CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
List of all members | Public Member Functions | Private Attributes
VVIObj Class Reference

#include <VVIObj.h>

Public Member Functions

double fcn (double x) const
 
void limits (double &xl, double &xu) const
 density (mode=0) or distribution (mode=1) function More...
 
 VVIObj (double kappa=0.01, double beta2=1., double mode=0)
 Constructor. More...
 

Private Attributes

double a_ [155]
 
double b_ [155]
 
const int mode_
 returns the limits on the non-zero (mode=0) or normalized region (mode=1) More...
 
double omega_
 
double t0_
 
double t1_
 
double t_
 
double x0_
 

Detailed Description

Port of CERNLIB routines vvidis/vviden (G116) to calculate higher quality Vavilov density and distribution functions

Definition at line 23 of file VVIObj.h.

Constructor & Destructor Documentation

VVIObj::VVIObj ( double  kappa = 0.01,
double  beta2 = 1.,
double  mode = 0 
)

Constructor.

Constructor Set Vavilov parameters kappa and beta2 amd define whether to calculate density fcn or distribution fcn

Parameters
kappa- (input) Vavilov kappa parameter [0.01 (Landau-like) < kappa < 10. (Gaussian-like)]
beta2- (input) Vavilov beta2 parameter (square of particle speed in v/c units)
mode- (input) set to 0 to calculate the density function and to 1 to calculate the distribution function

Definition at line 49 of file VVIObj.cc.

References a_, b_, alignmentValidation::c1, funct::cos(), debug_cff::d1, VVIObjDetails::dzero(), funct::exp(), VVIObjDetails::expint(), VVIObjDetails::f1(), VVIObjDetails::f2(), gen::k, prof2calltree::l, funct::log(), mode_, n, omega_, lumiQueryAPI::q, q2, funct::sin(), VVIObjDetails::sincosint(), t0_, t1_, t_, x, and x0_.

49  : mode_(mode) {
50 
51  const double xp[9] = { 9.29,2.47,.89,.36,.15,.07,.03,.02,0.0 };
52  const double xq[7] = { .012,.03,.08,.26,.87,3.83,11.0 };
53  double h_[7];
54  double q, u, x, c1, c2, c3, c4, d1, h4, h5, h6, q2, x1, d, ll, ul, xf1, xf2, rv;
55  int lp, lq, k, l, n;
56 
57  // Make sure that the inputs are reasonable
58 
59  if(kappa < 0.01) kappa = 0.01;
60  if(kappa > 10.) kappa = 10.;
61  if(beta2 < 0.) beta2 = 0.;
62  if(beta2 > 1.) beta2 = 1.;
63 
64  h_[4] = 1. - beta2*0.42278433999999998 + 7.6/kappa;
65  h_[5] = beta2;
66  h_[6] = 1. - beta2;
67  h4 = -7.6/kappa - (beta2 * .57721566 + 1);
68  h5 = log(kappa);
69  h6 = 1./kappa;
70  t0_ = (h4 - h_[4]*h5 - (h_[4] + beta2)*(log(h_[4]) + VVIObjDetails::expint(h_[4])) + exp(-h_[4]))/h_[4];
71 
72  // Set up limits for the root search
73 
74  for (lp = 0; lp < 9; ++lp) {
75  if (kappa >= xp[lp]) break;
76  }
77  ll = -lp - 1.5;
78  for (lq = 0; lq < 7; ++lq) {
79  if (kappa <= xq[lq]) break;
80  }
81  ul = lq - 6.5;
82  // double (*fp2)(double) = reinterpret_cast<double(*)(double)>(&VVIObj::f2);
83  VVIObjDetails::dzero(ll, ul, u, rv, 1.e-5, 1000, boost::bind(&VVIObjDetails::f2, _1,h_));
84  q = 1./u;
85  t1_ = h4 * q - h5 - (beta2 * q + 1) * (log((fabs(u))) + VVIObjDetails::expint(u)) + exp(-u) * q;
86  t_ = t1_ - t0_;
87  omega_ = 6.2831853000000004/t_;
88  h_[0] = kappa * (beta2 * .57721566 + 2.) + 9.9166128600000008;
89  if (kappa >= .07) {h_[0] += 6.90775527;}
90  h_[1] = beta2 * kappa;
91  h_[2] = h6 * omega_;
92  h_[3] = omega_ * 1.5707963250000001;
93  // double (*fp1)(double) = reinterpret_cast<double(*)(double)>(&VVIObj::f1);
94  VVIObjDetails::dzero(5., 155., x0_, rv, 1.e-5, 1000, boost::bind(&VVIObjDetails::f1, _1,h_));
95  n = x0_ + 1.;
96  d = exp(kappa * (beta2 * (.57721566 - h5) + 1.)) * .31830988654751274;
97  a_[n - 1] = 0.;
98  if (mode_ == 0) {
99  a_[n - 1] = omega_ * .31830988654751274;
100  }
101  q = -1.;
102  q2 = 2.;
103  for (k = 1; k < n; ++k) {
104  l = n - k;
105  x = omega_ * k;
106  x1 = h6 * x;
107  VVIObjDetails::sincosint(x1,c2,c1);
108  c1 = log(x) - c1;
109  c3 = sin(x1);
110  c4 = cos(x1);
111  xf1 = kappa * (beta2 * c1 - c4) - x * c2;
112  xf2 = x * c1 + kappa * (c3 + beta2 * c2) + t0_ * x;
113  if (mode_ == 0) {
114  d1 = q * d * omega_ * exp(xf1);
115  a_[l - 1] = d1 * cos(xf2);
116  b_[l - 1] = -d1 * sin(xf2);
117  } else {
118  d1 = q * d * exp(xf1)/k;
119  a_[l - 1] = d1 * sin(xf2);
120  b_[l - 1] = d1 * cos(xf2);
121  a_[n - 1] += q2 * a_[l - 1];
122  }
123  q = -q;
124  q2 = -q2;
125  }
126 
127 } // VVIObj
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
double a_[155]
Definition: VVIObj.h:42
double t1_
Definition: VVIObj.h:38
Exp< T >::type exp(const T &t)
Definition: Exp.h:22
tuple d1
Definition: debug_cff.py:7
int dzero(double a, double b, double &x0, double &rv, double eps, int mxf, F func)
Definition: VVIObj.cc:571
double q2[4]
Definition: TauolaWrapper.h:88
double b_[155]
Definition: VVIObj.h:43
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
double omega_
Definition: VVIObj.h:40
double f2(double x, double const *h_)
Definition: VVIObj.cc:33
double x0_
Definition: VVIObj.h:41
int k[5][pyjets_maxn]
void sincosint(double x, double &sint, double &cint)
Definition: VVIObj.cc:346
Log< T >::type log(const T &t)
Definition: Log.h:22
int mode
Definition: AMPTWrapper.h:139
double t0_
Definition: VVIObj.h:37
double f1(double x, double const *h_)
Private version of the exponential integral.
Definition: VVIObj.cc:32
const int mode_
returns the limits on the non-zero (mode=0) or normalized region (mode=1)
Definition: VVIObj.h:36
double t_
Definition: VVIObj.h:39
Definition: DDAxes.h:10
double expint(double x)
Private version of the sine integral.
Definition: VVIObj.cc:449

