CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
List of all members | Public Types | Public Member Functions | Private Member Functions | Private Attributes
CSCSegAlgoST Class Reference

#include <CSCSegAlgoST.h>

Inheritance diagram for CSCSegAlgoST:
CSCSegmentAlgorithm

Public Types

typedef std::deque< bool > BoolContainer
 
typedef std::vector< const
CSCRecHit2D * > 
ChamberHitContainer
 Typedefs. More...
 
typedef std::vector
< std::vector< const
CSCRecHit2D * > > 
Segments
 

Public Member Functions

std::vector< CSCSegmentbuildSegments (ChamberHitContainer rechits)
 
std::vector< CSCSegmentbuildSegments2 (ChamberHitContainer rechits)
 
std::vector< std::vector
< const CSCRecHit2D * > > 
chainHits (const CSCChamber *aChamber, ChamberHitContainer &rechits)
 
std::vector< std::vector
< const CSCRecHit2D * > > 
clusterHits (const CSCChamber *aChamber, ChamberHitContainer &rechits)
 
 CSCSegAlgoST (const edm::ParameterSet &ps)
 Constructor. More...
 
std::vector< CSCSegmentprune_bad_hits (const CSCChamber *aChamber, std::vector< CSCSegment > &segments)
 
std::vector< CSCSegmentrun (const CSCChamber *aChamber, ChamberHitContainer rechits)
 
virtual ~CSCSegAlgoST ()
 Destructor. More...
 
- Public Member Functions inherited from CSCSegmentAlgorithm
 CSCSegmentAlgorithm (const edm::ParameterSet &)
 Constructor. More...
 
virtual std::vector< CSCSegmentrun (const CSCChamber *chamber, std::vector< const CSCRecHit2D * > rechits)=0
 
virtual ~CSCSegmentAlgorithm ()
 Destructor. More...
 

Private Member Functions

AlgebraicSymMatrix calculateError (void) const
 
void ChooseSegments (void)
 
void ChooseSegments2 (int best_seg)
 
void ChooseSegments2a (std::vector< ChamberHitContainer > &best_segments, int best_seg)
 
void ChooseSegments3 (int best_seg)
 
void ChooseSegments3 (std::vector< ChamberHitContainer > &best_segments, std::vector< float > &best_weight, int best_seg)
 
void correctTheCovMatrix (CLHEP::HepMatrix &IC)
 
void correctTheCovX (void)
 
CLHEP::HepMatrix derivativeMatrix (void) const
 
void doSlopesAndChi2 (void)
 
void fillChiSquared (void)
 
void fillLocalDirection (void)
 
void findDuplicates (std::vector< CSCSegment > &segments)
 
void fitSlopes (void)
 
void flipErrors (AlgebraicSymMatrix &) const
 
bool isGoodToMerge (bool isME11a, ChamberHitContainer &newChain, ChamberHitContainer &oldChain)
 
double theWeight (double coordinate_1, double coordinate_2, double coordinate_3, float layer_1, float layer_2, float layer_3)
 Utility functions. More...
 
AlgebraicSymMatrix weightMatrix (void) const
 

Private Attributes

float a_yweightPenaltyThreshold [5][5]
 
double BPMinImprovement
 
bool BrutePruning
 
double chi2Norm_2D_
 
double chi2Norm_3D_
 Chi^2 normalization for the corrected fit. More...
 
std::vector< ChamberHitContainerchosen_Psegments
 
std::vector< float > chosen_weight_A
 
double condSeed1_
 Correct the error matrix for the condition number. More...
 
double condSeed2_
 
bool correctCov_
 Correct the Error Matrix. More...
 
double covAnyNumber_
 Allow to use any number for covariance for all RecHits. More...
 
bool covToAnyNumber_
 The correction parameters. More...
 
bool covToAnyNumberAll_
 Allow to use any number for covariance (by hand) More...
 
std::vector< float > curv_A
 
std::vector< float > curv_noL1_A
 
std::vector< float > curv_noL2_A
 
std::vector< float > curv_noL3_A
 
std::vector< float > curv_noL4_A
 
std::vector< float > curv_noL5_A
 
std::vector< float > curv_noL6_A
 
double curvePenalty
 
double curvePenaltyThreshold
 
bool debug
 
double dXclusBoxMax
 
double dYclusBoxMax
 
std::vector< double > e_Cxx
 
Segments GoodSegments
 
double hitDropLimit4Hits
 
double hitDropLimit5Hits
 
double hitDropLimit6Hits
 
unsigned maxContrIndex
 Chi^2 normalization for the initial fit. More...
 
int maxRecHitsInCluster
 
int minHitsPerSegment
 
const std::string myName
 
bool onlyBestSegment
 
ChamberHitContainer PAhits_onLayer [6]
 
bool passCondNumber
 The number to fource the Covariance. More...
 
bool passCondNumber_2
 Passage the condition number calculations. More...
 
bool preClustering
 
bool preClustering_useChaining
 
bool prePrun_
 The index of the worst x RecHit in Chi^2-X method. More...
 
double prePrunLimit_
 
double protoChi2
 
double protoChiUCorrection
 Allow to correct the error matrix. More...
 
LocalVector protoDirection
 
LocalPoint protoIntercept
 
double protoNDF
 
ChamberHitContainer protoSegment
 
float protoSlope_u
 
float protoSlope_v
 
bool Pruning
 
std::vector< ChamberHitContainerPsegments
 
ChamberHitContainer Psegments_hits
 
std::vector< ChamberHitContainerPsegments_noL1
 
std::vector< ChamberHitContainerPsegments_noL2
 
std::vector< ChamberHitContainerPsegments_noL3
 
std::vector< ChamberHitContainerPsegments_noL4
 
std::vector< ChamberHitContainerPsegments_noL5
 
std::vector< ChamberHitContainerPsegments_noL6
 
std::vector< ChamberHitContainerPsegments_noLx
 
CSCSegAlgoShoweringshowering_
 
const CSCChambertheChamber
 
bool useShowering
 
std::vector< float > weight_A
 
std::vector< float > weight_B
 
std::vector< float > weight_noL1_A
 
std::vector< float > weight_noL1_B
 
std::vector< float > weight_noL2_A
 
std::vector< float > weight_noL2_B
 
std::vector< float > weight_noL3_A
 
std::vector< float > weight_noL3_B
 
std::vector< float > weight_noL4_A
 
std::vector< float > weight_noL4_B
 
std::vector< float > weight_noL5_A
 
std::vector< float > weight_noL5_B
 
std::vector< float > weight_noL6_A
 
std::vector< float > weight_noL6_B
 
std::vector< float > weight_noLx_A
 
double yweightPenalty
 
double yweightPenaltyThreshold
 

Detailed Description

This algorithm is based on the Minimum Spanning Tree (ST) approach for building endcap muon track segments out of the rechit's in a CSCChamber.

A CSCSegment is a RecSegment4D, and is built from CSCRecHit2D objects, each of which is a RecHit2DLocalPos.

This builds segments consisting of at least 3 hits. It is allowed for segments to have a common (only one) rechit.

The program is under construction/testing.

Authors
S. Stoynev - NU I. Bloch - FNAL E. James - FNAL A. Sakharov - WSU (extensive revision to handle wierd segments)

Definition at line 33 of file CSCSegAlgoST.h.

Member Typedef Documentation

typedef std::deque<bool> CSCSegAlgoST::BoolContainer

Definition at line 42 of file CSCSegAlgoST.h.

typedef std::vector<const CSCRecHit2D*> CSCSegAlgoST::ChamberHitContainer

Typedefs.

Definition at line 40 of file CSCSegAlgoST.h.

typedef std::vector< std::vector<const CSCRecHit2D* > > CSCSegAlgoST::Segments

Definition at line 41 of file CSCSegAlgoST.h.

Constructor & Destructor Documentation

CSCSegAlgoST::CSCSegAlgoST ( const edm::ParameterSet ps)
explicit

Constructor.

Correct the Error Matrix

Definition at line 33 of file CSCSegAlgoST.cc.

References BPMinImprovement, BrutePruning, chi2Norm_2D_, chi2Norm_3D_, condSeed1_, condSeed2_, correctCov_, covAnyNumber_, covToAnyNumber_, covToAnyNumberAll_, curvePenalty, curvePenaltyThreshold, debug, dXclusBoxMax, dYclusBoxMax, edm::ParameterSet::getParameter(), edm::ParameterSet::getUntrackedParameter(), hitDropLimit4Hits, hitDropLimit5Hits, hitDropLimit6Hits, maxContrIndex, maxRecHitsInCluster, minHitsPerSegment, onlyBestSegment, passCondNumber, passCondNumber_2, preClustering, preClustering_useChaining, prePrun_, prePrunLimit_, protoChiUCorrection, protoNDF, Pruning, showering_, useShowering, yweightPenalty, and yweightPenaltyThreshold.

33  : CSCSegmentAlgorithm(ps), myName("CSCSegAlgoST") {
34 
35  debug = ps.getUntrackedParameter<bool>("CSCDebug");
36  // minLayersApart = ps.getParameter<int>("minLayersApart");
37  // nSigmaFromSegment = ps.getParameter<double>("nSigmaFromSegment");
38  minHitsPerSegment = ps.getParameter<int>("minHitsPerSegment");
39  // muonsPerChamberMax = ps.getParameter<int>("CSCSegmentPerChamberMax");
40  // chi2Max = ps.getParameter<double>("chi2Max");
41  dXclusBoxMax = ps.getParameter<double>("dXclusBoxMax");
42  dYclusBoxMax = ps.getParameter<double>("dYclusBoxMax");
43  preClustering = ps.getParameter<bool>("preClustering");
44  preClustering_useChaining = ps.getParameter<bool>("preClusteringUseChaining");
45  Pruning = ps.getParameter<bool>("Pruning");
46  BrutePruning = ps.getParameter<bool>("BrutePruning");
47  BPMinImprovement = ps.getParameter<double>("BPMinImprovement");
48  // maxRecHitsInCluster is the maximal number of hits in a precluster that is being processed
49  // This cut is intended to remove messy events. Currently nothing is returned if there are
50  // more that maxRecHitsInCluster hits. It could be useful to return an estimate of the
51  // cluster position, which is available.
52  maxRecHitsInCluster = ps.getParameter<int>("maxRecHitsInCluster");
53  onlyBestSegment = ps.getParameter<bool>("onlyBestSegment");
54 
55  hitDropLimit4Hits = ps.getParameter<double>("hitDropLimit4Hits");
56  hitDropLimit5Hits = ps.getParameter<double>("hitDropLimit5Hits");
57  hitDropLimit6Hits = ps.getParameter<double>("hitDropLimit6Hits");
58 
59  yweightPenaltyThreshold = ps.getParameter<double>("yweightPenaltyThreshold");
60  yweightPenalty = ps.getParameter<double>("yweightPenalty");
61 
62  curvePenaltyThreshold = ps.getParameter<double>("curvePenaltyThreshold");
63  curvePenalty = ps.getParameter<double>("curvePenalty");
64 
65  useShowering = ps.getParameter<bool>("useShowering");
66  showering_ = new CSCSegAlgoShowering( ps );
67  // std::cout<<"Constructor called..."<<std::endl;
69  correctCov_ = ps.getParameter<bool>("CorrectTheErrors");
70  chi2Norm_2D_ = ps.getParameter<double>("NormChi2Cut2D");
71  chi2Norm_3D_ = ps.getParameter<double>("NormChi2Cut3D");
72  prePrun_ = ps.getParameter<bool>("prePrun");
73  prePrunLimit_ = ps.getParameter<double>("prePrunLimit");
74  //
75  condSeed1_ = ps.getParameter<double>("SeedSmall");
76  condSeed2_ = ps.getParameter<double>("SeedBig");
77  covToAnyNumber_ = ps.getParameter<bool>("ForceCovariance");
78  covToAnyNumberAll_ = ps.getParameter<bool>("ForceCovarianceAll");
79  covAnyNumber_ = ps.getParameter<double>("Covariance");
80  passCondNumber=false;
81  passCondNumber_2=false;
83  maxContrIndex=0;
84  protoNDF = 1.;
85 
86 }
double yweightPenaltyThreshold
Definition: CSCSegAlgoST.h:190
T getParameter(std::string const &) const
double protoChiUCorrection
Allow to correct the error matrix.
Definition: CSCSegAlgoST.h:199
T getUntrackedParameter(std::string const &, T const &) const
const std::string myName
Definition: CSCSegAlgoST.h:116
bool preClustering_useChaining
Definition: CSCSegAlgoST.h:177
bool passCondNumber
The number to fource the Covariance.
Definition: CSCSegAlgoST.h:213
double dXclusBoxMax
Definition: CSCSegAlgoST.h:173
CSCSegmentAlgorithm(const edm::ParameterSet &)
Constructor.
double condSeed1_
Correct the error matrix for the condition number.
Definition: CSCSegAlgoST.h:209
double hitDropLimit4Hits
Definition: CSCSegAlgoST.h:184
CSCSegAlgoShowering * showering_
Definition: CSCSegAlgoST.h:195
double BPMinImprovement
Definition: CSCSegAlgoST.h:180
double covAnyNumber_
Allow to use any number for covariance for all RecHits.
Definition: CSCSegAlgoST.h:212
double curvePenaltyThreshold
Definition: CSCSegAlgoST.h:193
double protoNDF
Definition: CSCSegAlgoST.h:163
double hitDropLimit6Hits
Definition: CSCSegAlgoST.h:186
double chi2Norm_2D_
Definition: CSCSegAlgoST.h:201
unsigned maxContrIndex
Chi^2 normalization for the initial fit.
Definition: CSCSegAlgoST.h:203
bool onlyBestSegment
Definition: CSCSegAlgoST.h:181
bool passCondNumber_2
Passage the condition number calculations.
Definition: CSCSegAlgoST.h:214
bool correctCov_
Correct the Error Matrix.
Definition: CSCSegAlgoST.h:198
int minHitsPerSegment
Definition: CSCSegAlgoST.h:170
double dYclusBoxMax
Definition: CSCSegAlgoST.h:174
bool covToAnyNumberAll_
Allow to use any number for covariance (by hand)
Definition: CSCSegAlgoST.h:211
double curvePenalty
Definition: CSCSegAlgoST.h:194
bool prePrun_
The index of the worst x RecHit in Chi^2-X method.
Definition: CSCSegAlgoST.h:204
bool preClustering
Definition: CSCSegAlgoST.h:176
double yweightPenalty
Definition: CSCSegAlgoST.h:191
int maxRecHitsInCluster
Definition: CSCSegAlgoST.h:175
bool covToAnyNumber_
The correction parameters.
Definition: CSCSegAlgoST.h:210
double hitDropLimit5Hits
Definition: CSCSegAlgoST.h:185
double condSeed2_
Definition: CSCSegAlgoST.h:209
double chi2Norm_3D_
Chi^2 normalization for the corrected fit.
Definition: CSCSegAlgoST.h:202
double prePrunLimit_
Definition: CSCSegAlgoST.h:207
CSCSegAlgoST::~CSCSegAlgoST ( )
virtual

Destructor.

Definition at line 91 of file CSCSegAlgoST.cc.

References showering_.

91  {
92  delete showering_;
93 }
CSCSegAlgoShowering * showering_
Definition: CSCSegAlgoST.h:195

Member Function Documentation

std::vector< CSCSegment > CSCSegAlgoST::buildSegments ( ChamberHitContainer  rechits)

Build track segments in this chamber (this is where the actual segment-building algorithm hides.)

Definition at line 661 of file CSCSegAlgoST.cc.

References a_yweightPenaltyThreshold, calculateError(), CSCSegment::chi2(), chi2Norm_3D_, ChooseSegments2a(), ChooseSegments3(), chosen_Psegments, chosen_weight_A, correctCov_, curv_A, curv_noL1_A, curv_noL2_A, curv_noL3_A, curv_noL4_A, curv_noL5_A, curv_noL6_A, curvePenalty, curvePenaltyThreshold, doSlopesAndChi2(), end, fillLocalDirection(), flipErrors(), GoodSegments, hitDropLimit4Hits, hitDropLimit5Hits, hitDropLimit6Hits, i, LogDebug, maxContrIndex, maxRecHitsInCluster, minHitsPerSegment, CSCSegment::nRecHits(), onlyBestSegment, PAhits_onLayer, passCondNumber, passCondNumber_2, prePrun_, prePrunLimit_, protoChi2, protoChiUCorrection, protoDirection, protoIntercept, protoNDF, protoSegment, Psegments, Psegments_hits, Psegments_noL1, Psegments_noL2, Psegments_noL3, Psegments_noL4, Psegments_noL5, Psegments_noL6, Psegments_noLx, showering_, CSCSegAlgoShowering::showerSeg(), findQualityFiles::size, mathSSE::sqrt(), cond::rpcobtemp::temp, theChamber, theWeight(), useShowering, weight_A, weight_B, weight_noL1_A, weight_noL1_B, weight_noL2_A, weight_noL2_B, weight_noL3_A, weight_noL3_B, weight_noL4_A, weight_noL4_B, weight_noL5_A, weight_noL5_B, weight_noL6_A, weight_noL6_B, weight_noLx_A, x, detailsBasic3DVector::y, and yweightPenalty.

Referenced by run().

