CMS 3D CMS Logo

/data/refman/pasoursint/CMSSW_4_1_8_patch9/src/FastSimulation/ForwardDetectors/plugins/CastorFastClusterProducer.cc

Go to the documentation of this file.
00001 // -*- C++ -*-
00002 //
00003 // Package:    CastorFastClusterProducer
00004 // Class:      CastorFastClusterProducer
00005 // 
00013 //
00014 // Original Author:  Hans Van Haevermaet
00015 //         Created:  Thu Mar 13 12:00:56 CET 2008
00016 // $Id: CastorFastClusterProducer.cc,v 1.1 2009/03/27 21:59:37 hvanhaev Exp $
00017 //
00018 //
00019 
00020 
00021 // system include files
00022 #include <memory>
00023 #include <vector>
00024 #include <iostream>
00025 #include <sstream>
00026 #include <TMath.h>
00027 #include <TRandom3.h>
00028 #include <TF1.h>
00029 
00030 // user include files
00031 #include "FWCore/Framework/interface/Frameworkfwd.h"
00032 #include "FWCore/Framework/interface/EDProducer.h"
00033 
00034 #include "FWCore/Framework/interface/Event.h"
00035 #include "FWCore/Framework/interface/MakerMacros.h"
00036 
00037 #include "FWCore/ParameterSet/interface/ParameterSet.h"
00038 
00039 #include "DataFormats/Math/interface/Point3D.h"
00040 
00041 // Castorobject includes
00042 #include "DataFormats/CastorReco/interface/CastorCluster.h"
00043 #include "DataFormats/CastorReco/interface/CastorCell.h"
00044 
00045 // genCandidate particle includes
00046 #include "DataFormats/Candidate/interface/Candidate.h"
00047 #include "DataFormats/HepMCCandidate/interface/GenParticle.h"
00048 
00049 #include "FastSimulation/ForwardDetectors/plugins/CastorFastClusterProducer.h"
00050 
00051 
00052 //
00053 // constructors and destructor
00054 //
00055 CastorFastClusterProducer::CastorFastClusterProducer(const edm::ParameterSet& iConfig) 
00056 {
00057    //register your products
00058    produces<CastorClusterCollection>();
00059    
00060    //now do what ever other initialization is needed
00061 
00062 }
00063 
00064 
00065 CastorFastClusterProducer::~CastorFastClusterProducer()
00066 {
00067  
00068    // do anything here that needs to be done at desctruction time
00069    // (e.g. close files, deallocate resources etc.)
00070 
00071 }
00072 
00073 
00074 //
00075 // member functions
00076 //
00077 
00078 // ------------ method called to produce the data  ------------
00079 void
00080 CastorFastClusterProducer::produce(edm::Event& iEvent, const edm::EventSetup& iSetup)
00081 {
00082    using namespace edm;
00083    using namespace reco;
00084    using namespace std;
00085    using namespace TMath;
00086    
00087    //
00088    // Make CastorCluster objects
00089    //
00090    
00091    //cout << "entering event" << endl;
00092    
00093    Handle<GenParticleCollection> genParticles;
00094    iEvent.getByLabel("genParticles", genParticles);
00095    
00096    // make pointer to towers that will be made
00097    auto_ptr<CastorClusterCollection> CastorClusters (new CastorClusterCollection);
00098    
00099    /*
00100    // declare castor array
00101    double castorplus [4][16]; // (0,x): Energies - (1,x): emEnergies - (2,x): hadEnergies - (3,x): phi position - eta = 5.9
00102    double castormin [4][16];  // (0,x): Energies - (1,x): emEnergies - (2,x): hadEnergies - (3,x): phi position - eta = -5.9
00103    // set phi values of array sectors and everything else to zero
00104    for (int j = 0; j < 16; j++) {
00105         castorplus[3][j] = -2.94524 + j*0.3927;
00106         castormin[3][j] = -2.94524 + j*0.3927;
00107         castorplus[0][j] = 0.;
00108         castormin[0][j] = 0.;
00109         castorplus[1][j] = 0.;
00110         castormin[1][j] = 0.;
00111         castorplus[2][j] = 0.;
00112         castormin[2][j] = 0.; 
00113         //castorplus[4][j] = 0.;
00114         //castormin[4][j] = 0.;
00115    }
00116    
00117    // declare properties vectors