Member Function Documentation

double VVIObj::fcn ( double  x) const

Vavilov function method Returns density fcn (mode=0) or distribution fcn (mode=1)

Parameters
x- (input) Argument of function [typically defined as (Q-mpv)/sigma]

Definition at line 136 of file VVIObj.cc.

References a_, b_, funct::cos(), f, gen::k, mode_, n, omega_, funct::sin(), t0_, t1_, t_, x0_, and detailsBasic3DVector::y.

Referenced by SiPixelTemplateReco::PixelTempReco2D().

136  {
137 
138  // Local variables
139 
140  double f, u, y, a0, a1;
141  double a2 = 0.;
142  double b1, b0, b2, cof;
143  int k, n, n1;
144 
145  n = x0_;
146  if (x < t0_) {
147  f = 0.;
148  } else if (x <= t1_) {
149  y = x - t0_;
150  u = omega_ * y - 3.141592653589793;
151  cof = cos(u) * 2.;
152  a1 = 0.;
153  a0 = a_[0];
154  n1=n+1;
155  for (k = 2; k <= n1; ++k) {
156  a2 = a1;
157  a1 = a0;
158  a0 = a_[k - 1] + cof * a1 - a2;
159  }
160  b1 = 0.;
161  b0 = b_[0];
162  for (k = 2; k <= n; ++k) {
163  b2 = b1;
164  b1 = b0;
165  b0 = b_[k - 1] + cof * b1 - b2;
166  }
167  f = (a0 - a2) * .5 + b0 * sin(u);
168  if (mode_ != 0) {f += y / t_;}
169  } else {
170  f = 0.;
171  if (mode_ != 0) {f = 1.;}
172  }
173  return f;
174 } // fcn
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
double a_[155]
Definition: VVIObj.h:42
double t1_
Definition: VVIObj.h:38
double b_[155]
Definition: VVIObj.h:43
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
double omega_
Definition: VVIObj.h:40
double f[11][100]
double x0_
Definition: VVIObj.h:41
int k[5][pyjets_maxn]
double t0_
Definition: VVIObj.h:37
const int mode_
returns the limits on the non-zero (mode=0) or normalized region (mode=1)
Definition: VVIObj.h:36
double t_
Definition: VVIObj.h:39
Definition: DDAxes.h:10
void VVIObj::limits ( double &  xl,
double &  xu 
) const

density (mode=0) or distribution (mode=1) function

Vavilov limits method

Parameters
xl- (output) Smallest value of the argument for the density and the beginning of the normalized region for the distribution
xu- (output) Largest value of the argument for the density and the end of the normalized region for the distribution

Definition at line 185 of file VVIObj.cc.

References t0_, and t1_.

185  {
186 
187  xl = t0_;
188  xu = t1_;
189  return;
190 } // limits
double t1_
Definition: VVIObj.h:38
double t0_
Definition: VVIObj.h:37

Member Data Documentation

double VVIObj::a_[155]
private

Definition at line 42 of file VVIObj.h.

Referenced by fcn(), and VVIObj().

double VVIObj::b_[155]
private

Definition at line 43 of file VVIObj.h.

Referenced by fcn(), and VVIObj().

const int VVIObj::mode_
private

returns the limits on the non-zero (mode=0) or normalized region (mode=1)

set to 0 to calculate the density function and to 1 to calculate the distribution function

Definition at line 36 of file VVIObj.h.

Referenced by fcn(), and VVIObj().

double VVIObj::omega_
private

Definition at line 40 of file VVIObj.h.

Referenced by fcn(), and VVIObj().

double VVIObj::t0_
private

Definition at line 37 of file VVIObj.h.

Referenced by fcn(), limits(), and VVIObj().

double VVIObj::t1_
private

Definition at line 38 of file VVIObj.h.

Referenced by fcn(), limits(), and VVIObj().

double VVIObj::t_
private

Definition at line 39 of file VVIObj.h.

Referenced by fcn(), and VVIObj().

double VVIObj::x0_
private

Definition at line 41 of file VVIObj.h.

Referenced by fcn(), and VVIObj().