661  {
662 
663  // Clear buffer for segment vector
664  std::vector<CSCSegment> segmentInChamber;
665  segmentInChamber.clear(); // list of final segments
666 
667  // CSC Ring;
668  unsigned int thering = 999;
669  unsigned int thestation = 999;
670  unsigned int thecham = 999;
671 
672  std::vector<int> hits_onLayerNumber(6);
673 
674  unsigned int UpperLimit = maxRecHitsInCluster;
675  if (int(rechits.size()) < minHitsPerSegment) return segmentInChamber;
676 
677  for(int iarray = 0; iarray <6; ++iarray) { // magic number 6: number of layers in CSC chamber - not gonna change :)
678  PAhits_onLayer[iarray].clear();
679  hits_onLayerNumber[iarray] = 0;
680  }
681 
682  chosen_Psegments.clear();
683  chosen_weight_A.clear();
684 
685  Psegments.clear();
686  Psegments_noLx.clear();
687  Psegments_noL1.clear();
688  Psegments_noL2.clear();
689  Psegments_noL3.clear();
690  Psegments_noL4.clear();
691  Psegments_noL5.clear();
692  Psegments_noL6.clear();
693 
694  Psegments_hits.clear();
695 
696  weight_A.clear();
697  weight_noLx_A.clear();
698  weight_noL1_A.clear();
699  weight_noL2_A.clear();
700  weight_noL3_A.clear();
701  weight_noL4_A.clear();
702  weight_noL5_A.clear();
703  weight_noL6_A.clear();
704 
705  weight_B.clear();
706  weight_noL1_B.clear();
707  weight_noL2_B.clear();
708  weight_noL3_B.clear();
709  weight_noL4_B.clear();
710  weight_noL5_B.clear();
711  weight_noL6_B.clear();
712 
713  curv_A.clear();
714  curv_noL1_A.clear();
715  curv_noL2_A.clear();
716  curv_noL3_A.clear();
717  curv_noL4_A.clear();
718  curv_noL5_A.clear();
719  curv_noL6_A.clear();
720 
721  // definition of middle layer for n-hit segment
722  int midlayer_pointer[6] = {0,0,2,3,3,4};
723 
724  // int n_layers_missed_tot = 0;
725  int n_layers_occupied_tot = 0;
726  int n_layers_processed = 0;
727 
728  float min_weight_A = 99999.9;
729  float min_weight_noLx_A = 99999.9;
730 
731  float best_weight_B = -1.;
732  float best_weight_noLx_B = -1.;
733 
734  float best_curv_A = -1.;
735  float best_curv_noLx_A = -1.;
736 
737  int best_pseg = -1;
738  int best_noLx_pseg = -1;
739  int best_Layer_noLx = -1;
740 
741  //************************************************************************;
742  //*** Start segment building *****************************************;
743  //************************************************************************;
744 
745  // Determine how many layers with hits we have
746  // Fill all hits into the layer hit container:
747 
748  // Have 2 standard arrays: one giving the number of hits per layer.
749  // The other the corresponding hits.
750 
751  // Loop all available hits, count hits per layer and fill the hits into array by layer
752  for(size_t M = 0; M < rechits.size(); ++M) {
753  // add hits to array per layer and count hits per layer:
754  hits_onLayerNumber[ rechits[M]->cscDetId().layer()-1 ] += 1;
755  if(hits_onLayerNumber[ rechits[M]->cscDetId().layer()-1 ] == 1 ) n_layers_occupied_tot += 1;
756  // add hits to vector in array
757  PAhits_onLayer[rechits[M]->cscDetId().layer()-1] .push_back(rechits[M]);
758  }
759 
760  // We have now counted the hits per layer and filled pointers to the hits into an array
761 
762  int tothits = 0;
763  int maxhits = 0;
764  int nexthits = 0;
765  int maxlayer = -1;
766  int nextlayer = -1;
767 
768  for(size_t i = 0; i< hits_onLayerNumber.size(); ++i){
769  //std::cout<<"We have "<<hits_onLayerNumber[i]<<" hits on layer "<<i+1<<std::endl;
770  tothits += hits_onLayerNumber[i];
771  if (hits_onLayerNumber[i] > maxhits) {
772  nextlayer = maxlayer;
773  nexthits = maxhits;
774  maxlayer = i;
775  maxhits = hits_onLayerNumber[i];
776  }
777  else if (hits_onLayerNumber[i] > nexthits) {
778  nextlayer = i;
779  nexthits = hits_onLayerNumber[i];
780  }
781  }
782 
783 
784  if (tothits > (int)UpperLimit) {
785  if (n_layers_occupied_tot > 4) {
786  tothits = tothits - hits_onLayerNumber[maxlayer];
787  n_layers_occupied_tot = n_layers_occupied_tot - 1;
788  PAhits_onLayer[maxlayer].clear();
789  hits_onLayerNumber[maxlayer] = 0;
790  }
791  }
792 
793  if (tothits > (int)UpperLimit) {
794  if (n_layers_occupied_tot > 4) {
795  tothits = tothits - hits_onLayerNumber[nextlayer];
796  n_layers_occupied_tot = n_layers_occupied_tot - 1;
797  PAhits_onLayer[nextlayer].clear();
798  hits_onLayerNumber[nextlayer] = 0;
799  }
800  }
801 
802  if (tothits > (int)UpperLimit){
803 
804  //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
805  // Showering muon - returns nothing if chi2 == -1 (see comment in SegAlgoShowering)
806  //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
807  if (useShowering) {
808  CSCSegment segShower = showering_->showerSeg(theChamber, rechits);
809 
810  // Make sure have at least 3 hits...
811  if ( segShower.nRecHits() < 3 ) return segmentInChamber;
812  if ( segShower.chi2() == -1 ) return segmentInChamber;
813 
814  segmentInChamber.push_back(segShower);
815  return segmentInChamber;
816 
817  } else{
818  LogDebug("CSCSegment|CSC") <<"Number of rechits in the cluster/chamber > "<< UpperLimit<<
819  " ... Segment finding in the cluster/chamber canceled!";
820  // std::cout<<"Number of rechits in the cluster/chamber > "<< UpperLimit<<
821  // " ... Segment finding in the cluster/chamber canceled! "<<std::endl;
822  return segmentInChamber;
823  }
824  }
825 
826  // Find out which station, ring and chamber we are in
827  // Used to choose station/ring dependant y-weight cuts
828 
829  if( rechits.size() > 0 ) {
830  thering = rechits[0]->cscDetId().ring();
831  thestation = rechits[0]->cscDetId().station();
832  thecham = rechits[0]->cscDetId().chamber();
833  }
834 
835  // std::cout<<"We are in Station/ring/chamber: "<<thestation <<" "<< thering<<" "<< thecham<<std::endl;
836 
837  // Cut-off parameter - don't reconstruct segments with less than X hits
838  if( n_layers_occupied_tot < minHitsPerSegment ) {
839  return segmentInChamber;
840  }
841 
842  // Start building all possible hit combinations:
843 
844  // loop over the six chamber layers and form segment candidates from the available hits:
845 
846  for(int layer = 0; layer < 6; ++layer) {
847 
848  // *****************************************************************
849  // *** Set missed layer counter here (not currently implemented) ***
850  // *****************************************************************
851  // if( PAhits_onLayer[layer].size() == 0 ) {
852  // n_layers_missed_tot += 1;
853  // }
854 
855  if( PAhits_onLayer[layer].size() > 0 ) {
856  n_layers_processed += 1;
857  }
858 
859  // Save the size of the protosegment before hits were added on the current layer
860  int orig_number_of_psegs = Psegments.size();
861  int orig_number_of_noL1_psegs = Psegments_noL1.size();
862  int orig_number_of_noL2_psegs = Psegments_noL2.size();
863  int orig_number_of_noL3_psegs = Psegments_noL3.size();
864  int orig_number_of_noL4_psegs = Psegments_noL4.size();
865  int orig_number_of_noL5_psegs = Psegments_noL5.size();
866  int orig_number_of_noL6_psegs = Psegments_noL6.size();
867 
868  // loop over the hits on the layer and initiate protosegments or add hits to protosegments
869  for(int hit = 0; hit < int(PAhits_onLayer[layer].size()); ++hit) { // loop all hits on the Layer number "layer"
870 
871  // create protosegments from all hits on the first layer with hits
872  if( orig_number_of_psegs == 0 ) { // would be faster to turn this around - ask for "orig_number_of_psegs != 0"
873 
874  Psegments_hits.push_back(PAhits_onLayer[layer][hit]);
875 
876  Psegments.push_back(Psegments_hits);
877  Psegments_noL6.push_back(Psegments_hits);
878  Psegments_noL5.push_back(Psegments_hits);
879  Psegments_noL4.push_back(Psegments_hits);
880  Psegments_noL3.push_back(Psegments_hits);
881  Psegments_noL2.push_back(Psegments_hits);
882 
883  // Initialize weights corresponding to this segment for first hit (with 0)
884 
885  curv_A.push_back(0.0);
886  curv_noL6_A.push_back(0.0);
887  curv_noL5_A.push_back(0.0);
888  curv_noL4_A.push_back(0.0);
889  curv_noL3_A.push_back(0.0);
890  curv_noL2_A.push_back(0.0);
891 
892  weight_A.push_back(0.0);
893  weight_noL6_A.push_back(0.0);
894  weight_noL5_A.push_back(0.0);
895  weight_noL4_A.push_back(0.0);
896  weight_noL3_A.push_back(0.0);
897  weight_noL2_A.push_back(0.0);
898 
899  weight_B.push_back(0.0);
900  weight_noL6_B.push_back(0.0);
901  weight_noL5_B.push_back(0.0);
902  weight_noL4_B.push_back(0.0);
903  weight_noL3_B.push_back(0.0);
904  weight_noL2_B.push_back(0.0);
905 
906  // reset array for next hit on next layer
907  Psegments_hits .clear();
908  }
909  else {
910  if( orig_number_of_noL1_psegs == 0 ) {
911 
912  Psegments_hits.push_back(PAhits_onLayer[layer][hit]);
913 
914  Psegments_noL1.push_back(Psegments_hits);
915 
916  // Initialize weight corresponding to this segment for first hit (with 0)
917 
918  curv_noL1_A.push_back(0.0);
919 
920  weight_noL1_A.push_back(0.0);
921 
922  weight_noL1_B.push_back(0.0);
923 
924  // reset array for next hit on next layer
925  Psegments_hits .clear();
926 
927  }
928 
929  // loop over the protosegments and create a new protosegments for each hit-1 on this layer
930 
931  for( int pseg = 0; pseg < orig_number_of_psegs; ++pseg ) {
932 
933  int pseg_pos = (pseg)+((hit)*orig_number_of_psegs);
934  int pseg_noL1_pos = (pseg)+((hit)*orig_number_of_noL1_psegs);
935  int pseg_noL2_pos = (pseg)+((hit)*orig_number_of_noL2_psegs);
936  int pseg_noL3_pos = (pseg)+((hit)*orig_number_of_noL3_psegs);
937  int pseg_noL4_pos = (pseg)+((hit)*orig_number_of_noL4_psegs);
938  int pseg_noL5_pos = (pseg)+((hit)*orig_number_of_noL5_psegs);
939  int pseg_noL6_pos = (pseg)+((hit)*orig_number_of_noL6_psegs);
940 
941  // - Loop all psegs.
942  // - If not last hit, clone existing protosegments (PAhits_onLayer[layer].size()-1) times
943  // - then add the new hits
944 
945  if( ! (hit == int(PAhits_onLayer[layer].size()-1)) ) { // not the last hit - prepare (copy) new protosegments for the following hits
946  // clone psegs (to add next hits or last hit on layer):
947 
948  Psegments.push_back(Psegments[ pseg_pos ]);
949  if (n_layers_processed != 2 && pseg < orig_number_of_noL1_psegs) Psegments_noL1.push_back(Psegments_noL1[ pseg_noL1_pos ]);
950  if (n_layers_processed != 2 && pseg < orig_number_of_noL2_psegs) Psegments_noL2.push_back(Psegments_noL2[ pseg_noL2_pos ]);
951  if (n_layers_processed != 3 && pseg < orig_number_of_noL3_psegs) Psegments_noL3.push_back(Psegments_noL3[ pseg_noL3_pos ]);
952  if (n_layers_processed != 4 && pseg < orig_number_of_noL4_psegs) Psegments_noL4.push_back(Psegments_noL4[ pseg_noL4_pos ]);
953  if (n_layers_processed != 5 && pseg < orig_number_of_noL5_psegs) Psegments_noL5.push_back(Psegments_noL5[ pseg_noL5_pos ]);
954  if (n_layers_processed != 6 && pseg < orig_number_of_noL6_psegs) Psegments_noL6.push_back(Psegments_noL6[ pseg_noL6_pos ]);
955  // clone weight corresponding to this segment too
956  weight_A.push_back(weight_A[ pseg_pos ]);
957  if (n_layers_processed != 2 && pseg < orig_number_of_noL1_psegs) weight_noL1_A.push_back(weight_noL1_A[ pseg_noL1_pos ]);
958  if (n_layers_processed != 2 && pseg < orig_number_of_noL2_psegs) weight_noL2_A.push_back(weight_noL2_A[ pseg_noL2_pos ]);
959  if (n_layers_processed != 3 && pseg < orig_number_of_noL3_psegs) weight_noL3_A.push_back(weight_noL3_A[ pseg_noL3_pos ]);
960  if (n_layers_processed != 4 && pseg < orig_number_of_noL4_psegs) weight_noL4_A.push_back(weight_noL4_A[ pseg_noL4_pos ]);
961  if (n_layers_processed != 5 && pseg < orig_number_of_noL5_psegs) weight_noL5_A.push_back(weight_noL5_A[ pseg_noL5_pos ]);
962  if (n_layers_processed != 6 && pseg < orig_number_of_noL6_psegs) weight_noL6_A.push_back(weight_noL6_A[ pseg_noL6_pos ]);
963  // clone curvature variable corresponding to this segment too
964  curv_A.push_back(curv_A[ pseg_pos ]);
965  if (n_layers_processed != 2 && pseg < orig_number_of_noL1_psegs) curv_noL1_A.push_back(curv_noL1_A[ pseg_noL1_pos ]);
966  if (n_layers_processed != 2 && pseg < orig_number_of_noL2_psegs) curv_noL2_A.push_back(curv_noL2_A[ pseg_noL2_pos ]);
967  if (n_layers_processed != 3 && pseg < orig_number_of_noL3_psegs) curv_noL3_A.push_back(curv_noL3_A[ pseg_noL3_pos ]);
968  if (n_layers_processed != 4 && pseg < orig_number_of_noL4_psegs) curv_noL4_A.push_back(curv_noL4_A[ pseg_noL4_pos ]);
969  if (n_layers_processed != 5 && pseg < orig_number_of_noL5_psegs) curv_noL5_A.push_back(curv_noL5_A[ pseg_noL5_pos ]);
970  if (n_layers_processed != 6 && pseg < orig_number_of_noL6_psegs) curv_noL6_A.push_back(curv_noL6_A[ pseg_noL6_pos ]);
971  // clone "y"-weight corresponding to this segment too
972  weight_B.push_back(weight_B[ pseg_pos ]);
973  if (n_layers_processed != 2 && pseg < orig_number_of_noL1_psegs) weight_noL1_B.push_back(weight_noL1_B[ pseg_noL1_pos ]);
974  if (n_layers_processed != 2 && pseg < orig_number_of_noL2_psegs) weight_noL2_B.push_back(weight_noL2_B[ pseg_noL2_pos ]);
975  if (n_layers_processed != 3 && pseg < orig_number_of_noL3_psegs) weight_noL3_B.push_back(weight_noL3_B[ pseg_noL3_pos ]);
976  if (n_layers_processed != 4 && pseg < orig_number_of_noL4_psegs) weight_noL4_B.push_back(weight_noL4_B[ pseg_noL4_pos ]);
977  if (n_layers_processed != 5 && pseg < orig_number_of_noL5_psegs) weight_noL5_B.push_back(weight_noL5_B[ pseg_noL5_pos ]);
978  if (n_layers_processed != 6 && pseg < orig_number_of_noL6_psegs) weight_noL6_B.push_back(weight_noL6_B[ pseg_noL6_pos ]);
979  }
980  // add hits to original pseg:
981  Psegments[ pseg_pos ].push_back(PAhits_onLayer[ layer ][ hit ]);
982  if (n_layers_processed != 2 && pseg < orig_number_of_noL1_psegs) Psegments_noL1[ pseg_noL1_pos ].push_back(PAhits_onLayer[ layer ][ hit ]);
983  if (n_layers_processed != 2 && pseg < orig_number_of_noL2_psegs) Psegments_noL2[ pseg_noL2_pos ].push_back(PAhits_onLayer[ layer ][ hit ]);
984  if (n_layers_processed != 3 && pseg < orig_number_of_noL3_psegs) Psegments_noL3[ pseg_noL3_pos ].push_back(PAhits_onLayer[ layer ][ hit ]);
985  if (n_layers_processed != 4 && pseg < orig_number_of_noL4_psegs) Psegments_noL4[ pseg_noL4_pos ].push_back(PAhits_onLayer[ layer ][ hit ]);
986  if (n_layers_processed != 5 && pseg < orig_number_of_noL5_psegs) Psegments_noL5[ pseg_noL5_pos ].push_back(PAhits_onLayer[ layer ][ hit ]);
987  if (n_layers_processed != 6 && pseg < orig_number_of_noL6_psegs) Psegments_noL6[ pseg_noL6_pos ].push_back(PAhits_onLayer[ layer ][ hit ]);
988 
989  // calculate/update the weight (only for >2 hits on psegment):
990 
991  if( Psegments[ pseg_pos ].size() > 2 ) {
992 
993  // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits,
994  // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance)
995 
996  weight_A[ pseg_pos ] += theWeight(
997  (*(Psegments[ pseg_pos ].end()-1 ))->localPosition().x(),
998  (*(Psegments[ pseg_pos ].end()-2 ))->localPosition().x(),
999  (*(Psegments[ pseg_pos ].end()-3 ))->localPosition().x(),
1000  float((*(Psegments[ pseg_pos ].end()-1))->cscDetId().layer()),
1001  float((*(Psegments[ pseg_pos ].end()-2))->cscDetId().layer()),
1002  float((*(Psegments[ pseg_pos ].end()-3))->cscDetId().layer())
1003  );
1004 
1005  weight_B[ pseg_pos ] += theWeight(
1006  (*(Psegments[ pseg_pos ].end()-1 ))->localPosition().y(),
1007  (*(Psegments[ pseg_pos ].end()-2 ))->localPosition().y(),
1008  (*(Psegments[ pseg_pos ].end()-3 ))->localPosition().y(),
1009  float((*(Psegments[ pseg_pos ].end()-1))->cscDetId().layer()),
1010  float((*(Psegments[ pseg_pos ].end()-2))->cscDetId().layer()),
1011  float((*(Psegments[ pseg_pos ].end()-3))->cscDetId().layer())
1012  );
1013 
1014  // if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight
1015 
1016  if(int(Psegments[ pseg_pos ].size()) == n_layers_occupied_tot) {
1017 
1018  curv_A[ pseg_pos ] += theWeight(
1019  (*(Psegments[ pseg_pos ].end()-1 ))->localPosition().x(),
1020  (*(Psegments[ pseg_pos ].end()-midlayer_pointer[n_layers_occupied_tot-1] ))->localPosition().x(),
1021  (*(Psegments[ pseg_pos ].end()-n_layers_occupied_tot ))->localPosition().x(),
1022  float((*(Psegments[ pseg_pos ].end()-1))->cscDetId().layer()),
1023  float((*(Psegments[ pseg_pos ].end()-midlayer_pointer[n_layers_occupied_tot-1] ))->cscDetId().layer()),
1024  float((*(Psegments[ pseg_pos ].end()-n_layers_occupied_tot ))->cscDetId().layer())
1025  );
1026 
1027  if (curv_A[ pseg_pos ] > curvePenaltyThreshold) weight_A[ pseg_pos ] = weight_A[ pseg_pos ] * curvePenalty;
1028 
1029  if (weight_B[ pseg_pos ] > a_yweightPenaltyThreshold[thestation][thering]) weight_A[ pseg_pos ] = weight_A[ pseg_pos ] * yweightPenalty;
1030 
1031  if (weight_A[ pseg_pos ] < min_weight_A ) {
1032  min_weight_A = weight_A[ pseg_pos ];
1033  best_weight_B = weight_B[ pseg_pos ];
1034  best_curv_A = curv_A[ pseg_pos ];
1035  best_pseg = pseg_pos ;
1036  }
1037 
1038  }
1039 
1040  // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from.
1041  // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted.
1042 
1043  }
1044 
1045  if ( n_layers_occupied_tot > 3 ) {
1046  if (pseg < orig_number_of_noL1_psegs && (n_layers_processed != 2)) {
1047  if(( Psegments_noL1[ pseg_noL1_pos ].size() > 2 ) ) {
1048 
1049  // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits,
1050  // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance)
1051 
1052  weight_noL1_A[ pseg_noL1_pos ] += theWeight(
1053  (*(Psegments_noL1[ pseg_noL1_pos ].end()-1 ))->localPosition().x(),
1054  (*(Psegments_noL1[ pseg_noL1_pos ].end()-2 ))->localPosition().x(),
1055  (*(Psegments_noL1[ pseg_noL1_pos ].end()-3 ))->localPosition().x(),
1056  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-1))->cscDetId().layer()),
1057  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-2))->cscDetId().layer()),
1058  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-3))->cscDetId().layer())
1059  );
1060 
1061  weight_noL1_B[ pseg_noL1_pos ] += theWeight(
1062  (*(Psegments_noL1[ pseg_noL1_pos ].end()-1 ))->localPosition().y(),
1063  (*(Psegments_noL1[ pseg_noL1_pos ].end()-2 ))->localPosition().y(),
1064  (*(Psegments_noL1[ pseg_noL1_pos ].end()-3 ))->localPosition().y(),
1065  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-1))->cscDetId().layer()),
1066  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-2))->cscDetId().layer()),
1067  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-3))->cscDetId().layer())
1068  );
1069 
1070  //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight
1071 
1072  if(int(Psegments_noL1[ pseg_noL1_pos ].size()) == n_layers_occupied_tot -1 ) {
1073 
1074  curv_noL1_A[ pseg_noL1_pos ] += theWeight(
1075  (*(Psegments_noL1[ pseg_noL1_pos ].end()-1 ))->localPosition().x(),
1076  (*(Psegments_noL1[ pseg_noL1_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(),
1077  (*(Psegments_noL1[ pseg_noL1_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(),
1078  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-1 ))->cscDetId().layer()),
1079  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()),
1080  float((*(Psegments_noL1[ pseg_noL1_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer())
1081  );
1082 
1083  if (curv_noL1_A[ pseg_noL1_pos ] > curvePenaltyThreshold) weight_noL1_A[ pseg_noL1_pos ] = weight_noL1_A[ pseg_noL1_pos ] * curvePenalty;
1084 
1085  if (weight_noL1_B[ pseg_noL1_pos ] > a_yweightPenaltyThreshold[thestation][thering])
1086  weight_noL1_A[ pseg_noL1_pos ] = weight_noL1_A[ pseg_noL1_pos ] * yweightPenalty;
1087 
1088  if (weight_noL1_A[ pseg_noL1_pos ] < min_weight_noLx_A ) {
1089  min_weight_noLx_A = weight_noL1_A[ pseg_noL1_pos ];
1090  best_weight_noLx_B = weight_noL1_B[ pseg_noL1_pos ];
1091  best_curv_noLx_A = curv_noL1_A[ pseg_noL1_pos ];
1092  best_noLx_pseg = pseg_noL1_pos;
1093  best_Layer_noLx = 1;
1094  }
1095 
1096  }
1097 
1098  // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from.
1099  // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted.
1100 
1101  }
1102  }
1103  }
1104 
1105  if ( n_layers_occupied_tot > 3 ) {
1106  if (pseg < orig_number_of_noL2_psegs && ( n_layers_processed != 2 )) {
1107  if(( Psegments_noL2[ pseg_noL2_pos ].size() > 2 )) {
1108 
1109  // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits,
1110  // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance)
1111 
1112  weight_noL2_A[ pseg_noL2_pos ] += theWeight(
1113  (*(Psegments_noL2[ pseg_noL2_pos ].end()-1 ))->localPosition().x(),
1114  (*(Psegments_noL2[ pseg_noL2_pos ].end()-2 ))->localPosition().x(),
1115  (*(Psegments_noL2[ pseg_noL2_pos ].end()-3 ))->localPosition().x(),
1116  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-1))->cscDetId().layer()),
1117  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-2))->cscDetId().layer()),
1118  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-3))->cscDetId().layer())
1119  );
1120 
1121  weight_noL2_B[ pseg_noL2_pos ] += theWeight(
1122  (*(Psegments_noL2[ pseg_noL2_pos ].end()-1 ))->localPosition().y(),
1123  (*(Psegments_noL2[ pseg_noL2_pos ].end()-2 ))->localPosition().y(),
1124  (*(Psegments_noL2[ pseg_noL2_pos ].end()-3 ))->localPosition().y(),
1125  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-1))->cscDetId().layer()),
1126  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-2))->cscDetId().layer()),
1127  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-3))->cscDetId().layer())
1128  );
1129 
1130  //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight
1131 
1132  if(int(Psegments_noL2[ pseg_noL2_pos ].size()) == n_layers_occupied_tot -1 ) {
1133 
1134  curv_noL2_A[ pseg_noL2_pos ] += theWeight(
1135  (*(Psegments_noL2[ pseg_noL2_pos ].end()-1 ))->localPosition().x(),
1136  (*(Psegments_noL2[ pseg_noL2_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(),
1137  (*(Psegments_noL2[ pseg_noL2_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(),
1138  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-1 ))->cscDetId().layer()),
1139  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()),
1140  float((*(Psegments_noL2[ pseg_noL2_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer())
1141  );
1142 
1143  if (curv_noL2_A[ pseg_noL2_pos ] > curvePenaltyThreshold) weight_noL2_A[ pseg_noL2_pos ] = weight_noL2_A[ pseg_noL2_pos ] * curvePenalty;
1144 
1145  if (weight_noL2_B[ pseg_noL2_pos ] > a_yweightPenaltyThreshold[thestation][thering])
1146  weight_noL2_A[ pseg_noL2_pos ] = weight_noL2_A[ pseg_noL2_pos ] * yweightPenalty;
1147 
1148  if (weight_noL2_A[ pseg_noL2_pos ] < min_weight_noLx_A ) {
1149  min_weight_noLx_A = weight_noL2_A[ pseg_noL2_pos ];
1150  best_weight_noLx_B = weight_noL2_B[ pseg_noL2_pos ];
1151  best_curv_noLx_A = curv_noL2_A[ pseg_noL2_pos ];
1152  best_noLx_pseg = pseg_noL2_pos;
1153  best_Layer_noLx = 2;
1154  }
1155 
1156  }
1157 
1158  // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from.
1159  // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted.
1160 
1161  }
1162  }
1163  }
1164 
1165  if ( n_layers_occupied_tot > 3 ) {
1166  if (pseg < orig_number_of_noL3_psegs && ( n_layers_processed != 3 )) {
1167  if(( Psegments_noL3[ pseg_noL3_pos ].size() > 2 )) {
1168 
1169  // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits,
1170  // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance)
1171 
1172  weight_noL3_A[ pseg_noL3_pos ] += theWeight(
1173  (*(Psegments_noL3[ pseg_noL3_pos ].end()-1 ))->localPosition().x(),
1174  (*(Psegments_noL3[ pseg_noL3_pos ].end()-2 ))->localPosition().x(),