00118    vector<double> depthplus[16];
00119    vector<double> depthmin[16];
00120    vector<double> fhotplus [16];
00121    vector<double> fhotmin [16];
00122    vector<double> energyplus [16];
00123    vector<double> energymin [16];
00124    
00125    for (int i=0;i<16;i++) {
00126         depthplus[i].clear();
00127         depthmin[i].clear();
00128         fhotplus[i].clear();
00129         fhotmin[i].clear();
00130         energyplus[i].clear();
00131         energymin[i].clear();
00132    }
00133    */
00134    
00135    //cout << "declared everything" << endl;
00136    
00137    // start particle loop
00138    for (size_t i = 0; i < genParticles->size(); ++i) {
00139         const Candidate & p = (*genParticles)[i];
00140         
00141         // select particles in castor
00142         if ( fabs(p.eta()) > 5.2 && fabs(p.eta()) < 6.6) {
00143         
00144             //cout << "found particle in castor, start calculating" << endl;
00145             
00146             // declare energies
00147             double gaus_E = -1.; 
00148             double emEnergy = 0.;
00149             double hadEnergy = 0.;
00150             //double fhot = 0.;
00151             //double depth = 0.;
00152             
00153             // add energies - em: if particle is e- or gamma
00154             if (p.pdgId() == 11 || p.pdgId() == 22) {
00155                 
00156                 while ( gaus_E < 0.) {
00157                 // apply energy smearing with gaussian random generator
00158                 TRandom3 r(0);
00159                 // use sigma/E parametrization for the EM sections of CASTOR TB 2007 results
00160                 double sigma = p.energy()*(sqrt(pow(0.044,2) + pow(0.513/sqrt(p.energy()),2)));
00161                 gaus_E = r.Gaus(p.energy(),sigma);
00162                 }
00163             
00164                 // calculate electromagnetic electron/photon energy leakage
00165                 double tmax;
00166                 double a;
00167                 double cte;
00168                 if ( p.pdgId() == 11) { cte = -0.5; } else { cte = 0.5; }
00169                 tmax = 1.0*(log(gaus_E/0.0015)+cte);
00170                 a = tmax*0.5 + 1;
00171                 double leakage;
00172                 double x = 0.5*19.38;
00173                 leakage = gaus_E - gaus_E*Gamma(a,x);
00174                 
00175                 // add emEnergy
00176                 emEnergy = gaus_E - leakage;
00177                 // add hadEnergy leakage
00178                 hadEnergy = leakage;
00179                 
00180                 // make cluster
00181                 ClusterPoint pt1;
00182                 if (p.eta() > 0.) {ClusterPoint temp(88.5,5.9,p.phi()); pt1 = temp;}
00183                 if (p.eta() < 0.) {ClusterPoint temp(88.5,-5.9,p.phi()); pt1 = temp;}
00184                 Point pt2(pt1);
00185                 CastorTowerRefVector refvector;
00186                 CastorClusters->push_back(reco::CastorCluster(gaus_E,pt2,emEnergy,hadEnergy,emEnergy/gaus_E,0.,0.,0.,0.,refvector));
00187                 
00188             } else {
00189             
00190                 while (gaus_E < 0.) {
00191                 // apply energy smearing with gaussian random generator
00192                 TRandom3 r(0);
00193                 // use sigma/E parametrization for the HAD sections of CASTOR TB 2007 results
00194                 double sigma = p.energy()*(sqrt(pow(0.121,2) + pow(1.684/sqrt(p.energy()),2)));
00195                 gaus_E = r.Gaus(p.energy(),sigma);
00196                 }
00197                 
00198                 // add hadEnergy
00199                 hadEnergy = gaus_E;
00200                 
00201                 // make cluster
00202                 ClusterPoint pt1;
