43 cachedBrickNumber( 0 ),
44 cachedStringNumber( 0 ),
45 cachedByteNumber( 0 ) {
80 bool cacheFound =
false;
81 int cacheAge = 999999999;
82 std::map<int,counted_brick>::iterator cache_iter =
brickMap.begin();
83 std::map<int,counted_brick>::iterator cache_icfg =
brickMap.find( cfgId );
84 std::map<int,counted_brick>::iterator cache_iend =
brickMap.end();
85 if ( cache_icfg != cache_iend ) {
86 std::pair<const int,counted_brick>&
entry = *cache_icfg;
88 cacheAge = cBrick.first;
92 if ( cacheFound && !cacheAge )
return 0;
93 std::map<int,DTKeyedConfig*> ageMap;
94 while ( cache_iter != cache_iend ) {
95 std::pair<const int,counted_brick>&
entry = *cache_iter++;
97 int& brickAge = cBrick.first;
98 if ( brickAge < cacheAge ) brickAge++;
99 if ( entry.first == cfgId ) brickAge = 0;
100 ageMap.insert( std::pair<int,DTKeyedConfig*>(
104 if ( cacheFound )
return 0;
108 keyRecord.
get( klh );
111 if ( keyList == 0 )
return 999;
113 std::vector<unsigned long long> checkedKeys;
115 checkedKeys.push_back( cfgId );
116 bool brickFound =
false;
118 keyList->
load( checkedKeys );
120 if ( kBrick != 0 ) brickFound = ( kBrick->
getId() == cfgId );
126 brickMap.insert( std::pair<int,counted_brick>( cfgId, cBrick ) );
133 std::map<int,DTKeyedConfig*>::reverse_iterator iter = ageMap.rbegin();
138 int oldestId = oldestBrick->
getId();
155 std::vector<std::string>&
list ) {
163 std::vector<std::string>&
list ) {
165 get( keyRecord, cfgId,
obj );
166 if ( obj == 0 )
return;
169 while ( d_iter != d_iend ) list.push_back( *d_iter++ );
172 while ( l_iter != l_iend )
getData( keyRecord, *l_iter++, list );
178 std::cout <<
"DTConfigPluginHandler::purge "
183 std::map<int,counted_brick>::const_iterator iter =
brickMap.begin();
184 std::map<int,counted_brick>::const_iterator iend =
brickMap.end();
185 while ( iter != iend ) {
186 delete iter->second.second;
std::map< int, counted_brick > brickMap
static int maxStringNumber
void load(std::vector< unsigned long long > const &keys)
std::pair< int, const DTKeyedConfig * > counted_brick
virtual int get(const edm::EventSetup &context, int cfgId, const DTKeyedConfig *&obj)
get content
data_iterator dataBegin() const
link_iterator linkBegin() const
tuple obj
Example code starts here #.
link_iterator linkEnd() const
std::pair< std::string, MonitorElement * > entry
static void build()
build static object
void get(HolderT &iHolder) const
T const * get(int n) const
std::vector< int >::const_iterator link_iterator
void purge()
purge db copy
virtual ~DTConfigPluginHandler()
virtual void getData(const edm::EventSetup &context, int cfgId, std::vector< std::string > &list)
static int maxBrickNumber
T const * product() const
std::vector< std::string >::const_iterator data_iterator
static DTConfigAbstractHandler * instance
tuple size
Write out results.
data_iterator dataEnd() const
How EventSelector::AcceptEvent() decides whether to accept an event for output otherwise it is excluding the probing of A single or multiple positive and the trigger will pass if any such matching triggers are PASS or EXCEPTION[A criterion thatmatches no triggers at all is detected and causes a throw.] A single negative with an expectation of appropriate bit checking in the decision and the trigger will pass if any such matching triggers are FAIL or EXCEPTION A wildcarded negative criterion that matches more than one trigger in the trigger list("!*","!HLTx*"if it matches 2 triggers or more) will accept the event if all the matching triggers are FAIL.It will reject the event if any of the triggers are PASS or EXCEPTION(this matches the behavior of"!*"before the partial wildcard feature was incorporated).Triggers which are in the READY state are completely ignored.(READY should never be returned since the trigger paths have been run