1175  (*(Psegments_noL3[ pseg_noL3_pos ].end()-3 ))->localPosition().x(),
1176  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-1))->cscDetId().layer()),
1177  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-2))->cscDetId().layer()),
1178  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-3))->cscDetId().layer())
1179  );
1180 
1181  weight_noL3_B[ pseg_noL3_pos ] += theWeight(
1182  (*(Psegments_noL3[ pseg_noL3_pos ].end()-1 ))->localPosition().y(),
1183  (*(Psegments_noL3[ pseg_noL3_pos ].end()-2 ))->localPosition().y(),
1184  (*(Psegments_noL3[ pseg_noL3_pos ].end()-3 ))->localPosition().y(),
1185  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-1))->cscDetId().layer()),
1186  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-2))->cscDetId().layer()),
1187  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-3))->cscDetId().layer())
1188  );
1189 
1190  //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight
1191 
1192  if(int(Psegments_noL3[ pseg_noL3_pos ].size()) == n_layers_occupied_tot -1 ) {
1193 
1194  curv_noL3_A[ pseg_noL3_pos ] += theWeight(
1195  (*(Psegments_noL3[ pseg_noL3_pos ].end()-1 ))->localPosition().x(),
1196  (*(Psegments_noL3[ pseg_noL3_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(),
1197  (*(Psegments_noL3[ pseg_noL3_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(),
1198  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-1 ))->cscDetId().layer()),
1199  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()),
1200  float((*(Psegments_noL3[ pseg_noL3_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer())
1201  );
1202 
1203  if (curv_noL3_A[ pseg_noL3_pos ] > curvePenaltyThreshold) weight_noL3_A[ pseg_noL3_pos ] = weight_noL3_A[ pseg_noL3_pos ] * curvePenalty;
1204 
1205  if (weight_noL3_B[ pseg_noL3_pos ] > a_yweightPenaltyThreshold[thestation][thering])
1206  weight_noL3_A[ pseg_noL3_pos ] = weight_noL3_A[ pseg_noL3_pos ] * yweightPenalty;
1207 
1208  if (weight_noL3_A[ pseg_noL3_pos ] < min_weight_noLx_A ) {
1209  min_weight_noLx_A = weight_noL3_A[ pseg_noL3_pos ];
1210  best_weight_noLx_B = weight_noL3_B[ pseg_noL3_pos ];
1211  best_curv_noLx_A = curv_noL3_A[ pseg_noL3_pos ];
1212  best_noLx_pseg = pseg_noL3_pos;
1213  best_Layer_noLx = 3;
1214  }
1215 
1216  }
1217 
1218  // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from.
1219  // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted.
1220 
1221  }
1222  }
1223  }
1224 
1225  if ( n_layers_occupied_tot > 3 ) {
1226  if (pseg < orig_number_of_noL4_psegs && ( n_layers_processed != 4 )) {
1227  if(( Psegments_noL4[ pseg_noL4_pos ].size() > 2 )) {
1228 
1229  // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits,
1230  // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance)
1231 
1232  weight_noL4_A[ pseg_noL4_pos ] += theWeight(
1233  (*(Psegments_noL4[ pseg_noL4_pos ].end()-1 ))->localPosition().x(),
1234  (*(Psegments_noL4[ pseg_noL4_pos ].end()-2 ))->localPosition().x(),
1235  (*(Psegments_noL4[ pseg_noL4_pos ].end()-3 ))->localPosition().x(),
1236  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-1))->cscDetId().layer()),
1237  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-2))->cscDetId().layer()),
1238  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-3))->cscDetId().layer())
1239  );
1240 
1241  weight_noL4_B[ pseg_noL4_pos ] += theWeight(
1242  (*(Psegments_noL4[ pseg_noL4_pos ].end()-1 ))->localPosition().y(),
1243  (*(Psegments_noL4[ pseg_noL4_pos ].end()-2 ))->localPosition().y(),
1244  (*(Psegments_noL4[ pseg_noL4_pos ].end()-3 ))->localPosition().y(),
1245  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-1))->cscDetId().layer()),
1246  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-2))->cscDetId().layer()),
1247  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-3))->cscDetId().layer())
1248  );
1249 
1250  //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight
1251 
1252  if(int(Psegments_noL4[ pseg_noL4_pos ].size()) == n_layers_occupied_tot -1 ) {
1253 
1254  curv_noL4_A[ pseg_noL4_pos ] += theWeight(
1255  (*(Psegments_noL4[ pseg_noL4_pos ].end()-1 ))->localPosition().x(),
1256  (*(Psegments_noL4[ pseg_noL4_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(),
1257  (*(Psegments_noL4[ pseg_noL4_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(),
1258  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-1 ))->cscDetId().layer()),
1259  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()),
1260  float((*(Psegments_noL4[ pseg_noL4_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer())
1261  );
1262 
1263  if (curv_noL4_A[ pseg_noL4_pos ] > curvePenaltyThreshold) weight_noL4_A[ pseg_noL4_pos ] = weight_noL4_A[ pseg_noL4_pos ] * curvePenalty;
1264 
1265  if (weight_noL4_B[ pseg_noL4_pos ] > a_yweightPenaltyThreshold[thestation][thering])
1266  weight_noL4_A[ pseg_noL4_pos ] = weight_noL4_A[ pseg_noL4_pos ] * yweightPenalty;
1267 
1268  if (weight_noL4_A[ pseg_noL4_pos ] < min_weight_noLx_A ) {
1269  min_weight_noLx_A = weight_noL4_A[ pseg_noL4_pos ];
1270  best_weight_noLx_B = weight_noL4_B[ pseg_noL4_pos ];
1271  best_curv_noLx_A = curv_noL4_A[ pseg_noL4_pos ];
1272  best_noLx_pseg = pseg_noL4_pos;
1273  best_Layer_noLx = 4;
1274  }
1275 
1276  }
1277 
1278  // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from.
1279  // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted.
1280 
1281  }
1282  }
1283  }
1284 
1285  if ( n_layers_occupied_tot > 4 ) {
1286  if (pseg < orig_number_of_noL5_psegs && ( n_layers_processed != 5 )) {
1287  if(( Psegments_noL5[ pseg_noL5_pos ].size() > 2 )){
1288 
1289  // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits,
1290  // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance)
1291 
1292  weight_noL5_A[ pseg_noL5_pos ] += theWeight(
1293  (*(Psegments_noL5[ pseg_noL5_pos ].end()-1 ))->localPosition().x(),
1294  (*(Psegments_noL5[ pseg_noL5_pos ].end()-2 ))->localPosition().x(),
1295  (*(Psegments_noL5[ pseg_noL5_pos ].end()-3 ))->localPosition().x(),
1296  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-1))->cscDetId().layer()),
1297  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-2))->cscDetId().layer()),
1298  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-3))->cscDetId().layer())
1299  );
1300 
1301  weight_noL5_B[ pseg_noL5_pos ] += theWeight(
1302  (*(Psegments_noL5[ pseg_noL5_pos ].end()-1 ))->localPosition().y(),
1303  (*(Psegments_noL5[ pseg_noL5_pos ].end()-2 ))->localPosition().y(),
1304  (*(Psegments_noL5[ pseg_noL5_pos ].end()-3 ))->localPosition().y(),
1305  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-1))->cscDetId().layer()),
1306  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-2))->cscDetId().layer()),
1307  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-3))->cscDetId().layer())
1308  );
1309 
1310  //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight
1311 
1312  if(int(Psegments_noL5[ pseg_noL5_pos ].size()) == n_layers_occupied_tot -1 ) {
1313 
1314  curv_noL5_A[ pseg_noL5_pos ] += theWeight(
1315  (*(Psegments_noL5[ pseg_noL5_pos ].end()-1 ))->localPosition().x(),
1316  (*(Psegments_noL5[ pseg_noL5_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(),
1317  (*(Psegments_noL5[ pseg_noL5_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(),
1318  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-1 ))->cscDetId().layer()),
1319  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()),
1320  float((*(Psegments_noL5[ pseg_noL5_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer())
1321  );
1322 
1323  if (curv_noL5_A[ pseg_noL5_pos ] > curvePenaltyThreshold) weight_noL5_A[ pseg_noL5_pos ] = weight_noL5_A[ pseg_noL5_pos ] * curvePenalty;
1324 
1325  if (weight_noL5_B[ pseg_noL5_pos ] > a_yweightPenaltyThreshold[thestation][thering])
1326  weight_noL5_A[ pseg_noL5_pos ] = weight_noL5_A[ pseg_noL5_pos ] * yweightPenalty;
1327 
1328  if (weight_noL5_A[ pseg_noL5_pos ] < min_weight_noLx_A ) {
1329  min_weight_noLx_A = weight_noL5_A[ pseg_noL5_pos ];
1330  best_weight_noLx_B = weight_noL5_B[ pseg_noL5_pos ];
1331  best_curv_noLx_A = curv_noL5_A[ pseg_noL5_pos ];
1332  best_noLx_pseg = pseg_noL5_pos;
1333  best_Layer_noLx = 5;
1334  }
1335 
1336  }
1337 
1338  // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from.
1339  // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted.
1340 
1341  }
1342  }
1343  }
1344 
1345  if ( n_layers_occupied_tot > 5 ) {
1346  if (pseg < orig_number_of_noL6_psegs && ( n_layers_processed != 6 )) {
1347  if(( Psegments_noL6[ pseg_noL6_pos ].size() > 2 )){
1348 
1349  // looks more exciting than it is. Here the weight is calculated. It is the difference in x of the last two and one but the last two hits,
1350  // divided by the distance of the corresponding hits. Please refer to twiki page XXXX or CMS Note YYY (and use layer_distance)
1351 
1352  weight_noL6_A[ pseg_noL6_pos ] += theWeight(
1353  (*(Psegments_noL6[ pseg_noL6_pos ].end()-1 ))->localPosition().x(),
1354  (*(Psegments_noL6[ pseg_noL6_pos ].end()-2 ))->localPosition().x(),
1355  (*(Psegments_noL6[ pseg_noL6_pos ].end()-3 ))->localPosition().x(),
1356  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-1))->cscDetId().layer()),
1357  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-2))->cscDetId().layer()),
1358  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-3))->cscDetId().layer())
1359  );
1360 
1361  weight_noL6_B[ pseg_noL6_pos ] += theWeight(
1362  (*(Psegments_noL6[ pseg_noL6_pos ].end()-1 ))->localPosition().y(),
1363  (*(Psegments_noL6[ pseg_noL6_pos ].end()-2 ))->localPosition().y(),
1364  (*(Psegments_noL6[ pseg_noL6_pos ].end()-3 ))->localPosition().y(),
1365  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-1))->cscDetId().layer()),
1366  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-2))->cscDetId().layer()),
1367  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-3))->cscDetId().layer())
1368  );
1369 
1370  //if we have picked up the last hit go looking for pseg with the lowest (and second lowest?) weight
1371 
1372  if(int(Psegments_noL6[ pseg_noL6_pos ].size()) == n_layers_occupied_tot -1 ) {
1373 
1374  curv_noL6_A[ pseg_noL6_pos ] += theWeight(
1375  (*(Psegments_noL6[ pseg_noL6_pos ].end()-1 ))->localPosition().x(),
1376  (*(Psegments_noL6[ pseg_noL6_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->localPosition().x(),
1377  (*(Psegments_noL6[ pseg_noL6_pos ].end()-(n_layers_occupied_tot-1) ))->localPosition().x(),
1378  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-1 ))->cscDetId().layer()),
1379  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-midlayer_pointer[n_layers_occupied_tot-2] ))->cscDetId().layer()),
1380  float((*(Psegments_noL6[ pseg_noL6_pos ].end()-(n_layers_occupied_tot-1) ))->cscDetId().layer())
1381  );
1382 
1383  if (curv_noL6_A[ pseg_noL6_pos ] > curvePenaltyThreshold) weight_noL6_A[ pseg_noL6_pos ] = weight_noL6_A[ pseg_noL6_pos ] * curvePenalty;
1384 
1385  if (weight_noL6_B[ pseg_noL6_pos ] > a_yweightPenaltyThreshold[thestation][thering])
1386  weight_noL6_A[ pseg_noL6_pos ] = weight_noL6_A[ pseg_noL6_pos ] * yweightPenalty;
1387 
1388  if (weight_noL6_A[ pseg_noL6_pos ] < min_weight_noLx_A ) {
1389  min_weight_noLx_A = weight_noL6_A[ pseg_noL6_pos ];
1390  best_weight_noLx_B = weight_noL6_B[ pseg_noL6_pos ];
1391  best_curv_noLx_A = curv_noL6_A[ pseg_noL6_pos ];
1392  best_noLx_pseg = pseg_noL6_pos;
1393  best_Layer_noLx = 6;
1394  }
1395 
1396  }
1397 
1398  // alternative: fill map with weight and pseg (which is already ordered)? Seems a very good tool to go looking for segments from.
1399  // As I understand, the segments would be inserted according to their weight, so the list would "automatically" be sorted.
1400 
1401  }
1402  }
1403  }
1404 
1405  }
1406  }
1407  }
1408  }
1409 
1410  //************************************************************************;
1411  //*** End segment building *******************************************;
1412  //************************************************************************;
1413 
1414  // Important part! Here segment(s) are actually chosen. All the good segments
1415  // could be chosen or some (best) ones only (in order to save time).
1416 
1417  // Check if there is a segment with n-1 hits that has a signifcantly better
1418  // weight than the best n hit segment
1419 
1420  // IBL 070828: implicit assumption here is that there will always only be one segment per
1421  // cluster - if there are >1 we will need to find out which segment the alternative n-1 hit
1422  // protosegment belongs to!
1423 
1424 
1425  float chosen_weight = min_weight_A;
1426  float chosen_ywgt = best_weight_B;
1427  float chosen_curv = best_curv_A;
1428  int chosen_nlayers = n_layers_occupied_tot;
1429  int chosen_pseg = best_pseg;
1430  if (best_pseg<0) {
1431  return segmentInChamber;
1432  }
1435 
1436  float hit_drop_limit = -999999.999;
1437 
1438  // define different weight improvement requirements depending on how many layers are in the segment candidate
1439  switch ( n_layers_processed ) {
1440  case 1 :
1441  // do nothing;
1442  break;
1443  case 2 :
1444  // do nothing;
1445  break;
1446  case 3 :
1447  // do nothing;
1448  break;
1449  case 4 :
1450  hit_drop_limit = hitDropLimit6Hits * (1./2.) * hitDropLimit4Hits;
1451  if ((best_Layer_noLx < 1) || (best_Layer_noLx > 4)) {
1452  // std::cout<<"CSCSegAlgoST: For four layers, best_Layer_noLx = "<< best_Layer_noLx << std::endl;
1453  }
1454  if ((best_Layer_noLx == 2) || (best_Layer_noLx == 3)) hit_drop_limit = hit_drop_limit * (1./2.);
1455  break;
1456  case 5 :
1457  hit_drop_limit = hitDropLimit6Hits * (2./3.) * hitDropLimit5Hits;
1458  if ((best_Layer_noLx < 1) || (best_Layer_noLx > 5)) {
1459  // std::cout<<"CSCSegAlgoST: For five layers, best_Layer_noLx = "<< best_Layer_noLx << std::endl;
1460  }
1461  if ((best_Layer_noLx == 2) || (best_Layer_noLx == 4)) hit_drop_limit = hit_drop_limit * (1./2.);
1462  if (best_Layer_noLx == 3) hit_drop_limit = hit_drop_limit * (1./3.);
1463  break;
1464  case 6 :
1465  hit_drop_limit = hitDropLimit6Hits * (3./4.);
1466  if ((best_Layer_noLx < 1) || (best_Layer_noLx > 6)) {
1467  // std::cout<<"CSCSegAlgoST: For six layers, best_Layer_noLx = "<< best_Layer_noLx << std::endl;
1468  }
1469  if ((best_Layer_noLx == 2) || (best_Layer_noLx == 5)) hit_drop_limit = hit_drop_limit * (1./2.);
1470  if ((best_Layer_noLx == 3) || (best_Layer_noLx == 4)) hit_drop_limit = hit_drop_limit * (1./3.);
1471  break;
1472 
1473  default :
1474  // Fallback - should never occur.
1475  LogDebug("CSCSegment|CSC") <<"CSCSegAlgoST: Unexpected number of layers with hits - please inform developers.";
1476  // std::cout<<"CSCSegAlgoST: Unexpected number of layers with hits - please inform developers."<<std::endl;
1477  hit_drop_limit = 0.1;
1478  }
1479 
1480  // choose the NoLx collection (the one that contains the best N-1 candidate)
1481  switch ( best_Layer_noLx ) {
1482  case 1 :
1483  Psegments_noLx.clear();
1485  weight_noLx_A.clear();
1487  break;
1488  case 2 :
1489  Psegments_noLx.clear();
1491  weight_noLx_A.clear();
1493  break;
1494  case 3 :
1495  Psegments_noLx.clear();
1497  weight_noLx_A.clear();
1499  break;
1500  case 4 :
1501  Psegments_noLx.clear();
1503  weight_noLx_A.clear();
1505  break;
1506  case 5 :
1507  Psegments_noLx.clear();
1509  weight_noLx_A.clear();
1511  break;
1512  case 6 :
1513  Psegments_noLx.clear();
1515  weight_noLx_A.clear();
1517  break;
1518 
1519  default :
1520  // Fallback - should occur only for preclusters with only 3 layers with hits.
1521  Psegments_noLx.clear();
1522  weight_noLx_A.clear();
1523  }
1524 
1525  if( min_weight_A > 0. ) {
1526  if ( min_weight_noLx_A/min_weight_A < hit_drop_limit ) {
1527  chosen_weight = min_weight_noLx_A;
1528  chosen_ywgt = best_weight_noLx_B;
1529  chosen_curv = best_curv_noLx_A;
1530  chosen_nlayers = n_layers_occupied_tot-1;
1531  chosen_pseg = best_noLx_pseg;
1532  chosen_Psegments.clear();
1533  chosen_weight_A.clear();
1536  }
1537  }
1538 
1539  if(onlyBestSegment) {
1540  ChooseSegments2a( chosen_Psegments, chosen_pseg );
1541  }
1542  else {
1544  }
1545 
1546  for(unsigned int iSegment=0; iSegment<GoodSegments.size();++iSegment){
1547  protoSegment = GoodSegments[iSegment];
1548  passCondNumber=false;
1549  passCondNumber_2 = false;
1550  protoChiUCorrection=1.0;
1551  doSlopesAndChi2();
1552  // Attempt to handle numerical instability of the fit;
1553  // Any segment with protoChi2/protoNDF>chi2Norm_3D_
1554  // considered as that one potentially suffering from
1555  // numerical instability in fit.
1556  if(correctCov_){
1557  // Call the fit with prefitting option;
1558  // First fit a straight line to X-Z coordinates
1559  // and calculate chi^2 (chiUZ in correctTheCovX(void)) for X-Z fit;
1560  // Scale up errors in X if chiUZ too big (default 20);
1561  // Refit XY-Z with the scaled up X errors
1563  passCondNumber = true;
1564  doSlopesAndChi2();
1565  }
1566  if(protoChiUCorrection<1.00005){
1567  LogDebug("CSCSegment|segmWierd") << "Wierd segment, ErrXX scaled, refit " <<std::endl;
1569  // Call the fit with direct adjustment of condition number;
1570  // If the attempt to improve fit by scaling up X error fails
1571  // call the procedure to make the condition number of M compatible with
1572  // the precision of X and Y measurements;
1573  // Achieved by decreasing abs value of the Covariance
1574  LogDebug("CSCSegment|segmWierd") << "Wierd segment, ErrXY changed to match cond. number, refit " << std::endl;
1575  passCondNumber_2=true;
1576  doSlopesAndChi2();
1577  }
1578  }
1579  // Call the pre-pruning procedure;
1580  // If the attempt to improve fit by scaling up X error is successfull,
1581  // while scale factor for X errors is too big.
1582  // Prune the recHit inducing the biggest contribution into X-Z chi^2
1583  // and refit;
1585  (protoSegment.size()>3)){
1586  LogDebug("CSCSegment|segmWierd") << "Scale factor protoChiUCorrection too big, pre-Prune, refit " << std::endl;
1587  protoSegment.erase(protoSegment.begin()+(maxContrIndex),
1588  protoSegment.begin()+(maxContrIndex+1));
1589  doSlopesAndChi2();
1590  }
1591  }
1592 
1594  // calculate error matrix
1595  AlgebraicSymMatrix protoErrors = calculateError();
1596  // but reorder components to match what's required by TrackingRecHit interface
1597  // i.e. slopes first, then positions
1598  flipErrors( protoErrors );
1599  //
1601  segmentInChamber.push_back(temp);
1602  }
1603  return segmentInChamber;
1604 }
#define LogDebug(id)
double protoChiUCorrection
Allow to correct the error matrix.
Definition: CSCSegAlgoST.h:199
int i
Definition: DBlmapReader.cc:9
CSCSegment showerSeg(const CSCChamber *aChamber, ChamberHitContainer rechits)
bool passCondNumber
The number to fource the Covariance.
Definition: CSCSegAlgoST.h:213
void doSlopesAndChi2(void)
std::vector< ChamberHitContainer > Psegments_noL5
Definition: CSCSegAlgoST.h:129
std::vector< float > curv_noL2_A
Definition: CSCSegAlgoST.h:143
const CSCChamber * theChamber
Definition: CSCSegAlgoST.h:117
std::vector< float > weight_noL4_A
Definition: CSCSegAlgoST.h:137
std::vector< float > curv_noL6_A
Definition: CSCSegAlgoST.h:147
void ChooseSegments3(int best_seg)
std::vector< float > weight_noL3_B
Definition: CSCSegAlgoST.h:151
std::vector< ChamberHitContainer > Psegments_noL1
Definition: CSCSegAlgoST.h:125
std::vector< ChamberHitContainer > chosen_Psegments
Definition: CSCSegAlgoST.h:131
std::vector< ChamberHitContainer > Psegments
Definition: CSCSegAlgoST.h:123
ChamberHitContainer protoSegment
Definition: CSCSegAlgoST.h:158
LocalVector protoDirection
Definition: CSCSegAlgoST.h:164
std::vector< float > weight_noL3_A
Definition: CSCSegAlgoST.h:136
double hitDropLimit4Hits
Definition: CSCSegAlgoST.h:184
CSCSegAlgoShowering * showering_
Definition: CSCSegAlgoST.h:195
int nRecHits() const
Definition: CSCSegment.h:68
T sqrt(T t)
Definition: SSEVec.h:28
std::vector< ChamberHitContainer > Psegments_noLx
Definition: CSCSegAlgoST.h:124
double curvePenaltyThreshold
Definition: CSCSegAlgoST.h:193
std::vector< ChamberHitContainer > Psegments_noL4
Definition: CSCSegAlgoST.h:128
double protoNDF
Definition: CSCSegAlgoST.h:163
double hitDropLimit6Hits
Definition: CSCSegAlgoST.h:186
double protoChi2
Definition: CSCSegAlgoST.h:162
std::vector< float > weight_A
Definition: CSCSegAlgoST.h:132
std::vector< float > weight_noL1_B
Definition: CSCSegAlgoST.h:149
std::vector< float > curv_noL5_A
Definition: CSCSegAlgoST.h:146
std::vector< ChamberHitContainer > Psegments_noL6
Definition: CSCSegAlgoST.h:130
#define end
Definition: vmac.h:38
unsigned maxContrIndex
Chi^2 normalization for the initial fit.
Definition: CSCSegAlgoST.h:203
bool onlyBestSegment
Definition: CSCSegAlgoST.h:181
void flipErrors(AlgebraicSymMatrix &) const
std::vector< ChamberHitContainer > Psegments_noL2
Definition: CSCSegAlgoST.h:126
std::vector< float > weight_noL5_A
Definition: CSCSegAlgoST.h:138
bool passCondNumber_2
Passage the condition number calculations.
Definition: CSCSegAlgoST.h:214
std::vector< float > weight_noL1_A
Definition: CSCSegAlgoST.h:134
std::vector< float > curv_noL4_A
Definition: CSCSegAlgoST.h:145
std::vector< float > weight_noL2_A
Definition: CSCSegAlgoST.h:135
std::vector< float > chosen_weight_A
Definition: CSCSegAlgoST.h:140
Segments GoodSegments
Definition: CSCSegAlgoST.h:118
bool correctCov_
Correct the Error Matrix.
Definition: CSCSegAlgoST.h:198
int minHitsPerSegment
Definition: CSCSegAlgoST.h:170
ChamberHitContainer Psegments_hits
Definition: CSCSegAlgoST.h:121
std::vector< float > curv_noL1_A
Definition: CSCSegAlgoST.h:142
AlgebraicSymMatrix calculateError(void) const
double theWeight(double coordinate_1, double coordinate_2, double coordinate_3, float layer_1, float layer_2, float layer_3)
Utility functions.
double curvePenalty
Definition: CSCSegAlgoST.h:194
std::vector< float > curv_A
Definition: CSCSegAlgoST.h:141
bool prePrun_
The index of the worst x RecHit in Chi^2-X method.
Definition: CSCSegAlgoST.h:204
double chi2() const
Chi2 of the segment fit.
Definition: CSCSegment.h:58
double yweightPenalty
Definition: CSCSegAlgoST.h:191
CLHEP::HepSymMatrix AlgebraicSymMatrix
std::vector< float > weight_noL5_B
Definition: CSCSegAlgoST.h:153
std::vector< float > weight_B
Definition: CSCSegAlgoST.h:148
float a_yweightPenaltyThreshold[5][5]
Definition: CSCSegAlgoST.h:188
void ChooseSegments2a(std::vector< ChamberHitContainer > &best_segments, int best_seg)
void fillLocalDirection(void)
int maxRecHitsInCluster
Definition: CSCSegAlgoST.h:175
Definition: DDAxes.h:10
std::vector< float > weight_noL6_A
Definition: CSCSegAlgoST.h:139
std::vector< float > weight_noL2_B
Definition: CSCSegAlgoST.h:150
double hitDropLimit5Hits
Definition: CSCSegAlgoST.h:185
std::vector< float > weight_noLx_A
Definition: CSCSegAlgoST.h:133
std::vector< float > curv_noL3_A
Definition: CSCSegAlgoST.h:144
std::vector< float > weight_noL6_B
Definition: CSCSegAlgoST.h:154
tuple size
Write out results.
ChamberHitContainer PAhits_onLayer[6]
Definition: CSCSegAlgoST.h:120
LocalPoint protoIntercept
Definition: CSCSegAlgoST.h:161
std::vector< float > weight_noL4_B
Definition: CSCSegAlgoST.h:152
std::vector< ChamberHitContainer > Psegments_noL3
Definition: CSCSegAlgoST.h:127
double chi2Norm_3D_
Chi^2 normalization for the corrected fit.
Definition: CSCSegAlgoST.h:202
double prePrunLimit_
Definition: CSCSegAlgoST.h:207
std::vector<CSCSegment> CSCSegAlgoST::buildSegments2 ( ChamberHitContainer  rechits)