00203                 if (p.eta() > 0.) {ClusterPoint temp(88.5,5.9,p.phi()); pt1 = temp;}
00204                 if (p.eta() < 0.) {ClusterPoint temp(88.5,-5.9,p.phi()); pt1 = temp;}
00205                 Point pt2(pt1);
00206                 CastorTowerRefVector refvector;
00207                 CastorClusters->push_back(reco::CastorCluster(gaus_E,pt2,0.,hadEnergy,0.,0.,0.,0.,0.,refvector));
00208             }
00209             
00210             /*
00211             // make tower
00212             
00213             // set sector
00214             int sector = -1;
00215             for (int j = 0; j < 16; j++) {
00216                 double a = -M_PI + j*0.3927;
00217                 double b = -M_PI + (j+1)*0.3927;
00218                 if ( (p.phi() > a) && (p.phi() < b)) {  
00219                    sector = j;
00220                 }
00221             }
00222             
00223             // set eta
00224             if (p.eta() > 0) { 
00225                 castorplus[0][sector] = castorplus[0][sector] + gaus_E;
00226                 castorplus[1][sector] = castorplus[1][sector] + emEnergy;
00227                 castorplus[2][sector] = castorplus[2][sector] + hadEnergy;
00228                 
00229                 depthplus[sector].push_back(depth);
00230                 fhotplus[sector].push_back(fhot);
00231                 energyplus[sector].push_back(gaus_E);
00232                 //cout << "filled vectors" << endl;
00233                 //cout << "energyplus size = " << energyplus[sector].size() << endl;
00234                 //cout << "depthplus size = " << depthplus[sector].size() << endl;
00235                 //cout << "fhotplus size = " << fhotplus[sector].size() << endl;
00236                 
00237             } else { 
00238                 castormin[0][sector] = castormin[0][sector] + gaus_E;
00239                 castormin[1][sector] = castormin[1][sector] + emEnergy;
00240                 castormin[2][sector] = castormin[2][sector] + hadEnergy;
00241                 
00242                 
00243                 depthmin[sector].push_back(depth);
00244                 fhotmin[sector].push_back(fhot);
00245                 energymin[sector].push_back(gaus_E);
00246                 //cout << "filled vectors" << endl;
00247                 
00248             }
00249             */
00250             
00251         }
00252         
00253    }
00254    
00255    /*
00256    // substract pedestals/noise
00257    for (int j = 0; j < 16; j++) {
00258         double hadnoise = 0.;
00259         for (int i=0;i<12;i++) {
00260                 hadnoise = hadnoise + make_noise();
00261         }
00262         castorplus[0][j] = castorplus[0][j] - hadnoise - make_noise() - make_noise();
00263         castormin[0][j] = castormin[0][j] - hadnoise - make_noise() - make_noise();
00264         castorplus[1][j] = castorplus[1][j] - make_noise() - make_noise();
00265         castormin[1][j] = castormin[1][j] - make_noise() - make_noise();
00266         castorplus[2][j] = castorplus[2][j] - hadnoise;
00267         castormin[2][j] = castormin[2][j] - hadnoise; 
00268         
00269         // set possible negative values to zero
00270         if (castorplus[0][j] < 0.) castorplus[0][j] = 0.;
00271         if (castormin[0][j] < 0.) castormin[0][j] = 0.;
00272         if (castorplus[1][j] < 0.) castorplus[1][j] = 0.;
00273         if (castormin[1][j] < 0.) castormin[1][j] = 0.;
00274         if (castorplus[2][j] < 0.) castorplus[2][j] = 0.;
00275         if (castormin[2][j] < 0.) castormin[2][j] = 0.;
00276    }
00277    */
00278    
00279    /*
00280    // store towers from castor arrays
00281    // eta = 5.9
00282    for (int j=0;j<16;j++) {
00283         if (castorplus[0][j] > 0.) {
00284             
00285             double fem = 0.;
00286             fem = castorplus[1][j]/castorplus[0][j]; 
