(1.0 + 1.28*c);
4031 }
static const double A_sig14Front[3][15]
const double Pi
type
Definition: HCALResponse.h:22
static double AB_mu12F[4][15]
bool chargeValid(unsigned Pt, unsigned Quality, unsigned Eta, unsigned method) const
static double AB_mu14FME11[4][15]
static double AB_mu12FME11[4][15]
int i
Definition: DBlmapReader.cc:9
static const float AkHighEta_Fit2[kME2andMB2][kMaxParameters]
static const double A_rho123RareCSCTF[5][15]
static double AB_mu51[4][15]
static double AB_sig14FnoME11[4][15]
static const double A_sig13Rare[3][15]
static double AB_sig12F[4][15]
static double AB_rho52B[5][15]
static double AB_rho134R[5][15]
float Pt3StnHybrid(int type, float eta, int dphi1, int dphi2, int fr) const
const L1MuScale * getPtScale() const
get the Pt scale
list step
Definition: launcher.py:15
static double AB_mu14R[4][15]
static double AB_mu34[4][15]
static double AB_sig14F[4][15]
static double AB_sig52[4][15]
static const double A_sig12Front[3][15]
static const float FRCorrHighEta[kME2andMB2][2]
Definition: DDAxes.h:10
virtual float getLowEdge(unsigned packed) const =0
get the low edge of bin represented by packed
static double AB_mu13F[4][15]
static double AB_sig12FnoME11[4][15]
#define abs(x)
Definition: mlp_lapack.h:159
static double AB_mu24[4][15]
float Pt2Stn2010(int type, float eta, float dphi, int fr=-1, int method=11) const
static const float dphifr1[4][15][28]
static double AB_sig14RME11[4][15]
#define min(a, b)
Definition: mlp_lapack.h:161
float Pt2StnChiSq(int type, float eta, int dphi, int fr) const
float Pt2Stn2011(int type, float eta, float dphi, int fr=-1, int method=11, int phiSign=2) const
static double AB_mu12RME11[4][15]
Exp< T >::type exp(const T &t)
Definition: Exp.h:22
float Pt3Stn2011(int type, float eta, float dphi1, float dphi2, int fr=-1, int method=11) const
static const float AkLowEta_Fit1[kME2andMB2][kMaxParameters]
static double AB_sig53[4][15]
T eta() const
static double AB_mu23[4][15]
static double AB_mu13FnoME11[4][15]
float Pt3StnChiSq(int type, float eta, int dphi1, int dphi2, int fr) const
static double AB_mu13RME11[4][15]
static const float BkLowEta_Fit2[kME2andMB2][kMaxParameters]
const L1MuTriggerPtScale * trigger_scale
static const float dphifr0[4][15][28]
static double AB_mu14RME11[4][15]
static double AB_sig13F[4][15]
static double AB_sig14RnoME11[4][15]
static const double A_sig34[3][15]
static const double A_sig53[3][15]
static double AB_mu13R[4][15]
static double AB_rho123F[5][15]
static const double A_mu53[4][15]
double Likelihood2_2011(double *phi12, double *par_m12, double *par_sig12, double *v) const
static const double A_mu24[4][15]
static const float AkHighEta_Fit1[kME2andMB2][kMaxParameters]
float Pt3Stn(int type, float eta, float dphi1, float dphi2, int fr=-1) const
static const float sigmafr0[4][15][28]
static double AB_mu52[4][15]
static double AB_mu12FnoME11[4][15]
static double AB_sig13FME11[4][15]
static const double A_sig23[3][15]
double Likelihood(double *phi12, double *phi23, double *par_m12, double *par_m23, double *par_sig12, double *par_sig23, double *par_rho, double *v) const
static const double A_rho134RareCSCTF[5][15]
static double AB_sig51[4][15]
static double AB_mu5[4][15]
static double AB_mu13FME11[4][15]
T sqrt(T t)
Definition: SSEVec.h:28
static const float BkHighEta_Fit2[kME2andMB2][kMaxParameters]
float Pt2StnHybrid(int type, float eta, int dphi, int fr) const
static double AB_rho53B[5][15]
tuple result
Definition: query.py:137
static const float kGlobalScaleFactor
static const double A_mu14Front[4][15]
float PtEff90(float pt, float eta, int mode) const
static double AB_rho234[5][15]
int j
Definition: DBlmapReader.cc:9
static double AB_mu12RnoME11[4][15]
static const double A_mu23[4][15]
static const double A_rho512[5][15]
DT correlation.
static double AB_sig12RnoME11[4][15]
static double AB_mu13RnoME11[4][15]
static double AB_sig34[4][15]
static const double A_sig14Rare[3][15]
static const double A_sig12Rare[3][15]
static double AB_rho124R[5][15]
float Pt3Stn2010(int type, float eta, float dphi1, float dphi2, int fr=-1, int method=11) const
static const double A_sig51[3][15]
static double AB_rho523[5][15]
static double AB_rho124F[5][15]
static double AB_sig5[4][15]
static const double A_rho523[5][15]
static const double A_mu52[4][15]
static double AB_sig24[4][15]
static double AB_sig12FME11[4][15]
int k[5][pyjets_maxn]
static const double A_mu13Front[4][15]
CSCTFPtMethods(const L1MuTriggerPtScale *ptScale=0)
static const double A_rho134FrontCSCTF[5][15]
double Likelihood2(double *phi12, double *par_m12, double *par_sig12, double *v) const
static double AB_sig14R[4][15]
static double AB_mu14F[4][15]
static double AB_sig12R[4][15]
static const double A_mu12Rare[4][15]
Log< T >::type log(const T &t)
Definition: Log.h:22
double Likelihood2011(double *phi12, double *phi23, double *par_m12, double *par_m23, double *par_sig12, double *par_sig23, double *par_rho, double *v) const
static const double A_mu13Rare[4][15]
static const double A_mu12Front[4][15]
static double AB_mu53[4][15]
static const double A_sig24[3][15]
static double AB_sig12RME11[4][15]
int mode
Definition: AMPTWrapper.h:139
static const float AkLowEta_Fit2[kME2andMB2][kMaxParameters]
static double AB_rho512[5][15]
static double AB_sig23[4][15]
static double AB_rho513[5][15]
static double AB_mu12R[4][15]
double ptmin
Definition: HydjetWrapper.h:86
static const double A_mu14Rare[4][15]
static const double A_rho234CSCTF[5][15]
static double AB_sig13FnoME11[4][15]
static const float FRCorrLowEta[kME2andMB2][2]
static const double A_sig13Front[3][15]
static const double A_mu51[4][15]
static double AB_mu14RnoME11[4][15]
static const double SECTOR_RAD
static const float ptbins[29]
static double AB_sig13RnoME11[4][15]
static const double A_rho123FrontCSCTF[5][15]
static double AB_rho51B[5][15]
tuple cout
Definition: gather_cfg.py:41
static double AB_sig14FME11[4][15]
Definition: mypt.h:4
static double AB_sig13RME11[4][15]
static const double A_rho124FrontCSCTF[5][15]
static const double A_sig52[3][15]
static const double A_rho513[5][15]
static const double A_rho124RareCSCTF[5][15]
float Pt2Stn(int type, float eta, float dphi, int fr=-1) const
static double AB_mu14FnoME11[4][15]
mathSSE::Vec4< T > v
static double AB_rho134F[5][15]
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:40
static const double A_mu34[4][15]
static double AB_rho123R[5][15]
static double AB_sig13R[4][15]
static const float sigmafr1[4][15][28]
static const float etabins[16]