Build track segments in this chamber (this is where the actual segment-building algorithm hides.)

AlgebraicSymMatrix CSCSegAlgoST::calculateError ( void  ) const
private

Definition at line 1938 of file CSCSegAlgoST.cc.

References funct::A, derivativeMatrix(), query::result, and weightMatrix().

Referenced by buildSegments(), and prune_bad_hits().

1938  {
1939 
1940  AlgebraicSymMatrix weights = weightMatrix();
1942 
1943  // (AT W A)^-1
1944  // from http://www.phys.ufl.edu/~avery/fitting.html, part I
1945  int ierr;
1946  AlgebraicSymMatrix result = weights.similarityT(A);
1947  result.invert(ierr);
1948 
1949  // blithely assuming the inverting never fails...
1950  return result;
1951 }
CLHEP::HepMatrix AlgebraicMatrix
tuple result
Definition: query.py:137
AlgebraicSymMatrix weightMatrix(void) const
CLHEP::HepSymMatrix AlgebraicSymMatrix
CLHEP::HepMatrix derivativeMatrix(void) const
std::vector< std::vector< const CSCRecHit2D * > > CSCSegAlgoST::chainHits ( const CSCChamber aChamber,
ChamberHitContainer rechits 
)

Definition at line 507 of file CSCSegAlgoST.cc.

References begin, CSCChamberSpecs::chamberTypeName(), end, i, isGoodToMerge(), CSCChamber::specs(), and cond::rpcobtemp::temp.

Referenced by run().