00287             ClusterPoint pt1(88.5,5.9,castorplus[3][j]);
00288             Point pt2(pt1); 
00289             
00290             // parametrize depth and fhot from full sim
00291             // get fit parameters from energy
00292             // get random number according to distribution with fit parameters
00293             double depth_mean = 0.;
00294             double fhot_mean = 0.;
00295             double sum_energy = 0.;
00296             
00297             //cout << "energyplus size = " << energyplus[j].size()<< endl;
00298             for (size_t p = 0; p<energyplus[j].size();p++) {
00299                 depth_mean = depth_mean + depthplus[j][p]*energyplus[j][p];
00300                 fhot_mean = fhot_mean + fhotplus[j][p]*energyplus[j][p];
00301                 sum_energy = sum_energy + energyplus[j][p];
00302             }
00303             depth_mean = depth_mean/sum_energy;
00304             fhot_mean = fhot_mean/sum_energy;
00305             cout << "computed depth/fhot" << endl;
00306             
00307             
00308             //std::vector<CastorCell> usedCells;
00309             CastorCellRefVector refvector;
00310             CastorClusters->push_back(reco::CastorCluster(castorplus[0][j],pt2,castorplus[1][j],castorplus[2][j],fem,depth_mean,fhot_mean,refvector));  
00311         }
00312    }
00313    // eta = -5.9
00314    for (int j=0;j<16;j++) {
00315         if (castormin[0][j] > 0.) {
00316             double fem = 0.;
00317             fem = castormin[1][j]/castormin[0][j]; 
00318             ClusterPoint pt1(88.5,-5.9,castormin[3][j]);
00319             Point pt2(pt1); 
00320             
00321             // parametrize depth and fhot from full sim
00322             // get fit parameters from energy
00323             // get random number according to distribution with fit parameters
00324             double depth_mean = 0.;
00325             double fhot_mean = 0.;
00326             double sum_energy = 0.;
00327             
00328             
00329             for (size_t p = 0; p<energymin[j].size();p++) {
00330                 depth_mean = depth_mean + depthmin[j][p]*energymin[j][p];
00331                 fhot_mean = fhot_mean + fhotmin[j][p]*energymin[j][p];
00332                 sum_energy = sum_energy + energymin[j][p];
00333             }
00334             depth_mean = depth_mean/sum_energy;
00335             fhot_mean = fhot_mean/sum_energy;
00336             
00337             
00338             //std::vector<CastorCell> usedCells;
00339             CastorCellRefVector refvector;
00340             CastorClusters->push_back(reco::CastorCluster(castormin[0][j],pt2,castormin[1][j],castormin[2][j],fem,depth_mean,fhot_mean,refvector));     
00341         }
00342    }
00343    */
00344         
00345    iEvent.put(CastorClusters); 
00346    
00347 }
00348 
00349 double CastorFastClusterProducer::make_noise() {
00350         double result = -1.;
00351         TRandom3 r2(0);
00352         double mu_noise = 0.053; // GeV (from 1.214 ADC) per channel
00353         double sigma_noise = 0.027; // GeV (from 0.6168 ADC) per channel
00354         
00355         while (result < 0.) {
00356                 result = r2.Gaus(mu_noise,sigma_noise);
00357         }
00358         
00359         return result;
00360 }
00361 
00362 
00363 // ------------ method called once each job just before starting event loop  ------------
00364 void 
00365 CastorFastClusterProducer::beginRun(edm::Run& run, edm::EventSetup const& es)
00366 {
00367 }
00368 
00369 // ------------ method called once each job just after ending the event loop  ------------
00370 void 
00371 CastorFastClusterProducer::endRun() {
00372 }
00373 
00374 //define this as a plug-in
00375 DEFINE_FWK_MODULE(CastorFastClusterProducer);