507  {
508 
509  std::vector<ChamberHitContainer> rechits_chains; // this is a collection of groups of rechits
510 
511 
512  std::vector<const CSCRecHit2D*> temp;
513 
514  std::vector< ChamberHitContainer > seeds;
515 
516  std::vector <bool> usedCluster;
517 
518  // split rechits into subvectors and return vector of vectors:
519  // Loop over rechits
520  // Create one seed per hit
521  //std::cout<<" rechits.size() = "<<rechits.size()<<std::endl;
522  for(unsigned int i = 0; i < rechits.size(); ++i) {
523  temp.clear();
524  temp.push_back(rechits[i]);
525  seeds.push_back(temp);
526  usedCluster.push_back(false);
527  }
528  bool isME11a = false;
529  if ("ME1/a" == aChamber->specs()->chamberTypeName()){
530  isME11a = true;
531  }
532  // merge chains that are too close ("touch" each other)
533  for(size_t NNN = 0; NNN < seeds.size(); ++NNN) {
534  for(size_t MMM = NNN+1; MMM < seeds.size(); ++MMM) {
535  if(usedCluster[MMM] || usedCluster[NNN]){
536  continue;
537  }
538  // all is in the way we define "good";
539  // try not to "cluster" the hits but to "chain" them;
540  // it does the clustering but also does a better job
541  // for inclined tracks (not clustering them togheter;
542  // crossed tracks would be still clustered together)
543  // 22.12.09: In fact it is not much more different
544  // than the "clustering", we just introduce another
545  // variable in the game - Z. And it make sense
546  // to re-introduce Y (or actually wire group mumber)
547  // in a similar way as for the strip number - see
548  // the code below.
549  bool goodToMerge = isGoodToMerge(isME11a, seeds[NNN], seeds[MMM]);
550  if(goodToMerge){
551  // merge chains!
552  // merge by adding seed NNN to seed MMM and erasing seed NNN
553 
554  // add seed NNN to MMM (lower to larger number)
555  seeds[MMM].insert(seeds[MMM].end(),seeds[NNN].begin(),seeds[NNN].end());
556 
557  // mark seed NNN as used
558  usedCluster[NNN] = true;
559  // we have merged a seed (NNN) to the highter seed (MMM) - need to contimue to
560  // next seed (NNN+1)
561  break;
562  }
563 
564  }
565  }
566 
567  // hand over the final seeds to the output
568  // would be more elegant if we could do the above step with
569  // erasing the merged ones, rather than the
570 
571  for(size_t NNN = 0; NNN < seeds.size(); ++NNN) {
572  if(usedCluster[NNN]) continue; //skip seeds that have been marked as used up in merging
573  rechits_chains.push_back(seeds[NNN]);
574  }
575 
576  //***************************************************************
577 
578  return rechits_chains;
579 }
int i
Definition: DBlmapReader.cc:9
bool isGoodToMerge(bool isME11a, ChamberHitContainer &newChain, ChamberHitContainer &oldChain)
std::string chamberTypeName() const
const CSCChamberSpecs * specs() const
Definition: CSCChamber.h:42
#define end
Definition: vmac.h:38
#define begin
Definition: vmac.h:31
void CSCSegAlgoST::ChooseSegments ( void  )
private
void CSCSegAlgoST::ChooseSegments2 ( int  best_seg)
private

Definition at line 1664 of file CSCSegAlgoST.cc.

References GoodSegments, LogDebug, Psegments, findQualityFiles::size, and weight_A.

1664  {
1665  // std::vector <int> CommonHits(6); // nice concept :)
1666  std::vector <unsigned int> BadCandidate;
1667  int SumCommonHits =0;
1668  GoodSegments.clear();
1669  BadCandidate.clear();
1670  for(unsigned int iCand=0;iCand<Psegments.size();++iCand) {
1671  // skip here if segment was marked bad
1672  for(unsigned int iiCand=iCand+1;iiCand<Psegments.size();++iiCand){
1673  // skip here too if segment was marked bad
1674  SumCommonHits =0;
1675  if( Psegments[iCand].size() != Psegments[iiCand].size() ) {
1676  LogDebug("CSCSegment|CSC") <<"CSCSegmentST::ChooseSegments2: ALARM!! THIS should not happen!!";
1677 // std::cout<<"CSCSegmentST::ChooseSegments2: ALARM!! THIS should not happen!!"<<std::endl;
1678  }
1679  else {
1680  for( int ihits = 0; ihits < int(Psegments[iCand].size()); ++ihits ) { // iCand and iiCand NEED to have same nr of hits! (alsways have by construction)
1681  if( Psegments[iCand][ihits] == Psegments[iiCand][ihits]) {
1682  ++SumCommonHits;
1683  }
1684  }
1685  }
1686  if(SumCommonHits>1) {
1687  if( weight_A[iCand]>weight_A[iiCand] ) { // use weight_A here
1688  BadCandidate.push_back(iCand);
1689  // rather mark segment bad by an array which is in sync with protosegments!! e.g. set weight = weight*1000 or have an addidional array or set it to weight *= -1
1690  }
1691  else{
1692  BadCandidate.push_back(iiCand);
1693  // rather mark segment bad by an array which is in sync with protosegments!! e.g. set weight = weight*1000 or have an addidional array or set it to weight *= -1
1694  }
1695  }
1696  }
1697  }
1698  bool discard;
1699  for(unsigned int isegm=0;isegm<Psegments.size();++isegm) {
1700  // For best results another iteration/comparison over Psegments
1701  //should be applied here... It would make the program much slower.
1702  discard = false;
1703  for(unsigned int ibad=0;ibad<BadCandidate.size();++ibad) {
1704  // can save this loop if we used an array in sync with Psegments!!!!
1705  if(isegm == BadCandidate[ibad]) {
1706  discard = true;
1707  }
1708  }
1709  if(!discard) {
1710  GoodSegments.push_back( Psegments[isegm] );
1711  }
1712  }
1713 }
#define LogDebug(id)
std::vector< ChamberHitContainer > Psegments
Definition: CSCSegAlgoST.h:123
std::vector< float > weight_A
Definition: CSCSegAlgoST.h:132
Segments GoodSegments
Definition: CSCSegAlgoST.h:118
tuple size
Write out results.
void CSCSegAlgoST::ChooseSegments2a ( std::vector< ChamberHitContainer > &  best_segments,
int  best_seg 
)
private

Definition at line 1606 of file CSCSegAlgoST.cc.

References GoodSegments.

Referenced by buildSegments().

1606  {
1607  // just return best segment
1608  GoodSegments.clear();
1609  GoodSegments.push_back( chosen_segments[chosen_seg] );
1610 }
Segments GoodSegments
Definition: CSCSegAlgoST.h:118
void CSCSegAlgoST::ChooseSegments3 ( int  best_seg)
private

Referenced by buildSegments().

void CSCSegAlgoST::ChooseSegments3 ( std::vector< ChamberHitContainer > &  best_segments,
std::vector< float > &  best_weight,
int  best_seg 
)
private

Definition at line 1612 of file CSCSegAlgoST.cc.

References GoodSegments, and findQualityFiles::size.

1612  {
1613 
1614  int SumCommonHits = 0;
1615  GoodSegments.clear();
1616  int nr_remaining_candidates;
1617  unsigned int nr_of_segment_candidates;
1618 
1619  nr_remaining_candidates = nr_of_segment_candidates = chosen_segments.size();
1620 
1621  // always select and return best protosegment:
1622  GoodSegments.push_back( chosen_segments[ chosen_seg ] );
1623 
1624  float chosen_weight_temp = 999999.;
1625  int chosen_seg_temp = -1;
1626 
1627  // try to find further segment candidates:
1628  while( nr_remaining_candidates > 0 ) {
1629 
1630  for(unsigned int iCand=0; iCand < nr_of_segment_candidates; ++iCand) {
1631  //only compare current best to psegs that have not been marked bad:
1632  if( chosen_weight[iCand] < 0. ) continue;
1633  SumCommonHits = 0;
1634 
1635  for( int ihits = 0; ihits < int(chosen_segments[iCand].size()); ++ihits ) { // iCand and iiCand NEED to have same nr of hits! (always have by construction)
1636  if( chosen_segments[iCand][ihits] == chosen_segments[chosen_seg][ihits]) {
1637  ++SumCommonHits;
1638  }
1639  }
1640 
1641  //mark a pseg bad:
1642  if(SumCommonHits>1) { // needs to be a card; should be investigated first
1643  chosen_weight[iCand] = -1.;
1644  nr_remaining_candidates -= 1;
1645  }
1646  else {
1647  // save the protosegment with the smallest weight
1648  if( chosen_weight[ iCand ] < chosen_weight_temp ) {
1649  chosen_weight_temp = chosen_weight[ iCand ];
1650  chosen_seg_temp = iCand ;
1651  }
1652  }
1653  }
1654 
1655  if( chosen_seg_temp > -1 ) GoodSegments.push_back( chosen_segments[ chosen_seg_temp ] );
1656 
1657  chosen_seg = chosen_seg_temp;
1658  // re-initialze temporary best parameters
1659  chosen_weight_temp = 999999;
1660  chosen_seg_temp = -1;
1661  }
1662 }
Segments GoodSegments
Definition: CSCSegAlgoST.h:118
tuple size
Write out results.
std::vector< std::vector< const CSCRecHit2D * > > CSCSegAlgoST::clusterHits ( const CSCChamber aChamber,
ChamberHitContainer rechits 
)

Build groups of rechits that are separated in x and y to save time on the segment finding

Definition at line 391 of file CSCSegAlgoST.cc.

References begin, dXclusBoxMax, dYclusBoxMax, end, i, LogDebug, findQualityFiles::size, cond::rpcobtemp::temp, theChamber, x, and detailsBasic3DVector::y.

Referenced by run().

391  {
392  theChamber = aChamber;
393 
394  std::vector<ChamberHitContainer> rechits_clusters; // this is a collection of groups of rechits
395  // const float dXclus_box_cut = 4.; // seems to work reasonably 070116
396  // const float dYclus_box_cut = 8.; // seems to work reasonably 070116
397 
398  float dXclus = 0.0;
399  float dYclus = 0.0;
400  float dXclus_box = 0.0;
401  float dYclus_box = 0.0;
402 
403  std::vector<const CSCRecHit2D*> temp;
404 
405  std::vector< ChamberHitContainer > seeds;
406 
407  std::vector<float> running_meanX;
408  std::vector<float> running_meanY;
409 
410  std::vector<float> seed_minX;
411  std::vector<float> seed_maxX;
412  std::vector<float> seed_minY;
413  std::vector<float> seed_maxY;
414 
415  //std::cout<<"*************************************************************"<<std::endl;
416  //std::cout<<"Called clusterHits in Chamber "<< theChamber->specs()->chamberTypeName()<<std::endl;
417  //std::cout<<"*************************************************************"<<std::endl;
418 
419  // split rechits into subvectors and return vector of vectors:
420  // Loop over rechits
421  // Create one seed per hit
422  for(unsigned int i = 0; i < rechits.size(); ++i) {
423 
424  temp.clear();
425 
426  temp.push_back(rechits[i]);
427 
428  seeds.push_back(temp);
429 
430  // First added hit in seed defines the mean to which the next hit is compared
431  // for this seed.
432 
433  running_meanX.push_back( rechits[i]->localPosition().x() );
434  running_meanY.push_back( rechits[i]->localPosition().y() );
435 
436  // set min/max X and Y for box containing the hits in the precluster:
437  seed_minX.push_back( rechits[i]->localPosition().x() );
438  seed_maxX.push_back( rechits[i]->localPosition().x() );
439  seed_minY.push_back( rechits[i]->localPosition().y() );
440  seed_maxY.push_back( rechits[i]->localPosition().y() );
441  }
442 
443  // merge clusters that are too close
444  // measure distance between final "running mean"
445  for(size_t NNN = 0; NNN < seeds.size(); ++NNN) {
446 
447  for(size_t MMM = NNN+1; MMM < seeds.size(); ++MMM) {
448  if(running_meanX[MMM] == 999999. || running_meanX[NNN] == 999999. ) {
449  LogDebug("CSCSegment|CSC") << "CSCSegmentST::clusterHits: Warning: Skipping used seeds, this should happen - inform developers!";
450  // std::cout<<"We should never see this line now!!!"<<std::endl;
451  continue; //skip seeds that have been used
452  }
453 
454  // calculate cut criteria for simple running mean distance cut:
455  dXclus = fabs(running_meanX[NNN] - running_meanX[MMM]);
456  dYclus = fabs(running_meanY[NNN] - running_meanY[MMM]);
457 
458  // calculate minmal distance between precluster boxes containing the hits:
459  if ( running_meanX[NNN] > running_meanX[MMM] ) dXclus_box = seed_minX[NNN] - seed_maxX[MMM];
460  else dXclus_box = seed_minX[MMM] - seed_maxX[NNN];
461  if ( running_meanY[NNN] > running_meanY[MMM] ) dYclus_box = seed_minY[NNN] - seed_maxY[MMM];
462  else dYclus_box = seed_minY[MMM] - seed_maxY[NNN];
463 
464 
465  if( dXclus_box < dXclusBoxMax && dYclus_box < dYclusBoxMax ) {
466  // merge clusters!
467  // merge by adding seed NNN to seed MMM and erasing seed NNN
468 
469  // calculate running mean for the merged seed:
470  running_meanX[MMM] = (running_meanX[NNN]*seeds[NNN].size() + running_meanX[MMM]*seeds[MMM].size()) / (seeds[NNN].size()+seeds[MMM].size());
471  running_meanY[MMM] = (running_meanY[NNN]*seeds[NNN].size() + running_meanY[MMM]*seeds[MMM].size()) / (seeds[NNN].size()+seeds[MMM].size());
472 
473  // update min/max X and Y for box containing the hits in the merged cluster:
474  if ( seed_minX[NNN] <= seed_minX[MMM] ) seed_minX[MMM] = seed_minX[NNN];
475  if ( seed_maxX[NNN] > seed_maxX[MMM] ) seed_maxX[MMM] = seed_maxX[NNN];
476  if ( seed_minY[NNN] <= seed_minY[MMM] ) seed_minY[MMM] = seed_minY[NNN];
477  if ( seed_maxY[NNN] > seed_maxY[MMM] ) seed_maxY[MMM] = seed_maxY[NNN];
478 
479  // add seed NNN to MMM (lower to larger number)
480  seeds[MMM].insert(seeds[MMM].end(),seeds[NNN].begin(),seeds[NNN].end());
481 
482  // mark seed NNN as used (at the moment just set running mean to 999999.)
483  running_meanX[NNN] = 999999.;
484  running_meanY[NNN] = 999999.;
485  // we have merged a seed (NNN) to the highter seed (MMM) - need to contimue to
486  // next seed (NNN+1)
487  break;
488  }
489 
490  }
491  }
492 
493  // hand over the final seeds to the output
494  // would be more elegant if we could do the above step with
495  // erasing the merged ones, rather than the
496  for(size_t NNN = 0; NNN < seeds.size(); ++NNN) {
497  if(running_meanX[NNN] == 999999.) continue; //skip seeds that have been marked as used up in merging
498  rechits_clusters.push_back(seeds[NNN]);
499  }
500 
501  //***************************************************************
502 
503  return rechits_clusters;
504 }
#define LogDebug(id)
int i
Definition: DBlmapReader.cc:9
double dXclusBoxMax
Definition: CSCSegAlgoST.h:173
const CSCChamber * theChamber
Definition: CSCSegAlgoST.h:117
#define end
Definition: vmac.h:38
double dYclusBoxMax
Definition: CSCSegAlgoST.h:174
#define begin
Definition: vmac.h:31
Definition: DDAxes.h:10
tuple size
Write out results.
void CSCSegAlgoST::correctTheCovMatrix ( CLHEP::HepMatrix &  IC)
private

Definition at line 2055 of file CSCSegAlgoST.cc.

References condSeed1_, condSeed2_, covAnyNumber_, covToAnyNumber_, covToAnyNumberAll_, and mathSSE::sqrt().

Referenced by fillChiSquared(), and fitSlopes().

2055  {
2056  double condNumberCorr1=0.0;
2057  double condNumberCorr2=0.0;
2058  double detCov=0.0;
2059  double diag1=0.0;
2060  double diag2=0.0;
2061  double IC_12_corr=0.0;
2062  double IC_11_corr=0.0;
2063  if(!covToAnyNumberAll_){
2064  condNumberCorr1=condSeed1_*IC(2,2);
2065  condNumberCorr2=condSeed2_*IC(2,2);
2066  diag1=IC(1,1)*IC(2,2);
2067  diag2=IC(1,2)*IC(1,2);
2068  detCov=fabs(diag1-diag2);
2069  if((diag1<condNumberCorr2)&&(diag2<condNumberCorr2)){
2070  if(covToAnyNumber_)
2071  IC(1,2)=covAnyNumber_;
2072  else{
2073  IC_11_corr=condSeed1_+fabs(IC(1,2))/IC(2,2);
2074  IC(1,1)=IC_11_corr;
2075  }
2076  }
2077 
2078  if(((detCov<condNumberCorr2)&&(diag1>condNumberCorr2))||
2079  ((diag2>condNumberCorr2)&&(detCov<condNumberCorr2)
2080  )){
2081  if(covToAnyNumber_)
2082  IC(1,2)=covAnyNumber_;
2083  else{
2084  IC_12_corr=sqrt(fabs(diag1-condNumberCorr2));
2085  if(IC(1,2)<0)
2086  IC(1,2)=(-1)*IC_12_corr;
2087  else
2088  IC(1,2)=IC_12_corr;
2089  }
2090  }
2091  }
2092  else{
2093  IC(1,2)=covAnyNumber_;
2094  }
2095 }
double condSeed1_
Correct the error matrix for the condition number.
Definition: CSCSegAlgoST.h:209
double covAnyNumber_
Allow to use any number for covariance for all RecHits.
Definition: CSCSegAlgoST.h:212
T sqrt(T t)
Definition: SSEVec.h:28
bool covToAnyNumberAll_
Allow to use any number for covariance (by hand)
Definition: CSCSegAlgoST.h:211
bool covToAnyNumber_
The correction parameters.
Definition: CSCSegAlgoST.h:210
double condSeed2_
Definition: CSCSegAlgoST.h:209
void CSCSegAlgoST::correctTheCovX ( void  )
private

Vectors of coordinates

Prepare the sums for the standard linear fit

Make a primitive one dimentional fit in U-Z plane U=U0+UZ*Z fit parameters

Calculate the fit line trace Calculate one dimentional chi^2 and normilize the errors if needed

Max contribution in case of big correction factor

Definition at line 1980 of file CSCSegAlgoST.cc.

References chi2Norm_2D_, CSCRecHit2D::cscDetId(), e_Cxx, i, CSCChamber::layer(), CSCDetId::layer(), CSCRecHit2D::localPosition(), CSCRecHit2D::localPositionError(), maxContrIndex, funct::pow(), prePrunLimit_, protoChiUCorrection, protoSegment, mathSSE::sqrt(), theChamber, GeomDet::toGlobal(), GeomDet::toLocal(), v, PV3DBase< T, PVType, FrameType >::x(), LocalError::xx(), PV3DBase< T, PVType, FrameType >::y(), detailsBasic3DVector::z, and PV3DBase< T, PVType, FrameType >::z().

Referenced by fitSlopes().

1980  {
1981  std::vector<double> uu, vv, zz;
1982  //std::vector<double> e_Cxx;
1983  e_Cxx.clear();
1984  double sum_U_err=0.0;
1985  double sum_Z_U_err=0.0;
1986  double sum_Z2_U_err=0.0;
1987  double sum_U_U_err=0.0;
1988  double sum_UZ_U_err=0.0;
1989  std::vector<double> chiUZind;
1990  std::vector<double>::iterator chiContribution;
1991  double chiUZ=0.0;
1992  ChamberHitContainer::const_iterator ih = protoSegment.begin();
1993  for (ih = protoSegment.begin(); ih != protoSegment.end(); ++ih) {
1994  const CSCRecHit2D& hit = (**ih);
1995  e_Cxx.push_back(hit.localPositionError().xx());
1996  //
1997  const CSCLayer* layer = theChamber->layer(hit.cscDetId().layer());
1998  GlobalPoint gp = layer->toGlobal(hit.localPosition());
1999  LocalPoint lp = theChamber->toLocal(gp);
2000  // ptc: Local position of hit w.r.t. chamber
2001  double u = lp.x();
2002  double v = lp.y();
2003  double z = lp.z();
2004  uu.push_back(u);
2005  vv.push_back(v);
2006  zz.push_back(z);
2008  sum_U_err += 1./e_Cxx.back();
2009  sum_Z_U_err += z/e_Cxx.back();
2010  sum_Z2_U_err += (z*z)/e_Cxx.back();
2011  sum_U_U_err += u/e_Cxx.back();
2012  sum_UZ_U_err += (u*z)/e_Cxx.back();
2013  }
2014 
2017 
2018  double denom=sum_U_err*sum_Z2_U_err-pow(sum_Z_U_err,2);
2019  double U0=(sum_Z2_U_err*sum_U_U_err-sum_Z_U_err*sum_UZ_U_err)/denom;
2020  double UZ=(sum_U_err*sum_UZ_U_err-sum_Z_U_err*sum_U_U_err)/denom;
2021 
2024 
2025  for(unsigned i=0; i<uu.size(); ++i){
2026  double uMean = U0+UZ*zz[i];
2027  chiUZind.push_back((pow((uMean-uu[i]),2))/e_Cxx[i]);
2028  chiUZ += (pow((uMean-uu[i]),2))/e_Cxx[i];
2029  }
2030  chiUZ = chiUZ/(uu.size()-2);
2031 
2032  if(chiUZ>=chi2Norm_2D_){
2034  for(unsigned i=0; i<uu.size(); ++i)
2036  }
2037 
2039 
2041  chiContribution=max_element(chiUZind.begin(),chiUZind.end());
2042  maxContrIndex = chiContribution - chiUZind.begin();
2043  /*
2044  for(unsigned i=0; i<chiUZind.size();++i){
2045  if(*chiContribution==chiUZind[i]){
2046  maxContrIndex=i;
2047  }
2048  }
2049  */
2050  }
2051  //
2052  //return e_Cxx;
2053 }
double protoChiUCorrection
Allow to correct the error matrix.
Definition: CSCSegAlgoST.h:199
int i
Definition: DBlmapReader.cc:9
float xx() const
Definition: LocalError.h:19
CSCDetId cscDetId() const
Definition: CSCRecHit2D.h:47
const CSCChamber * theChamber
Definition: CSCSegAlgoST.h:117
GlobalPoint toGlobal(const Local2DPoint &lp) const
Conversion to the global R.F. from the R.F. of the GeomDet.
Definition: GeomDet.h:49
T y() const
Definition: PV3DBase.h:57
LocalPoint toLocal(const GlobalPoint &gp) const
Conversion to the R.F. of the GeomDet.
Definition: GeomDet.h:64
ChamberHitContainer protoSegment
Definition: CSCSegAlgoST.h:158
int layer() const
Definition: CSCDetId.h:63
double double double z
LocalError localPositionError() const
Definition: CSCRecHit2D.h:46
T sqrt(T t)
Definition: SSEVec.h:28
T z() const
Definition: PV3DBase.h:58
const CSCLayer * layer(CSCDetId id) const
Return the layer corresponding to the given id.
Definition: CSCChamber.cc:41
double chi2Norm_2D_
Definition: CSCSegAlgoST.h:201
unsigned maxContrIndex
Chi^2 normalization for the initial fit.
Definition: CSCSegAlgoST.h:203
std::vector< double > e_Cxx
Definition: CSCSegAlgoST.h:200
LocalPoint localPosition() const
Definition: CSCRecHit2D.h:45
T x() const
Definition: PV3DBase.h:56
mathSSE::Vec4< T > v
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:40
double prePrunLimit_
Definition: CSCSegAlgoST.h:207
CLHEP::HepMatrix CSCSegAlgoST::derivativeMatrix ( void  ) const
private

Definition at line 1910 of file CSCSegAlgoST.cc.

References CSCRecHit2D::cscDetId(), CSCChamber::layer(), CSCDetId::layer(), CSCRecHit2D::localPosition(), protoSegment, theChamber, GeomDet::toGlobal(), GeomDet::toLocal(), detailsBasic3DVector::z, and PV3DBase< T, PVType, FrameType >::z().

Referenced by calculateError().

1910  {
1911 
1912  ChamberHitContainer::const_iterator it;
1913  int nhits = protoSegment.size();
1914  CLHEP::HepMatrix matrix(2*nhits, 4);
1915  int row = 0;
1916 
1917  for(it = protoSegment.begin(); it != protoSegment.end(); ++it) {
1918 
1919  const CSCRecHit2D& hit = (**it);
1920  const CSCLayer* layer = theChamber->layer(hit.cscDetId().layer());
1921  GlobalPoint gp = layer->toGlobal(hit.localPosition());
1922  LocalPoint lp = theChamber->toLocal(gp);
1923  float z = lp.z();
1924  ++row;
1925  matrix(row, 1) = 1.;
1926  matrix(row, 3) = z;
1927  ++row;
1928  matrix(row, 2) = 1.;
1929  matrix(row, 4) = z;
1930  }
1931  return matrix;
1932 }
CSCDetId cscDetId() const
Definition: CSCRecHit2D.h:47
const CSCChamber * theChamber
Definition: CSCSegAlgoST.h:117
GlobalPoint toGlobal(const Local2DPoint &lp) const
Conversion to the global R.F. from the R.F. of the GeomDet.
Definition: GeomDet.h:49
LocalPoint toLocal(const GlobalPoint &gp) const
Conversion to the R.F. of the GeomDet.
Definition: GeomDet.h:64
ChamberHitContainer protoSegment
Definition: CSCSegAlgoST.h:158
int layer() const
Definition: CSCDetId.h:63
double double double z
T z() const
Definition: PV3DBase.h:58
const CSCLayer * layer(CSCDetId id) const
Return the layer corresponding to the given id.
Definition: CSCChamber.cc:41
LocalPoint localPosition() const
Definition: CSCRecHit2D.h:45
void CSCSegAlgoST::doSlopesAndChi2 ( void  )
private

Definition at line 1718 of file CSCSegAlgoST.cc.

References fillChiSquared(), and fitSlopes().

Referenced by buildSegments(), and prune_bad_hits().

1718  {
1719  fitSlopes();
1720  fillChiSquared();
1721 }
void fitSlopes(void)
void fillChiSquared(void)
void CSCSegAlgoST::fillChiSquared ( void  )
private

Correct the cov matrix

Definition at line 1808 of file CSCSegAlgoST.cc.

References correctTheCovMatrix(), CSCRecHit2D::cscDetId(), e_Cxx, CSCChamber::layer(), CSCDetId::layer(), CSCRecHit2D::localPosition(), CSCRecHit2D::localPositionError(), LogDebug, passCondNumber, passCondNumber_2, protoChi2, protoIntercept, protoNDF, protoSegment, protoSlope_u, protoSlope_v, theChamber, GeomDet::toGlobal(), GeomDet::toLocal(), v, PV3DBase< T, PVType, FrameType >::x(), LocalError::xx(), LocalError::xy(), PV3DBase< T, PVType, FrameType >::y(), LocalError::yy(), detailsBasic3DVector::z, and PV3DBase< T, PVType, FrameType >::z().

Referenced by doSlopesAndChi2().

1808  {
1809 
1810  double chsq = 0.;
1811 
1812  ChamberHitContainer::const_iterator ih;
1813  for (ih = protoSegment.begin(); ih != protoSegment.end(); ++ih) {
1814 
1815  const CSCRecHit2D& hit = (**ih);
1816  const CSCLayer* layer = theChamber->layer(hit.cscDetId().layer());
1817  GlobalPoint gp = layer->toGlobal(hit.localPosition());
1818  LocalPoint lp = theChamber->toLocal(gp);
1819 
1820  double u = lp.x();
1821  double v = lp.y();
1822  double z = lp.z();
1823 
1824  double du = protoIntercept.x() + protoSlope_u * z - u;
1825  double dv = protoIntercept.y() + protoSlope_v * z - v;
1826 
1827  CLHEP::HepMatrix IC(2,2);
1829  IC(1,1) = e_Cxx.at(ih-protoSegment.begin());
1830  }
1831  else{
1832  IC(1,1) = hit.localPositionError().xx();
1833  }
1834  // IC(1,1) = hit.localPositionError().xx();
1835  IC(1,2) = hit.localPositionError().xy();
1836  IC(2,2) = hit.localPositionError().yy();
1837  IC(2,1) = IC(1,2);
1839  if(passCondNumber_2){
1840  correctTheCovMatrix(IC);
1841  }
1842 
1843  // Invert covariance matrix
1844  int ierr = 0;
1845  IC.invert(ierr);
1846  if (ierr != 0) {
1847  LogDebug("CSCSegment|CSC") << "CSCSegment::fillChiSquared: failed to invert covariance matrix=\n" << IC;
1848  // std::cout << "CSCSegment::fillChiSquared: failed to invert covariance matrix=\n" << IC << "\n";
1849 
1850  }
1851 
1852  chsq += du*du*IC(1,1) + 2.*du*dv*IC(1,2) + dv*dv*IC(2,2);
1853  }
1854 
1855  protoChi2 = chsq;
1856  protoNDF = 2.*protoSegment.size() - 4;
1857 }
#define LogDebug(id)
float xx() const
Definition: LocalError.h:19
CSCDetId cscDetId() const
Definition: CSCRecHit2D.h:47
bool passCondNumber
The number to fource the Covariance.
Definition: CSCSegAlgoST.h:213
void correctTheCovMatrix(CLHEP::HepMatrix &IC)
const CSCChamber * theChamber
Definition: CSCSegAlgoST.h:117
GlobalPoint toGlobal(const Local2DPoint &lp) const
Conversion to the global R.F. from the R.F. of the GeomDet.
Definition: GeomDet.h:49
T y() const
Definition: PV3DBase.h:57
float protoSlope_v
Definition: CSCSegAlgoST.h:160
LocalPoint toLocal(const GlobalPoint &gp) const
Conversion to the R.F. of the GeomDet.
Definition: GeomDet.h:64
ChamberHitContainer protoSegment
Definition: CSCSegAlgoST.h:158
int layer() const
Definition: CSCDetId.h:63
float protoSlope_u
Definition: CSCSegAlgoST.h:159
double double double z
float xy() const
Definition: LocalError.h:20
LocalError localPositionError() const
Definition: CSCRecHit2D.h:46
float yy() const
Definition: LocalError.h:21
T z() const
Definition: PV3DBase.h:58
double protoNDF
Definition: CSCSegAlgoST.h:163
double protoChi2
Definition: CSCSegAlgoST.h:162
const CSCLayer * layer(CSCDetId id) const
Return the layer corresponding to the given id.
Definition: CSCChamber.cc:41
bool passCondNumber_2
Passage the condition number calculations.
Definition: CSCSegAlgoST.h:214
std::vector< double > e_Cxx
Definition: CSCSegAlgoST.h:200
LocalPoint localPosition() const
Definition: CSCRecHit2D.h:45
T x() const
Definition: PV3DBase.h:56
mathSSE::Vec4< T > v
LocalPoint protoIntercept
Definition: CSCSegAlgoST.h:161
void CSCSegAlgoST::fillLocalDirection ( void  )
private

Definition at line 1861 of file CSCSegAlgoST.cc.

References protoDirection, protoIntercept, protoSlope_u, protoSlope_v, mathSSE::sqrt(), theChamber, GeomDet::toGlobal(), csvLumiCalc::unit, and detailsBasic3DVector::z.

Referenced by buildSegments(), and prune_bad_hits().

1861  {
1862  // Always enforce direction of segment to point from IP outwards
1863  // (Incorrect for particles not coming from IP, of course.)
1864 
1865  double dxdz = protoSlope_u;
1866  double dydz = protoSlope_v;
1867  double dz = 1./sqrt(1. + dxdz*dxdz + dydz*dydz);
1868  double dx = dz*dxdz;
1869  double dy = dz*dydz;
1870  LocalVector localDir(dx,dy,dz);
1871 
1872  // localDir may need sign flip to ensure it points outward from IP
1873  // ptc: Examine its direction and origin in global z: to point outward
1874  // the localDir should always have same sign as global z...
1875 
1876  double globalZpos = ( theChamber->toGlobal( protoIntercept ) ).z();
1877  double globalZdir = ( theChamber->toGlobal( localDir ) ).z();
1878  double directionSign = globalZpos * globalZdir;
1879  protoDirection = (directionSign * localDir).unit();
1880 }
const CSCChamber * theChamber
Definition: CSCSegAlgoST.h:117
GlobalPoint toGlobal(const Local2DPoint &lp) const
Conversion to the global R.F. from the R.F. of the GeomDet.
Definition: GeomDet.h:49
float protoSlope_v
Definition: CSCSegAlgoST.h:160
float protoSlope_u
Definition: CSCSegAlgoST.h:159
double double double z
LocalVector protoDirection
Definition: CSCSegAlgoST.h:164
string unit
Definition: csvLumiCalc.py:46
T sqrt(T t)
Definition: SSEVec.h:28
LocalPoint protoIntercept
Definition: CSCSegAlgoST.h:161
void CSCSegAlgoST::findDuplicates ( std::vector< CSCSegment > &  segments)
private

Definition at line 2097 of file CSCSegAlgoST.cc.

Referenced by run().

2097  {
2098  // this is intended for ME1/1a only - we have ghost segments because of the strips ganging
2099  // this function finds them (first the rechits by sharesInput() )
2100  // if a segment shares all the rechits with another segment it is a duplicate (even if
2101  // it has less rechits)
2102 
2103  for(std::vector<CSCSegment>::iterator it=segments.begin(); it != segments.end(); ++it) {
2104  std::vector<CSCSegment*> duplicateSegments;
2105  for(std::vector<CSCSegment>::iterator it2=segments.begin(); it2 != segments.end(); ++it2) {
2106  //
2107  bool allShared = true;
2108  if(it!=it2){
2109  allShared = it->sharesRecHits(*it2);
2110  }
2111  else{
2112  allShared = false;
2113  }
2114  //
2115  if(allShared){
2116  duplicateSegments.push_back(&(*it2));
2117  }
2118  }
2119  it->setDuplicateSegments(duplicateSegments);
2120  }
2121 
2122 }
void CSCSegAlgoST::fitSlopes ( void  )
private

Vector of the error matrix (only xx)

Correct the cov matrix

Definition at line 1727 of file CSCSegAlgoST.cc.

References correctTheCovMatrix(), correctTheCovX(), CSCRecHit2D::cscDetId(), e_Cxx, CSCChamber::layer(), CSCDetId::layer(), CSCRecHit2D::localPosition(), CSCRecHit2D::localPositionError(), LogDebug, L1TEmulatorMonitor_cff::p, passCondNumber, passCondNumber_2, protoIntercept, protoSegment, protoSlope_u, protoSlope_v, theChamber, GeomDet::toGlobal(), GeomDet::toLocal(), v, PV3DBase< T, PVType, FrameType >::x(), LocalError::xx(), LocalError::xy(), PV3DBase< T, PVType, FrameType >::y(), LocalError::yy(), detailsBasic3DVector::z, and PV3DBase< T, PVType, FrameType >::z().

Referenced by doSlopesAndChi2().

1727  {
1728  e_Cxx.clear();
1730  correctTheCovX();
1731  if(e_Cxx.size()!=protoSegment.size()){
1732  LogDebug("CSCSegment|segmWierd") << "e_Cxx.size()!=protoSegment.size() IT IS A SERIOUS PROBLEM!!! " <<std::endl;
1733  }
1734  }
1735  CLHEP::HepMatrix M(4,4,0);
1736  CLHEP::HepVector B(4,0);
1737  ChamberHitContainer::const_iterator ih = protoSegment.begin();
1738  for (ih = protoSegment.begin(); ih != protoSegment.end(); ++ih) {
1739  const CSCRecHit2D& hit = (**ih);
1740  const CSCLayer* layer = theChamber->layer(hit.cscDetId().layer());
1741  GlobalPoint gp = layer->toGlobal(hit.localPosition());
1742  LocalPoint lp = theChamber->toLocal(gp);
1743  // ptc: Local position of hit w.r.t. chamber
1744  double u = lp.x();
1745  double v = lp.y();
1746  double z = lp.z();
1747  // ptc: Covariance matrix of local errors
1748  CLHEP::HepMatrix IC(2,2);
1750  IC(1,1) = e_Cxx.at(ih-protoSegment.begin());
1751  }
1752  else{
1753  IC(1,1) = hit.localPositionError().xx();
1754  }
1755  // IC(1,1) = hit.localPositionError().xx();
1756  IC(1,2) = hit.localPositionError().xy();
1757  IC(2,2) = hit.localPositionError().yy();
1758  IC(2,1) = IC(1,2); // since Cov is symmetric
1760  if(passCondNumber_2){
1761  correctTheCovMatrix(IC);
1762  }
1763  // ptc: Invert covariance matrix (and trap if it fails!)
1764  int ierr = 0;
1765  IC.invert(ierr); // inverts in place
1766  if (ierr != 0) {
1767  LogDebug("CSCSegment|CSC") << "CSCSegment::fitSlopes: failed to invert covariance matrix=\n" << IC;
1768  // std::cout<< "CSCSegment::fitSlopes: failed to invert covariance matrix=\n" << IC << "\n"<<std::endl;
1769  }
1770 
1771  M(1,1) += IC(1,1);
1772  M(1,2) += IC(1,2);
1773  M(1,3) += IC(1,1) * z;
1774  M(1,4) += IC(1,2) * z;
1775  B(1) += u * IC(1,1) + v * IC(1,2);
1776 
1777  M(2,1) += IC(2,1);
1778  M(2,2) += IC(2,2);
1779  M(2,3) += IC(2,1) * z;
1780  M(2,4) += IC(2,2) * z;
1781  B(2) += u * IC(2,1) + v * IC(2,2);
1782 
1783  M(3,1) += IC(1,1) * z;
1784  M(3,2) += IC(1,2) * z;
1785  M(3,3) += IC(1,1) * z * z;
1786  M(3,4) += IC(1,2) * z * z;
1787  B(3) += ( u * IC(1,1) + v * IC(1,2) ) * z;
1788 
1789  M(4,1) += IC(2,1) * z;
1790  M(4,2) += IC(2,2) * z;
1791  M(4,3) += IC(2,1) * z * z;
1792  M(4,4) += IC(2,2) * z * z;
1793  B(4) += ( u * IC(2,1) + v * IC(2,2) ) * z;
1794  }
1795  CLHEP::HepVector p = solve(M, B);
1796 
1797  // Update member variables
1798  // Note that origin has local z = 0
1799  protoIntercept = LocalPoint(p(1), p(2), 0.);
1800  protoSlope_u = p(3);
1801  protoSlope_v = p(4);
1802 }
#define LogDebug(id)
float xx() const
Definition: LocalError.h:19
CSCDetId cscDetId() const
Definition: CSCRecHit2D.h:47
bool passCondNumber
The number to fource the Covariance.
Definition: CSCSegAlgoST.h:213
void correctTheCovMatrix(CLHEP::HepMatrix &IC)
double_binary B
Definition: DDStreamer.cc:235
const CSCChamber * theChamber
Definition: CSCSegAlgoST.h:117
void correctTheCovX(void)
GlobalPoint toGlobal(const Local2DPoint &lp) const
Conversion to the global R.F. from the R.F. of the GeomDet.
Definition: GeomDet.h:49
T y() const
Definition: PV3DBase.h:57
float protoSlope_v
Definition: CSCSegAlgoST.h:160
LocalPoint toLocal(const GlobalPoint &gp) const
Conversion to the R.F. of the GeomDet.
Definition: GeomDet.h:64
ChamberHitContainer protoSegment
Definition: CSCSegAlgoST.h:158
int layer() const
Definition: CSCDetId.h:63
float protoSlope_u
Definition: CSCSegAlgoST.h:159
double double double z
float xy() const
Definition: LocalError.h:20
LocalError localPositionError() const
Definition: CSCRecHit2D.h:46
float yy() const
Definition: LocalError.h:21
T z() const
Definition: PV3DBase.h:58
const CSCLayer * layer(CSCDetId id) const
Return the layer corresponding to the given id.
Definition: CSCChamber.cc:41
bool passCondNumber_2
Passage the condition number calculations.
Definition: CSCSegAlgoST.h:214
Local3DPoint LocalPoint
Definition: LocalPoint.h:11
std::vector< double > e_Cxx
Definition: CSCSegAlgoST.h:200
LocalPoint localPosition() const
Definition: CSCRecHit2D.h:45
T x() const
Definition: PV3DBase.h:56
mathSSE::Vec4< T > v
LocalPoint protoIntercept
Definition: CSCSegAlgoST.h:161
void CSCSegAlgoST::flipErrors ( AlgebraicSymMatrix a) const
private

Definition at line 1954 of file CSCSegAlgoST.cc.

References a.

Referenced by buildSegments(), and prune_bad_hits().

1954  {
1955 
1956  // The CSCSegment needs the error matrix re-arranged to match
1957  // parameters in order (uz, vz, u0, v0) where uz, vz = slopes, u0, v0 = intercepts
1958 
1959  AlgebraicSymMatrix hold( a );
1960 
1961  // errors on slopes into upper left
1962  a(1,1) = hold(3,3);
1963  a(1,2) = hold(3,4);
1964  a(2,1) = hold(4,3);
1965  a(2,2) = hold(4,4);
1966 
1967  // errors on positions into lower right
1968  a(3,3) = hold(1,1);
1969  a(3,4) = hold(1,2);
1970  a(4,3) = hold(2,1);
1971  a(4,4) = hold(2,2);
1972 
1973  // must also interchange off-diagonal elements of off-diagonal 2x2 submatrices
1974  a(4,1) = hold(2,3);
1975  a(3,2) = hold(1,4);
1976  a(2,3) = hold(4,1); // = hold(1,4)
1977  a(1,4) = hold(3,2); // = hold(2,3)
1978 }
double a
Definition: hdecay.h:121
CLHEP::HepSymMatrix AlgebraicSymMatrix
bool CSCSegAlgoST::isGoodToMerge ( bool  isME11a,
ChamberHitContainer newChain,
ChamberHitContainer oldChain 
)
private

Definition at line 581 of file CSCSegAlgoST.cc.

Referenced by chainHits().

581  {
582  for(size_t iRH_new = 0;iRH_new<newChain.size();++iRH_new){
583  int layer_new = newChain[iRH_new]->cscDetId().layer()-1;
584  int middleStrip_new = newChain[iRH_new]->channels().size()/2;
585  int centralStrip_new = newChain[iRH_new]->channels()[middleStrip_new];
586  int middleWire_new = newChain[iRH_new]->wgroups().size()/2;
587  int centralWire_new = newChain[iRH_new]->wgroups()[middleWire_new];
588  bool layerRequirementOK = false;
589  bool stripRequirementOK = false;
590  bool wireRequirementOK = false;
591  bool goodToMerge = false;
592  for(size_t iRH_old = 0;iRH_old<oldChain.size();++iRH_old){
593  int layer_old = oldChain[iRH_old]->cscDetId().layer()-1;
594  int middleStrip_old = oldChain[iRH_old]->channels().size()/2;
595  int centralStrip_old = oldChain[iRH_old]->channels()[middleStrip_old];
596  int middleWire_old = oldChain[iRH_old]->wgroups().size()/2;
597  int centralWire_old = oldChain[iRH_old]->wgroups()[middleWire_old];
598 
599  // to be chained, two hits need to be in neighbouring layers...
600  // or better allow few missing layers (upto 3 to avoid inefficiencies);
601  // however we'll not make an angle correction because it
602  // worsen the situation in some of the "regular" cases
603  // (not making the correction means that the conditions for
604  // forming a cluster are different if we have missing layers -
605  // this could affect events at the boundaries )
606  if(layer_new==layer_old+1 || layer_new==layer_old-1 ||
607  layer_new==layer_old+2 || layer_new==layer_old-2 ||
608  layer_new==layer_old+3 || layer_new==layer_old-3 ||
609  layer_new==layer_old+4 || layer_new==layer_old-4 ){
610  layerRequirementOK = true;
611  }
612  int allStrips = 48;
613  //to be chained, two hits need to be "close" in strip number (can do it in phi
614  // but it doesn't really matter); let "close" means upto 2 strips (3?) -
615  // this is more compared to what CLCT readout patterns allow
616  if(centralStrip_new==centralStrip_old ||
617  centralStrip_new==centralStrip_old+1 || centralStrip_new==centralStrip_old-1 ||
618  centralStrip_new==centralStrip_old+2 || centralStrip_new==centralStrip_old-2){
619  stripRequirementOK = true;
620  }
621  // same for wires (and ALCT patterns)
622  if(centralWire_new==centralWire_old ||
623  centralWire_new==centralWire_old+1 || centralWire_new==centralWire_old-1 ||
624  centralWire_new==centralWire_old+2 || centralWire_new==centralWire_old-2){
625  wireRequirementOK = true;
626  }
627 
628  if(isME11a){
629  if(centralStrip_new==centralStrip_old+1-allStrips || centralStrip_new==centralStrip_old-1-allStrips ||
630  centralStrip_new==centralStrip_old+2-allStrips || centralStrip_new==centralStrip_old-2-allStrips ||
631  centralStrip_new==centralStrip_old+1+allStrips || centralStrip_new==centralStrip_old-1+allStrips ||
632  centralStrip_new==centralStrip_old+2+allStrips || centralStrip_new==centralStrip_old-2+allStrips){
633  stripRequirementOK = true;
634  }
635  }
636  if(layerRequirementOK && stripRequirementOK && wireRequirementOK){
637  goodToMerge = true;
638  return goodToMerge;
639  }
640  }
641  }
642  return false;
643 }
std::vector< CSCSegment > CSCSegAlgoST::prune_bad_hits ( const CSCChamber aChamber,
std::vector< CSCSegment > &  segments 
)

Remove bad hits from found segments based not only on chi2, but also on charge and further "low level" chamber information.

Definition at line 180 of file CSCSegAlgoST.cc.

References begin, BPMinImprovement, BrutePruning, calculateError(), CSCSegment::chi2(), chi2Norm_3D_, ChiSquaredProbability(), correctCov_, doSlopesAndChi2(), fillLocalDirection(), flipErrors(), CSCChamber::layer(), m, minHitsPerSegment, CSCSegment::nRecHits(), passCondNumber, passCondNumber_2, protoChi2, protoChiUCorrection, protoDirection, protoIntercept, protoNDF, protoSegment, CosmicsPD_Skims::radius, cond::rpcobtemp::temp, theChamber, GeomDet::toGlobal(), PV3DBase< T, PVType, FrameType >::x(), LocalError::xx(), PV3DBase< T, PVType, FrameType >::y(), and PV3DBase< T, PVType, FrameType >::z().

Referenced by run().

180  {
181 
182  // std::cout<<"*************************************************************"<<std::endl;
183  // std::cout<<"Called prune_bad_hits in Chamber "<< theChamber->specs()->chamberTypeName()<<std::endl;
184  // std::cout<<"*************************************************************"<<std::endl;
185 
186  std::vector<CSCSegment> segments_temp;
187  std::vector<ChamberHitContainer> rechits_clusters; // this is a collection of groups of rechits
188 
189  const float chi2ndfProbMin = 1.0e-4;
190  bool use_brute_force = BrutePruning;
191 
192  int hit_nr = 0;
193  int hit_nr_worst = -1;
194  int hit_nr_2ndworst = -1;
195 
196  for(std::vector<CSCSegment>::iterator it=segments.begin(); it != segments.end(); ++it) {
197 
198  // do nothing for nhit <= minHitPerSegment
199  if( (*it).nRecHits() <= minHitsPerSegment ) continue;
200 
201  if( !use_brute_force ) {// find worst hit
202 
203  float chisq = (*it).chi2();
204  int nhits = (*it).nRecHits();
205  LocalPoint localPos = (*it).localPosition();
206  LocalVector segDir = (*it).localDirection();
207  const CSCChamber* cscchamber = theChamber;
208  float globZ ;
209 
210  GlobalPoint globalPosition = cscchamber->toGlobal(localPos);
211  globZ = globalPosition.z();
212 
213 
214  if( ChiSquaredProbability((double)chisq,(double)(2*nhits-4)) < chi2ndfProbMin ) {
215 
216  // find (rough) "residuals" (NOT excluding the hit from the fit - speed!) of hits on segment
217  std::vector<CSCRecHit2D> theseRecHits = (*it).specificRecHits();
218  std::vector<CSCRecHit2D>::const_iterator iRH_worst;
219  float xdist_local = -99999.;
220 
221  float xdist_local_worst_sig = -99999.;
222  float xdist_local_2ndworst_sig = -99999.;
223  float xdist_local_sig = -99999.;
224 
225  hit_nr = 0;
226  hit_nr_worst = -1;
227  hit_nr_2ndworst = -1;
228 
229  for ( std::vector<CSCRecHit2D>::const_iterator iRH = theseRecHits.begin(); iRH != theseRecHits.end(); ++iRH) {
230  //mark "worst" hit:
231 
232  float z_at_target ;
233  float radius ;
234  float loc_x_at_target ;
235  float loc_y_at_target ;
236  float loc_z_at_target ;
237 
238  z_at_target = 0.;
239  loc_x_at_target = 0.;
240  loc_y_at_target = 0.;
241  loc_z_at_target = 0.;
242  radius = 0.;
243 
244  // set the z target in CMS global coordinates:
245  const CSCLayer* csclayerRH = theChamber->layer((*iRH).cscDetId().layer());
246  LocalPoint localPositionRH = (*iRH).localPosition();
247  GlobalPoint globalPositionRH = csclayerRH->toGlobal(localPositionRH);
248 
249  LocalError rerrlocal = (*iRH).localPositionError();
250  float xxerr = rerrlocal.xx();
251 
252  float target_z = globalPositionRH.z(); // target z position in cm (z pos of the hit)
253 
254  if(target_z > 0.) {
255  loc_x_at_target = localPos.x() + (segDir.x()/fabs(segDir.z())*( target_z - globZ ));
256  loc_y_at_target = localPos.y() + (segDir.y()/fabs(segDir.z())*( target_z - globZ ));
257  loc_z_at_target = target_z;
258  }
259  else {
260  loc_x_at_target = localPos.x() + ((-1)*segDir.x()/fabs(segDir.z())*( target_z - globZ ));
261  loc_y_at_target = localPos.y() + ((-1)*segDir.y()/fabs(segDir.z())*( target_z - globZ ));
262  loc_z_at_target = target_z;
263  }
264  // have to transform the segments coordinates back to the local frame... how?!!!!!!!!!!!!
265 
266  xdist_local = fabs(localPositionRH.x() - loc_x_at_target);
267  xdist_local_sig = fabs((localPositionRH.x() -loc_x_at_target)/(xxerr));
268 
269  if( xdist_local_sig > xdist_local_worst_sig ) {
270  xdist_local_2ndworst_sig = xdist_local_worst_sig;
271  xdist_local_worst_sig = xdist_local_sig;
272  iRH_worst = iRH;
273  hit_nr_2ndworst = hit_nr_worst;
274  hit_nr_worst = hit_nr;
275  }
276  else if(xdist_local_sig > xdist_local_2ndworst_sig) {
277  xdist_local_2ndworst_sig = xdist_local_sig;
278  hit_nr_2ndworst = hit_nr;
279  }
280  ++hit_nr;
281  }
282 
283  // reset worst hit number if certain criteria apply.
284  // Criteria: 2nd worst hit must be at least a factor of
285  // 1.5 better than the worst in terms of sigma:
286  if ( xdist_local_worst_sig / xdist_local_2ndworst_sig < 1.5 ) {
287  hit_nr_worst = -1;
288  hit_nr_2ndworst = -1;
289  }
290  }
291  }
292 
293  // if worst hit was found, refit without worst hit and select if considerably better than original fit.
294  // Can also use brute force: refit all n-1 hit segments and choose one over the n hit if considerably "better"
295 
296  std::vector< CSCRecHit2D > buffer;
297  std::vector< std::vector< CSCRecHit2D > > reduced_segments;
298  std::vector< CSCRecHit2D > theseRecHits = (*it).specificRecHits();
299  float best_red_seg_prob = 0.0;
300  // usefor chi2 1 diff float best_red_seg_prob = 99999.;
301  buffer.clear();
302 
303  if( ChiSquaredProbability((double)(*it).chi2(),(double)((2*(*it).nRecHits())-4)) < chi2ndfProbMin ) {
304 
305  buffer = theseRecHits;
306 
307  // Dirty switch: here one can select to refit all possible subsets or just the one without the
308  // tagged worst hit:
309  if( use_brute_force ) { // Brute force method: loop over all possible segments:
310  for(size_t bi = 0; bi < buffer.size(); ++bi) {
311  reduced_segments.push_back(buffer);
312  reduced_segments[bi].erase(reduced_segments[bi].begin()+(bi),reduced_segments[bi].begin()+(bi+1));
313  }
314  }
315  else { // More elegant but still biased: erase only worst hit
316  // Comment: There is not a very strong correlation of the worst hit with the one that one should remove...
317  if( hit_nr_worst >= 0 && hit_nr_worst <= int(buffer.size()) ) {
318  // fill segment in buffer, delete worst hit
319  buffer.erase(buffer.begin()+(hit_nr_worst),buffer.begin()+(hit_nr_worst+1));
320  reduced_segments.push_back(buffer);
321  }
322  else {
323  // only fill segment in array, do not delete anything
324  reduced_segments.push_back(buffer);
325  }
326  }
327  }
328 
329  // Loop over the subsegments and fit (only one segment if "use_brute_force" is false):
330  for(size_t iSegment=0; iSegment<reduced_segments.size(); ++iSegment) {
331  // loop over hits on given segment and push pointers to hits into protosegment
332  protoSegment.clear();
333  for(size_t m = 0; m<reduced_segments[iSegment].size(); ++m ) {
334  protoSegment.push_back(&reduced_segments[iSegment][m]);
335  }
336  passCondNumber=false;
337  passCondNumber_2 = false;
339  doSlopesAndChi2();
340  // Attempt to handle numerical instability of the fit;
341  // The same as in the build method;
342  // Preprune is not applied;
343  if(correctCov_){
345  passCondNumber = true;
346  doSlopesAndChi2();
347  }
349  passCondNumber_2=true;
350  doSlopesAndChi2();
351  }
352  }
354  // calculate error matrix
355  AlgebraicSymMatrix protoErrors = calculateError();
356  // but reorder components to match what's required by TrackingRecHit interface
357  // i.e. slopes first, then positions
358  flipErrors( protoErrors );
359  //
361 
362  // replace n hit segment with n-1 hit segment, if segment probability is BPMinImprovement better:
363  if( ( ChiSquaredProbability((double)(*it).chi2(),(double)((2*(*it).nRecHits())-4))
364  <
365  (1./BPMinImprovement)*(ChiSquaredProbability((double)temp.chi2(),(double)(2*temp.nRecHits()-4))) ) // was (1.e-3) 081202
366 
367  &&
368  ( (ChiSquaredProbability((double)temp.chi2(),(double)(2*temp.nRecHits()-4)))
369  > best_red_seg_prob
370  )
371  &&
372  ( (ChiSquaredProbability((double)temp.chi2(),(double)(2*temp.nRecHits()-4))) > 1e-10 )
373  ) {
374  best_red_seg_prob = ChiSquaredProbability((double)temp.chi2(),(double)(2*temp.nRecHits()-4));
375  // The alternative n-1 segment is much cleaner. If this segment
376  // has >= minHitsPerSegment hits exchange current n hit segment (*it)
377  // with better n-1 hit segment:
378  if( temp.nRecHits() >= minHitsPerSegment ) {
379  (*it) = temp;
380  }
381  }
382  }
383  }
384 
385  return segments;
386 
387 }
double protoChiUCorrection
Allow to correct the error matrix.
Definition: CSCSegAlgoST.h:199
float xx() const
Definition: LocalError.h:19
bool passCondNumber
The number to fource the Covariance.
Definition: CSCSegAlgoST.h:213
void doSlopesAndChi2(void)
const CSCChamber * theChamber
Definition: CSCSegAlgoST.h:117
GlobalPoint toGlobal(const Local2DPoint &lp) const
Conversion to the global R.F. from the R.F. of the GeomDet.
Definition: GeomDet.h:49
T y() const
Definition: PV3DBase.h:57
ChamberHitContainer protoSegment
Definition: CSCSegAlgoST.h:158
LocalVector protoDirection
Definition: CSCSegAlgoST.h:164
double BPMinImprovement
Definition: CSCSegAlgoST.h:180
T z() const
Definition: PV3DBase.h:58
double protoNDF
Definition: CSCSegAlgoST.h:163
double protoChi2
Definition: CSCSegAlgoST.h:162
const CSCLayer * layer(CSCDetId id) const
Return the layer corresponding to the given id.
Definition: CSCChamber.cc:41
float ChiSquaredProbability(double chiSquared, double nrDOF)
void flipErrors(AlgebraicSymMatrix &) const
bool passCondNumber_2
Passage the condition number calculations.
Definition: CSCSegAlgoST.h:214
bool correctCov_
Correct the Error Matrix.
Definition: CSCSegAlgoST.h:198
int minHitsPerSegment
Definition: CSCSegAlgoST.h:170
AlgebraicSymMatrix calculateError(void) const
#define begin
Definition: vmac.h:31
CLHEP::HepSymMatrix AlgebraicSymMatrix
void fillLocalDirection(void)
T x() const
Definition: PV3DBase.h:56
LocalPoint protoIntercept
Definition: CSCSegAlgoST.h:161
double chi2Norm_3D_
Chi^2 normalization for the corrected fit.
Definition: CSCSegAlgoST.h:202
std::vector< CSCSegment > CSCSegAlgoST::run ( const CSCChamber aChamber,
ChamberHitContainer  rechits 
)

Build segments for all desired groups of hits

Definition at line 96 of file CSCSegAlgoST.cc.

References a, a_yweightPenaltyThreshold, b, buildSegments(), chainHits(), CSCChamberSpecs::chamberTypeName(), clusterHits(), findDuplicates(), preClustering, preClustering_useChaining, prune_bad_hits(), Pruning, CSCChamber::specs(), theChamber, and yweightPenaltyThreshold.

96  {
97 
98  // Store chamber in temp memory
99  theChamber = aChamber;
100  // pre-cluster rechits and loop over all sub clusters seperately
101  std::vector<CSCSegment> segments_temp;
102  std::vector<CSCSegment> segments;
103  std::vector<ChamberHitContainer> rechits_clusters; // this is a collection of groups of rechits
104 
105  // Define yweight penalty depending on chamber. We fixed the relative ratios, but
106  // they can be scaled by parameters:
107 
108  for(int a = 0; a<5; ++a) {
109  for(int b = 0; b<5; ++b) {
110  a_yweightPenaltyThreshold[a][b] = 0.0;
111  }
112  }
113 
123 
124  if(preClustering) {
125  // run a pre-clusterer on the given rechits to split obviously separated segment seeds:
127  // it uses X,Y,Z information; there are no configurable parameters used;
128  // the X, Y, Z "cuts" are just (much) wider than the LCT readout ones
129  // (which are actually not step functions); this new code could accomodate
130  // the clusterHits one below but we leave it for security and backward
131  // comparison reasons
132  rechits_clusters = chainHits( theChamber, rechits );
133  }
134  else{
135  // it uses X,Y information + configurable parameters
136  rechits_clusters = clusterHits( theChamber, rechits );
137  }
138  // loop over the found clusters:
139  for(std::vector<ChamberHitContainer>::iterator sub_rechits = rechits_clusters.begin(); sub_rechits != rechits_clusters.end(); ++sub_rechits ) {
140  // clear the buffer for the subset of segments:
141  segments_temp.clear();
142  // build the subset of segments:
143  segments_temp = buildSegments( (*sub_rechits) );
144  // add the found subset of segments to the collection of all segments in this chamber:
145  segments.insert( segments.end(), segments_temp.begin(), segments_temp.end() );
146  }
147  // this is the place to prune:
148  if( Pruning ) {
149  segments_temp.clear(); // segments_temp needed?!?!
150  segments_temp = prune_bad_hits( theChamber, segments );
151  segments.clear(); // segments_temp needed?!?!
152  segments.swap(segments_temp); // segments_temp needed?!?!
153  }
154  if ("ME1/a" == aChamber->specs()->chamberTypeName()){
155  findDuplicates(segments);
156  }
157  return segments;
158  }
159  else {
160  segments = buildSegments(rechits);
161  if( Pruning ) {
162  segments_temp.clear(); // segments_temp needed?!?!
163  segments_temp = prune_bad_hits( theChamber, segments );
164  segments.clear(); // segments_temp needed?!?!
165  segments.swap(segments_temp); // segments_temp needed?!?!
166  }
167  if ("ME1/a" == aChamber->specs()->chamberTypeName()){
168  findDuplicates(segments);
169  }
170  return segments;
171  //return buildSegments(rechits);
172  }
173 }
double yweightPenaltyThreshold
Definition: CSCSegAlgoST.h:190
bool preClustering_useChaining
Definition: CSCSegAlgoST.h:177
const CSCChamber * theChamber
Definition: CSCSegAlgoST.h:117
std::vector< std::vector< const CSCRecHit2D * > > clusterHits(const CSCChamber *aChamber, ChamberHitContainer &rechits)
std::string chamberTypeName() const
const CSCChamberSpecs * specs() const
Definition: CSCChamber.h:42
std::vector< CSCSegment > prune_bad_hits(const CSCChamber *aChamber, std::vector< CSCSegment > &segments)
void findDuplicates(std::vector< CSCSegment > &segments)
double b
Definition: hdecay.h:120
double a
Definition: hdecay.h:121
std::vector< std::vector< const CSCRecHit2D * > > chainHits(const CSCChamber *aChamber, ChamberHitContainer &rechits)
bool preClustering
Definition: CSCSegAlgoST.h:176
float a_yweightPenaltyThreshold[5][5]
Definition: CSCSegAlgoST.h:188
std::vector< CSCSegment > buildSegments(ChamberHitContainer rechits)
double CSCSegAlgoST::theWeight ( double  coordinate_1,
double  coordinate_2,
double  coordinate_3,
float  layer_1,
float  layer_2,
float  layer_3 
)
private

Utility functions.

Definition at line 648 of file CSCSegAlgoST.cc.

Referenced by buildSegments().

648  {
649  double sub_weight = 0;
650  sub_weight = fabs(
651  ( (coordinate_2 - coordinate_3) / (layer_2 - layer_3) ) -
652  ( (coordinate_1 - coordinate_2) / (layer_1 - layer_2) )
653  );
654  return sub_weight;
655 }
AlgebraicSymMatrix CSCSegAlgoST::weightMatrix ( void  ) const
private

Definition at line 1884 of file CSCSegAlgoST.cc.

References CSCRecHit2D::localPositionError(), protoChiUCorrection, protoSegment, LocalError::xx(), LocalError::xy(), and LocalError::yy().

Referenced by calculateError().

1884  {
1885 
1886  std::vector<const CSCRecHit2D*>::const_iterator it;
1887  int nhits = protoSegment.size();
1888  AlgebraicSymMatrix matrix(2*nhits, 0);
1889  int row = 0;
1890 
1891  for (it = protoSegment.begin(); it != protoSegment.end(); ++it) {
1892 
1893  const CSCRecHit2D& hit = (**it);
1894  ++row;
1895  matrix(row, row) = protoChiUCorrection*hit.localPositionError().xx();
1896  matrix(row, row+1) = hit.localPositionError().xy();
1897  ++row;
1898  matrix(row, row-1) = hit.localPositionError().xy();
1899  matrix(row, row) = hit.localPositionError().yy();
1900  }
1901  int ierr;
1902  matrix.invert(ierr);
1903  return matrix;
1904 }
double protoChiUCorrection
Allow to correct the error matrix.
Definition: CSCSegAlgoST.h:199
float xx() const
Definition: LocalError.h:19
ChamberHitContainer protoSegment
Definition: CSCSegAlgoST.h:158
float xy() const
Definition: LocalError.h:20
LocalError localPositionError() const
Definition: CSCRecHit2D.h:46
float yy() const
Definition: LocalError.h:21
CLHEP::HepSymMatrix AlgebraicSymMatrix

Member Data Documentation

float CSCSegAlgoST::a_yweightPenaltyThreshold[5][5]
private

Definition at line 188 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and run().

double CSCSegAlgoST::BPMinImprovement
private

Definition at line 180 of file CSCSegAlgoST.h.

Referenced by CSCSegAlgoST(), and prune_bad_hits().

bool CSCSegAlgoST::BrutePruning
private

Definition at line 179 of file CSCSegAlgoST.h.

Referenced by CSCSegAlgoST(), and prune_bad_hits().

double CSCSegAlgoST::chi2Norm_2D_
private

Definition at line 201 of file CSCSegAlgoST.h.

Referenced by correctTheCovX(), and CSCSegAlgoST().

double CSCSegAlgoST::chi2Norm_3D_
private

Chi^2 normalization for the corrected fit.

Definition at line 202 of file CSCSegAlgoST.h.

Referenced by buildSegments(), CSCSegAlgoST(), and prune_bad_hits().

std::vector< ChamberHitContainer > CSCSegAlgoST::chosen_Psegments
private

Definition at line 131 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::chosen_weight_A
private

Definition at line 140 of file CSCSegAlgoST.h.

Referenced by buildSegments().

double CSCSegAlgoST::condSeed1_
private

Correct the error matrix for the condition number.

The upper limit of protoChiUCorrection to apply prePrun

Definition at line 209 of file CSCSegAlgoST.h.

Referenced by correctTheCovMatrix(), and CSCSegAlgoST().

double CSCSegAlgoST::condSeed2_
private

Definition at line 209 of file CSCSegAlgoST.h.

Referenced by correctTheCovMatrix(), and CSCSegAlgoST().

bool CSCSegAlgoST::correctCov_
private

Correct the Error Matrix.

Definition at line 198 of file CSCSegAlgoST.h.

Referenced by buildSegments(), CSCSegAlgoST(), and prune_bad_hits().

double CSCSegAlgoST::covAnyNumber_
private

Allow to use any number for covariance for all RecHits.

Definition at line 212 of file CSCSegAlgoST.h.

Referenced by correctTheCovMatrix(), and CSCSegAlgoST().

bool CSCSegAlgoST::covToAnyNumber_
private

The correction parameters.

Definition at line 210 of file CSCSegAlgoST.h.

Referenced by correctTheCovMatrix(), and CSCSegAlgoST().

bool CSCSegAlgoST::covToAnyNumberAll_
private

Allow to use any number for covariance (by hand)

Definition at line 211 of file CSCSegAlgoST.h.

Referenced by correctTheCovMatrix(), and CSCSegAlgoST().

std::vector< float > CSCSegAlgoST::curv_A
private

Definition at line 141 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::curv_noL1_A
private

Definition at line 142 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::curv_noL2_A
private

Definition at line 143 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::curv_noL3_A
private

Definition at line 144 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::curv_noL4_A
private

Definition at line 145 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::curv_noL5_A
private

Definition at line 146 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::curv_noL6_A
private

Definition at line 147 of file CSCSegAlgoST.h.

Referenced by buildSegments().

double CSCSegAlgoST::curvePenalty
private

Definition at line 194 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

double CSCSegAlgoST::curvePenaltyThreshold
private

Definition at line 193 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

bool CSCSegAlgoST::debug
private

Definition at line 167 of file CSCSegAlgoST.h.

Referenced by CSCSegAlgoST().

double CSCSegAlgoST::dXclusBoxMax
private

Definition at line 173 of file CSCSegAlgoST.h.

Referenced by clusterHits(), and CSCSegAlgoST().

double CSCSegAlgoST::dYclusBoxMax
private

Definition at line 174 of file CSCSegAlgoST.h.

Referenced by clusterHits(), and CSCSegAlgoST().

std::vector<double> CSCSegAlgoST::e_Cxx
private

Definition at line 200 of file CSCSegAlgoST.h.

Referenced by correctTheCovX(), fillChiSquared(), and fitSlopes().

Segments CSCSegAlgoST::GoodSegments
private

Definition at line 118 of file CSCSegAlgoST.h.

Referenced by buildSegments(), ChooseSegments2(), ChooseSegments2a(), and ChooseSegments3().

double CSCSegAlgoST::hitDropLimit4Hits
private

Definition at line 184 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

double CSCSegAlgoST::hitDropLimit5Hits
private

Definition at line 185 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

double CSCSegAlgoST::hitDropLimit6Hits
private

Definition at line 186 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

unsigned CSCSegAlgoST::maxContrIndex
private

Chi^2 normalization for the initial fit.

Definition at line 203 of file CSCSegAlgoST.h.

Referenced by buildSegments(), correctTheCovX(), and CSCSegAlgoST().

int CSCSegAlgoST::maxRecHitsInCluster
private

Definition at line 175 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

int CSCSegAlgoST::minHitsPerSegment
private

Definition at line 170 of file CSCSegAlgoST.h.

Referenced by buildSegments(), CSCSegAlgoST(), and prune_bad_hits().

const std::string CSCSegAlgoST::myName
private

Definition at line 116 of file CSCSegAlgoST.h.

bool CSCSegAlgoST::onlyBestSegment
private

Definition at line 181 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

ChamberHitContainer CSCSegAlgoST::PAhits_onLayer[6]
private

Definition at line 120 of file CSCSegAlgoST.h.

Referenced by buildSegments().

bool CSCSegAlgoST::passCondNumber
private

The number to fource the Covariance.

Definition at line 213 of file CSCSegAlgoST.h.

Referenced by buildSegments(), CSCSegAlgoST(), fillChiSquared(), fitSlopes(), and prune_bad_hits().

bool CSCSegAlgoST::passCondNumber_2
private

Passage the condition number calculations.

Definition at line 214 of file CSCSegAlgoST.h.

Referenced by buildSegments(), CSCSegAlgoST(), fillChiSquared(), fitSlopes(), and prune_bad_hits().

bool CSCSegAlgoST::preClustering
private

Definition at line 176 of file CSCSegAlgoST.h.

Referenced by CSCSegAlgoST(), and run().

bool CSCSegAlgoST::preClustering_useChaining
private

Definition at line 177 of file CSCSegAlgoST.h.

Referenced by CSCSegAlgoST(), and run().

bool CSCSegAlgoST::prePrun_
private

The index of the worst x RecHit in Chi^2-X method.

Definition at line 204 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

double CSCSegAlgoST::prePrunLimit_
private

Allow to prun a (rechit in a) segment in segment buld method once it passed through Chi^2-X and protoChiUCorrection is big

Definition at line 207 of file CSCSegAlgoST.h.

Referenced by buildSegments(), correctTheCovX(), and CSCSegAlgoST().

double CSCSegAlgoST::protoChi2
private

Definition at line 162 of file CSCSegAlgoST.h.

Referenced by buildSegments(), fillChiSquared(), and prune_bad_hits().

double CSCSegAlgoST::protoChiUCorrection
private

Allow to correct the error matrix.

Definition at line 199 of file CSCSegAlgoST.h.

Referenced by buildSegments(), correctTheCovX(), CSCSegAlgoST(), prune_bad_hits(), and weightMatrix().

LocalVector CSCSegAlgoST::protoDirection
private

Definition at line 164 of file CSCSegAlgoST.h.

Referenced by buildSegments(), fillLocalDirection(), and prune_bad_hits().

LocalPoint CSCSegAlgoST::protoIntercept
private
double CSCSegAlgoST::protoNDF
private

Definition at line 163 of file CSCSegAlgoST.h.

Referenced by buildSegments(), CSCSegAlgoST(), fillChiSquared(), and prune_bad_hits().

ChamberHitContainer CSCSegAlgoST::protoSegment
private
float CSCSegAlgoST::protoSlope_u
private

Definition at line 159 of file CSCSegAlgoST.h.

Referenced by fillChiSquared(), fillLocalDirection(), and fitSlopes().

float CSCSegAlgoST::protoSlope_v
private

Definition at line 160 of file CSCSegAlgoST.h.

Referenced by fillChiSquared(), fillLocalDirection(), and fitSlopes().

bool CSCSegAlgoST::Pruning
private

Definition at line 178 of file CSCSegAlgoST.h.

Referenced by CSCSegAlgoST(), and run().

std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments
private

Definition at line 123 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and ChooseSegments2().

ChamberHitContainer CSCSegAlgoST::Psegments_hits
private

Definition at line 121 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL1
private

Definition at line 125 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL2
private

Definition at line 126 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL3
private

Definition at line 127 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL4
private

Definition at line 128 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL5
private

Definition at line 129 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noL6
private

Definition at line 130 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< ChamberHitContainer > CSCSegAlgoST::Psegments_noLx
private

Definition at line 124 of file CSCSegAlgoST.h.

Referenced by buildSegments().

CSCSegAlgoShowering* CSCSegAlgoST::showering_
private

Definition at line 195 of file CSCSegAlgoST.h.

Referenced by buildSegments(), CSCSegAlgoST(), and ~CSCSegAlgoST().

const CSCChamber* CSCSegAlgoST::theChamber
private
bool CSCSegAlgoST::useShowering
private

Definition at line 182 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

std::vector< float > CSCSegAlgoST::weight_A
private

Definition at line 132 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and ChooseSegments2().

std::vector< float > CSCSegAlgoST::weight_B
private

Definition at line 148 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL1_A
private

Definition at line 134 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL1_B
private

Definition at line 149 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL2_A
private

Definition at line 135 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL2_B
private

Definition at line 150 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL3_A
private

Definition at line 136 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL3_B
private

Definition at line 151 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL4_A
private

Definition at line 137 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL4_B
private

Definition at line 152 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL5_A
private

Definition at line 138 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL5_B
private

Definition at line 153 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL6_A
private

Definition at line 139 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noL6_B
private

Definition at line 154 of file CSCSegAlgoST.h.

Referenced by buildSegments().

std::vector< float > CSCSegAlgoST::weight_noLx_A
private

Definition at line 133 of file CSCSegAlgoST.h.

Referenced by buildSegments().

double CSCSegAlgoST::yweightPenalty
private

Definition at line 191 of file CSCSegAlgoST.h.

Referenced by buildSegments(), and CSCSegAlgoST().

double CSCSegAlgoST::yweightPenaltyThreshold
private

Definition at line 190 of file CSCSegAlgoST.h.

Referenced by CSCSegAlgoST(), and run().